Bulbul Khomdram and Yumnam Rohen
 SOME COMMON COUPLED FIXED POINT THEOREMS IN S_{b}-METRIC SPACES

Abstract

In this paper, we prove some common coupled fixed point theorems for mapping satisfying a nonlinear contraction in S_{b}-metric space and some results are also given in the form of corollary. Also, some examples are given to verify the main results. KEY words: coupled fixed point, common coupled fixed point, S_{b}-metric space.

AMS Mathematics Subject Classification: 47H10, 54H25.

2. Introduction and preliminaries

As metric spaces play a very important role in mathematics and applied sciences, many authors have been generalizing the concept of metric space in several ways. Some of them are 2-metric space [4], D-metric space [3], G-metric space [8], D^{*}-metric space [9], G_{b}-metric space [2] etc..As one of the generalization of the metric space, Sedghi et al. [10] introduced the concept of S-metric space and proved a fixed point theorem. After that, many papers about fixed point theory in S-metric spaces appeared (see [11], [7] etc.).

Very recently, Souayah and Mlaiki [12] introduced the concept of S_{b}-metric space as a generalization of the b-metric space and proved some fixed point results. \mathbb{R}

Sedghi et al. [13] also introduced the concept of S_{b}-metric space and their definition of S_{b}-metric space is different from the definition of S_{b}-metric space given by Souayah and Mlaiki [12]. Sedghi et al. [13] defined the definition of S_{b}-metric space without condition (ii) of definition (1) whereas Souayah and Mlaiki [12] considered condition (ii) of definition (1) to be a part of the definition. Y. Rohen et al. [14] also proved some coupled fixed point theorem in S_{b}-metric space.

Now, we consider the following definitions.

Definition 1 ([12]). Let X be a nonempty set and let $s \geq 1$ be a given real number. A function $S_{b}: X^{3} \rightarrow[0, \infty)$ is said to be S_{b}-metric if and only if for all $x, y, z, t \in X$: the following conditions hold:
(i) $S_{b}(x, y, z)=0$ if and only if $x=y=z$,
(ii) $S_{b}(x, x, y)=S_{b}(y, y, x)$ for all $x, y \in X$,
(iii) $S_{b}(x, y, z) \leq s\left[S_{b}(x, x, t)+S_{b}(y, y, t)+S_{b}(z, z, t)\right]$

The pair $\left(X, S_{b}\right)$ is called a S_{b}-metric space.
Remark 1 ([12]). Note that the class of S_{b}-metric spaces is larger than the class of S-metric spaces. Indeed, every S-metric spaces is an S_{b}-metric space with $s=1$. However, the converse is not always true.

Definition 2 ([12]). Let $\left(X, S_{b}\right)$ be an S_{b}-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then
(i) A sequence $\left\{x_{n}\right\}$ is called convergent if and only if there exist $z \in X$ such that $S_{b}\left(x_{n}, x_{n}, z\right) \rightarrow 0$ as $n \rightarrow \infty$. In this case we write $\lim _{n \rightarrow \infty} x_{n}=z$.
(ii) A sequence $\left\{x_{n}\right\}$ is called Cauchy sequence if and only if $S_{b}\left(x_{n}, x_{n}, x_{m}\right)$ $\rightarrow 0$ as $n, m \rightarrow \infty$.
(iii) $\left(X, S_{b}\right)$ is said to be a complete S_{b}-metric space if every Cauchy sequence $\left\{x_{n}\right\}$ converges to a point $x \in X$ such that

$$
\lim _{n, m \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x_{m}\right)=\lim _{n, m \rightarrow \infty} S_{b}\left(x_{n}, x_{n}, x\right)=S_{b}(x, x, x)
$$

(iv) Define the diameter of a subset Y of X by

$$
\operatorname{diam}(Y):=\sup \left\{S_{b}(x, y, z) \mid x, y, z \in Y\right\}
$$

Definition 3 ([5]). An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 4 ([6]). An element $(x, y) \in X \times X$ is called a coupled coincidence point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g x=F(x, y)$ and $g y=F(y, x)$, and $(g x, g y)$ is called a coupled point of coincidence.

Definition 5 ([6]). An element $(x, y) \in X \times X$ is called a common coupled fixed point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g x=x$ and $F(y, x)=g y=y$.

Definition 6 ([6]). Let X be a non-empty set and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. We say F and g are commutative if $g(F(x, y))=F(g x, g y)$, for all $x, y \in X$.

Definition 7 ([1]). The mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are called w-compatible if $g(F(x, y))=F(g x, g y)$ whenever $g(x)=F(x, y)$ and $g(y)=F(y, x)$.

Next we prove the following Lemma.

Lemma 1. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space, and suppose that the sequence $\left\{x_{n}\right\}$ is convergent to x. Then

$$
\frac{1}{s} S_{b}(y, y, x) \leq \liminf _{n \rightarrow \infty} S_{b}\left(y, y, x_{n}\right) \leq \limsup _{n \rightarrow \infty} S_{b}\left(y, y, x_{n}\right) \leq s S_{b}(y, y, x)
$$

In particular, if $x=y$, then we get $\lim _{n \rightarrow \infty} S_{b}\left(y, y, x_{n}\right)=0$
Proof. Using condition (ii) and (iii) of definition of S_{b}-metric space, we get

$$
\begin{align*}
S_{b}\left(y, y, x_{n}\right) & =S_{b}\left(x_{n}, x_{n}, y\right) \tag{1}\\
& \leq s\left[2 S_{b}\left(x_{n}, x_{n}, x\right)+S_{b}(y, y, x)\right]
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{s} S_{b}(y, y, x) & =\frac{1}{s} S_{b}(x, x, y) \tag{2}\\
& \leq 2 S_{b}\left(x, x, x_{n}\right)+S_{b}\left(y, y, x_{n}\right)
\end{align*}
$$

Taking the upper limit as $n \rightarrow \infty$ in (1) and the lower limit as $n \rightarrow \infty$ in (2), we get the required result.

The aim of this paper is to establish some common coupled fixed point results for mapping satisfying a nonlinear contraction in S_{b}-metric spaces. Also, we establish some examples to verify the results.

2. Main results

Let Ψ denote the class of all function $\psi:[0, \infty) \rightarrow[0, \infty)$ such that ψ is increasing, continuous, $\psi(t)<\frac{t}{2}$ for all $t>0$ and $\psi(0)=0$. It is easy to see that for every $\psi \in \Psi$, we can choose a k in $\left(0, \frac{1}{2}\right)$ such that $\psi(t) \leq k t$.

Now we prove the following theorem.
Theorem 1. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{1}{s} \psi\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
$$

for some $\psi \in \Psi$ and for all $x, y, u, v, a, b \in X$. Assume that F and g satisfy the following conditions:
(a) $F(X \times X) \subseteq g(X)$,
(b) $g(X)$ is complete, and
(c) F and g are w-compatible.

Then F and g have a unique common coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=g x=x$.

Proof. Let $x_{0}, y_{0} \in X$ be any two elements. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Continuing this process, we can construct two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$, for all $n \geq 0$.

For $n \in \mathbf{N}$, we have

$$
\begin{align*}
S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)= & S_{b}\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \tag{3}\\
\leq & \frac{1}{s} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)\right. \\
& \left.+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right) .
\end{align*}
$$

Similarly,

$$
\begin{align*}
S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right) \leq & \frac{1}{s} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)\right. \tag{4}\\
& \left.+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right)
\end{align*}
$$

From (3) and (4), we have

$$
\begin{aligned}
P_{n} & :=S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right) \\
& \leq \frac{2}{s} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right) \\
& =\frac{2}{s} \psi\left(P_{n-1}\right)
\end{aligned}
$$

for all $n \in \mathbf{N}$. Thus, we get a k in $\left(0, \frac{1}{2}\right)$ such that

$$
P_{n} \leq \frac{2}{s} \psi\left(P_{n-1}\right) \leq \frac{2 k}{s} P_{n-1}=h P_{n-1}
$$

for $h=\frac{2 k}{s}$. Hence we have

$$
P_{n} \leq h P_{n-1} \leq h^{2} P_{n-2} \leq \ldots \leq h^{n} P_{0}
$$

For $m, n \in \mathbf{N}$ with $m>n$, we have

$$
\begin{aligned}
& S_{b}\left(g x_{n}, g x_{n}, g x_{m}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{m}\right) \\
& \quad \leq s\left[2 S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S_{b}\left(g x_{m}, g x_{m}, g x_{n+1}\right)\right] \\
& \quad+s\left[2 S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right)+S_{b}\left(g y_{m}, g y_{m}, g y_{n+1}\right)\right] \\
& \quad=2 s P_{n}+s\left[S_{b}\left(g x_{n+1}, g x_{n+1}, g x_{m}\right)+S_{b}\left(g y_{n+1}, g y_{n+1}, g y_{m}\right)\right] \\
& \quad \leq \\
& \quad 2 s P_{n}+2 s^{2} P_{n+1}+\ldots+2 s^{m-n} P_{m-1} \\
& \quad \leq \\
& \quad 2 s h^{n} P_{0}+2 s^{2} h^{n+1} P_{0}+2 s^{3} h^{n+2} P_{0}+\ldots \\
& \quad= \\
& 2 s h^{n} P_{0}\left(1+s h+s^{2} h^{2}+\ldots\right) \\
& \quad= \\
& \frac{2 s h^{n} P_{0}}{1-s h}
\end{aligned}
$$

On taking limit as $n, m \rightarrow \infty$, we have

$$
\lim _{n, m \rightarrow \infty}\left\{S_{b}\left(g x_{n}, g x_{n}, g x_{m}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{m}\right)\right\}=0
$$

Thus, $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is complete, we get $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are convergent to some $g x$ and $g y$ in $g(X)$ respectively.

Consider

$$
\begin{aligned}
S_{b}\left(g x_{n+1}, g x_{n+1}, F(x, y)\right) & =S_{b}\left(F\left(x_{n}, y_{n}\right), F\left(x_{n}, y_{n}\right), F(x, y)\right) \\
& \leq \frac{1}{s} \psi\left(S_{b}\left(g x_{n}, g x_{n}, g x\right)+S_{b}\left(g y_{n}, g y_{n}, g y\right)\right) .
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$, we obtain $S_{b}(g x, g x, F(x, y))=0$. Hence, we get $g x=F(x, y)$. Similarly, we get $g y=F(y, x)$. Thus, $(g x, g y)$ is coupled point of coincidence of F and g.

Next, we show that F and g have unique coupled point of coincidence. Assume that $\left(g x^{*}, g y^{*}\right)$ is also a coupled point of coincidence of F and g, that is, $g x^{*}=F\left(x^{*}, y^{*}\right)$ and $g y^{*}=F\left(y^{*}, x^{*}\right)$.

Consider

$$
\begin{align*}
S_{b}\left(g x, g x, g x^{*}\right) & =S_{b}\left(F(x, y), F(x, y), F\left(x^{*}, y^{*}\right)\right) \tag{5}\\
& \leq \frac{1}{s} \psi\left(S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right)\right) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
S_{b}\left(g y, g y, g y^{*}\right) \leq \frac{1}{s} \psi\left(S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right)\right) \tag{6}
\end{equation*}
$$

From (5) and (6), we have

$$
\begin{aligned}
S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right) & \leq \frac{2}{s} \psi\left(S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right)\right) \\
& \leq \frac{2 k}{s}\left(S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right)\right)
\end{aligned}
$$

As $0<k<\frac{1}{2}$, we get $S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g y, g y, g y^{*}\right)=0$. Hence, $g x=g x^{*}$ and $g y=g y^{*}$. Thus, F and g have a unique coupled point of coincidence. Next, we show that $g x=g y$. For this consider

$$
\begin{aligned}
S_{b}(g x, g x, g y) & =S_{b}(F(x, y), F(x, y), F(y, x)) \\
& \leq \frac{1}{s} \psi\left(S_{b}(g x, g x, g y)+S_{b}(g y, g y, g x)\right) \\
& =\frac{1}{s} \psi\left(2 S_{b}(g x, g x, g y)\right) \\
& \leq \frac{2 k}{s} S_{b}(g x, g x, g y) .
\end{aligned}
$$

As $0<k<\frac{1}{2}$, we get $S_{b}(g x, g x, g y)=0$. Hence, $g x=g y$. Thus, we obtain

$$
F(x, y)=g x=g y=F(y, x)
$$

As F and g are w-compatible, by taking $u=g x$, we get

$$
g u=g g x=g F(x, y)=F(g x, g y)=F(u, u)
$$

This shows that $(g u, g u)$ is a coupled point of coincidence of F and g. As coupled point of coincidence of F and g is unique, we have $g u=g x=u$. Hence, $u=g u=F(u, u)$, that is, F and g have a unique common coupled fixed point.

Corollary 1. Let $\left(X, S_{b}\right)$ be an S_{b}-metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{k}{s}\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
$$

for all $x, y, u, v, a, b \in X$. Assume that F and g satisfy the following conditions:
(a) $F(X \times X) \subseteq g(X)$,
(b) $g(X)$ is complete and
(c) F and g are w-compatible.

If $k \in\left(0, \frac{1}{2}\right)$, then F and g have a unique common coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=g x=x$.

Proof. The result follows from Theorem 1 by taking $\psi(t)=k t$.

Corollary 2. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times$ $X \rightarrow X$ be a mapping such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{1}{s} \psi\left(S_{b}(x, u, a)+S_{b}(y, v, b)\right)
$$

for all $x, y, u, v, a, b \in X$. If $k \in\left(0, \frac{1}{2}\right)$, then F has a unique coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=x$.

Proof. The result follows from Theorem 1 by taking $g=I$ (the identity mapping on X).

Corollary 3. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times$ $X \rightarrow X$ be a mapping such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{k}{s}\left(S_{b}(x, u, a)+S_{b}(y, v, b)\right)
$$

for all $x, y, u, v, a, b \in X$. If $k \in\left(0, \frac{1}{2}\right)$, then F has a unique coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=x$.

Proof. The result follows from Theorem 1 by taking $g=I$ (the identity mapping on X) and $\psi(t)=k t$.

In the next theorem, we consider g is continuous and commutes with F instead of the condition that F and g are w-compatible.

Theorem 2. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times X \rightarrow$ X and $g: X \rightarrow X$ be two mappings such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{1}{s^{2}} \psi\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
$$

for some $\psi \in \Psi$ and for all $x, y, u, v, a, b \in X$. Assume that F and g satisfy the following conditions:
(a) $F(X \times X) \subseteq g(X)$,
(b) $g(X)$ is complete, and
(c) g is continuous and commutes with F.

Then F and g have a unique common coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=g x=x$.

Proof. Let $x_{0}, y_{0} \in X$ be any two element. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Continuing this process, we can construct two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in X such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$, for all $n \geq 0$.

For $n \in \mathbf{N}$, we have

$$
\begin{align*}
S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)= & S_{b}\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \tag{7}\\
\leq & \frac{1}{s^{2}} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)\right. \\
& \left.+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right)
\end{align*}
$$

Similarly,

$$
\begin{align*}
S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right) \leq & \frac{1}{s^{2}} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)\right. \\
& \left.+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right) \tag{8}
\end{align*}
$$

From (7) and (8), we have

$$
\begin{aligned}
Q_{n} & :=S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right) \\
& \leq \frac{2}{s^{2}} \psi\left(S_{b}\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)+S_{b}\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right) \\
& =\frac{2}{s^{2}} \psi\left(Q_{n-1}\right)
\end{aligned}
$$

for all $n \in \mathbf{N}$. Thus, we get a k in $\left(0, \frac{1}{2}\right)$ such that

$$
Q_{n} \leq \frac{2}{s^{2}} \phi\left(Q_{n-1}\right) \leq \frac{2}{s} \phi\left(Q_{n-1}\right) \leq \frac{2 k}{s} Q_{n-1}=p Q_{n-1}
$$

for $p=\frac{2 k}{s}$. Hence we have

$$
Q_{n} \leq p Q_{n-1} \leq p^{2} Q_{n-2} \leq \ldots \leq p^{n} Q_{0}
$$

For $m, n \in \mathbf{N}$ with $m>n$, we have

$$
\begin{aligned}
& S_{b}\left(g x_{n}, g x_{n}, g x_{m}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{m}\right) \\
& \quad \leq s\left[2 S_{b}\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S_{b}\left(g x_{m}, g x_{m}, g x_{n+1}\right)\right] \\
&+s\left[2 S_{b}\left(g y_{n}, g y_{n}, g y_{n+1}\right)+S_{b}\left(g y_{m}, g y_{m}, g y_{n+1}\right)\right] \\
&=2 s Q_{n}+s\left[S_{b}\left(g x_{n+1}, g x_{n+1}, g x_{m}\right)+S_{b}\left(g y_{n+1}, g y_{n+1}, g y_{m}\right)\right] \\
& \leq 2 s Q_{n}+2 s^{2} Q_{n+1}+\ldots+2 s^{m-n} Q_{m-1} \\
& \leq 2 s p^{n} Q_{0}+2 s^{2} p^{n+1} Q_{0}+2 s^{3} p^{n+2} Q_{0}+\ldots \\
&= 2 s p^{n} Q_{0}\left(1+s p+s^{2} p^{2}+\ldots\right) \\
&= \frac{2 s p^{n} Q_{0}}{1-s p}
\end{aligned}
$$

On taking limit as $n, m \rightarrow \infty$, we have

$$
\lim _{n, m \rightarrow \infty}\left\{S_{b}\left(g x_{n}, g x_{n}, g x_{m}\right)+S_{b}\left(g y_{n}, g y_{n}, g y_{m}\right)\right\}=0
$$

Thus, $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is complete, $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are convergent to some x and y in X respectively. Since g is continuous, $\left\{g g x_{n}\right\}$ and $\left\{g g y_{n}\right\}$ are convergent to $g x$ and $g y$ respectively. Also, since g and F commute, we have

$$
g g x_{n+1}=g F\left(x_{n}, y_{n}\right)=F\left(g x_{n}, g y_{n}\right)
$$

and

$$
g g y_{n+1}=g F\left(y_{n}, x_{n}\right)=F\left(g y_{n}, g x_{n}\right) .
$$

Thus

$$
\begin{aligned}
S_{b}\left(F(x, y), F(x, y), g g x_{n+1}\right) & =S_{b}\left(F(x, y), F(x, y), F\left(g x_{n}, g y_{n}\right)\right) \\
& \leq \frac{1}{s^{2}} \psi\left(S_{b}\left(g x, g x, g g x_{n}\right)+S_{b}\left(g y, g y, g g y_{n}\right)\right.
\end{aligned}
$$

Applying the Lemma 1, we have

$$
\begin{aligned}
\frac{1}{s} S_{b}(F(x, y), F(x, y), g x) & \leq \limsup _{n \rightarrow \infty} S_{b}\left(F(x, y), F(x, y), F\left(g x_{n}, g y_{n}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{s^{2}} \psi\left(S_{b}\left(g x, g x, g g x_{n}\right)+S_{b}\left(g y, g y, g g y_{n}\right)\right) \\
& \leq \frac{1}{s^{2}} \psi\left(s\left(S_{b}(g x, g x, g x)+S_{b}(g y, g y, g y)\right)\right)=0
\end{aligned}
$$

Thus, $S_{b}(F(x, y), F(x, y), g x)=0$. Hence, $g x=F(x, y)$. Similarly, we get $g y=F(y, x)$. Thus (x, y) is a coupled coincidence point of F and g.

Now

$$
\begin{aligned}
S_{b}(g x, g x, g y) & =S_{b}(F(x, y), F(x, y), F(y, x)) \\
& \leq \frac{1}{s^{2}} \psi\left(S_{b}(g x, g x, g y)+S_{b}(g y, g y, g x)\right) \\
& =\frac{1}{s^{2}} \psi\left(2 S_{b}(g x, g x, g y)\right) \\
& \leq \frac{2 k}{s^{2}} S_{b}(g x, g x, g y)
\end{aligned}
$$

As $0<k<\frac{1}{2}$, we get $S_{b}(g x, g x, g y)=0$, which implies that $g x=g y$. Thus we obtain

$$
F(x, y)=g x=g y=F(y, x)
$$

Again, using the Lemma 1, we have

$$
\begin{aligned}
\frac{1}{s} S_{b}(g x, g x, x) & \leq \limsup _{n \rightarrow \infty} S_{b}\left(g x, g x, g x_{n+1}\right) \\
& =\limsup _{n \rightarrow \infty} S_{b}\left(F(x, y), F(x, y), F\left(x_{n}, y_{n}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{s^{2}} \psi\left(S_{b}\left(g x, g x, g x_{n}\right)+S_{b}\left(g y, g y, g y_{n}\right)\right) \\
& \leq \frac{1}{s^{2}} \psi\left(s\left(S_{b}(g x, g x, x)+S_{b}(g y, g y, y)\right)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
S_{b}(g x, g x, x) \leq \frac{1}{s} \psi\left(s\left(S_{b}(g x, g x, x)+S_{b}(g y, g y, y)\right)\right) \tag{9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
S_{b}(g y, g y, y) \leq \frac{1}{s} \psi\left(s\left(S_{b}(g x, g x, x)+S_{b}(g y, g y, y)\right)\right) \tag{10}
\end{equation*}
$$

From (9) and (10), we have

$$
\begin{aligned}
S_{b}(g x, g x, x)+S_{b}(g y, g y, y) & \leq \frac{2}{s} \psi\left(s\left(S_{b}(g x, g x, x)+S_{b}(g y, g y, y)\right)\right) \\
& \leq 2 k\left(S_{b}(g x, g x, x)+S_{b}(g y, g y, y)\right)
\end{aligned}
$$

As $0<k<\frac{1}{2}$, we get $S_{b}(g x, g x, x)+S_{b}(g y, g y, y)=0$. Thus we obtain $x=g x$ and $y=g y$.

Hence we have

$$
x=g x=F(x, x)
$$

To prove uniqueness, let $x^{*} \in X$ with $x^{*} \neq x$ such that

$$
x^{*}=g x^{*}=F\left(x^{*}, x^{*}\right)
$$

Consider

$$
\begin{aligned}
S_{b}\left(x, x, x^{*}\right) & =S_{b}\left(F(x, x), F(x, x), F\left(x^{*}, x^{*}\right)\right) \\
& \leq \frac{1}{s^{2}} \psi\left(S_{b}\left(g x, g x, g x^{*}\right)+S_{b}\left(g x, g x, g x^{*}\right)\right) \\
& =\frac{1}{s^{2}} \psi\left(2 S_{b}\left(x, x, x^{*}\right)\right) \\
& \leq \frac{2 k}{s^{2}} S_{b}\left(x, x, x^{*}\right)
\end{aligned}
$$

As $0<k<\frac{1}{2}$, we get $S_{b}\left(x, x, x^{*}\right)=0$. Thus we obtain $x=x^{*}$. Hence, F and g have a unique common coupled fixed point.

Corollary 4. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times$ $X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{k}{s^{2}}\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
$$

for all $x, y, u, v, a, b \in X$. Assume that F and g satisfy the following conditions:
(a) $F(X \times X) \subseteq g(X)$,
(b) $g(X)$ is complete and
(c) g is continuous and commutes with F.

If $k \in\left(0, \frac{1}{2}\right)$, then F and g have a unique common coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=g x=x$.

Proof. The result follows from Theorem 2 by taking $\psi(t)=k t$.
Corollary 5. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times$ $X \rightarrow X$ be a mapping such that

$$
S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{1}{s^{2}} \psi\left(S_{b}(x, u, a)+S_{b}(y, v, b)\right)
$$

for all $x, y, u, v, a, b \in X$. If $k \in\left(0, \frac{1}{2}\right)$, then F has a unique coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=x$.

Proof. The result follows from Theorem 2 by taking $g=I$ (the identity mapping on X).

Corollary 6. Let $\left(X, S_{b}\right)$ be a complete S_{b}-metric space. Let $F: X \times$ $X \rightarrow X$ be a mapping such that

$$
-S_{b}(F(x, y), F(u, v), F(a, b)) \leq \frac{k}{s^{2}}\left(S_{b}(x, u, a)+S_{b}(y, v, b)\right)
$$

for all $x, y, u, v, a, b \in X$. If $k \in\left(0, \frac{1}{2}\right)$, then F has a unique coupled fixed point, and which is of the form (x, x), that is, there is a unique $x \in X$ such that $F(x, x)=x$.

Proof. The result follows from Theorem 2 by taking $g=I$ (the identity mapping on X) and $\psi(t)=k t$.

Example 1. Let $X=[0, \infty)$. Define $S_{b}: X^{3} \rightarrow \mathbf{R}^{+}$by $S_{b}(x, y, z)=$ $(|x-z|+|y-z|)^{2}$. Clearly, $S_{b}(x, x, y)=S_{b}(y, y, x)$, for all $x, y \in X$. Thus, $\left(X, S_{b}\right)$ is an S_{b}-metric space with $s=4$. Define $F(x, y)=\frac{x}{128}+\frac{y}{128}$, $g(x)=\frac{x}{4}$ and $\psi(t)=\frac{t}{8}$. Next we show that F and g are w-compatible. In fact

$$
\left\{\begin{array}{l}
F(x, y)=g x ; \\
F(y, x)=g y,
\end{array} \Leftrightarrow x=y=0\right.
$$

Thus, $(g 0, g 0)$ is the unique coupled point of coincidence of the mappings F and g. Obviously, $F(g 0, g 0)=g(F(0,0))=0$, therefore F and g are w-compatible.

Now

$$
\begin{aligned}
& S_{b}(F(x, y), F(x, y), F(y, x))=S_{b}\left(\frac{x}{128}+\frac{y}{128}, \frac{u}{128}+\frac{v}{128}, \frac{a}{128}+\frac{b}{128}\right) \\
& \quad=\left(\left|\frac{x}{128}+\frac{y}{128}-\frac{a}{128}-\frac{b}{128}\right|+\left|\frac{u}{128}+\frac{v}{128}-\frac{a}{128}-\frac{b}{128}\right|\right)^{2} \\
& \quad \leq\left(\left|\frac{x}{128}-\frac{a}{128}\right|+\left|\frac{y}{128}-\frac{b}{128}\right|+\left|\frac{u}{128}-\frac{a}{128}\right|+\left|\frac{v}{128}-\frac{b}{128}\right|\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{32^{2}}\left[\left(\left|\frac{x}{4}-\frac{a}{4}\right|+\left|\frac{u}{4}-\frac{a}{4}\right|\right)+\left(\left|\frac{y}{4}-\frac{b}{4}\right|+\left|\frac{v}{4}-\frac{b}{4}\right|\right)\right]^{2} \\
& \leq \frac{2}{32^{2}}\left[\left(\left|\frac{x}{4}-\frac{a}{4}\right|+\left|\frac{u}{4}-\frac{a}{4}\right|\right)^{2}+\left(\left|\frac{y}{4}-\frac{b}{4}\right|+\left|\frac{v}{4}-\frac{b}{4}\right|\right)^{2}\right] \\
& =\frac{2}{32^{2}}\left[(|g x-g a|+|g u-g a|)^{2}+(|g y-g b|+|g v-g b|)^{2}\right] \\
& \leq \frac{1}{4} \frac{\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)}{8} \\
& =\frac{1}{4} \psi\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
\end{aligned}
$$

Thus F and g satisfies all the conditions of Theorem 1 . Hence, F and g have a unique common coupled fixed point. In fact, $F(0,0)=g(0)=0$.

Example 2. Let $X=[0, \infty)$. Define $S_{b}: X^{3} \rightarrow \mathbf{R}^{+}$by $S_{b}(x, y, z)=$ $(|x-z|+|y-z|)^{2}$. Clearly, $S_{b}(x, x, y)=S_{b}(y, y, x)$, for all $x, y \in X$. Thus, $\left(X, S_{b}\right)$ is a complete S_{b}-metric space with $s=4$. Define $F(x, y)=\frac{x}{64}+\frac{y}{64}$, $g(x)=\frac{x}{4}$ and $\psi(t)=\frac{t}{3}$.

Now

$$
\begin{aligned}
S_{b}(F(x, y) & , F(x, y), F(y, x))=S_{b}\left(\frac{x}{64}+\frac{y}{64}, \frac{u}{64}+\frac{v}{64}, \frac{a}{64}+\frac{b}{64}\right) \\
& =\left(\left|\frac{x}{64}+\frac{y}{64}-\frac{a}{64}-\frac{b}{64}\right|+\left|\frac{u}{64}+\frac{v}{64}-\frac{a}{64}-\frac{b}{64}\right|\right)^{2} \\
& \leq\left(\left|\frac{x}{64}-\frac{a}{64}\right|+\left|\frac{y}{64}-\frac{b}{64}\right|+\left|\frac{u}{64}-\frac{a}{64}\right|+\left|\frac{v}{64}-\frac{b}{64}\right|\right)^{2} \\
& \leq \frac{1}{16^{2}}\left[\left(\left|\frac{x}{4}-\frac{a}{4}\right|+\left|\frac{u}{4}-\frac{a}{4}\right|\right)+\left(\left|\frac{y}{4}-\frac{b}{4}\right|+\left|\frac{v}{4}-\frac{b}{4}\right|\right)^{2}\right]^{2} \\
& \leq \frac{2}{16^{2}}\left[\left(\left|\frac{x}{4}-\frac{a}{4}\right|+\left|\frac{u}{4}-\frac{a}{4}\right|\right)^{2}+\left(\left|\frac{y}{4}-\frac{b}{4}\right|+\left|\frac{v}{4}-\frac{b}{4}\right|\right)^{2}\right] \\
& =\frac{2}{16^{2}}\left[(|g x-g a|+|g u-g a|)^{2}+(|g y-g b|+|g v-g b|)^{2}\right] \\
& \leq \frac{1}{4^{2}} \frac{\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)}{3} \\
& =\frac{1}{4^{2}} \psi\left(S_{b}(g x, g u, g a)+S_{b}(g y, g v, g b)\right)
\end{aligned}
$$

Thus F and g satisfies all the conditions of Theorem 2. Hence, F and g have a unique common coupled fixed point. In fact, $F(0,0)=g(0)=0$.

Acknowledgement. The authors would like to thank the referees for their suggestions.

References

[1] Abbas M., Khan M.A., Radenović S., Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217(2010), 195-202.
[2] Aghajani A., Abbas M., Roshan J.R., Common fixed point of generalized weak contractive mappings in partially ordered G_{b}-metric spaces, Filomat, 28(6)(2014), 1087-1101.
[3] Dhage B.C., Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84(1992), 329-336.
[4] GÄhler S., 2-metrische Räume und iher topoloische Struktur, Math. Nachr., 26(1963), 115-148.
[5] Guo D., Lakshmikantham V., Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11(1987), 623-632.
[6] Lakshmikantham V., Ciric L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.
[7] Liu L., Gu F., Some common coupled fixed point results in two S-metric spaces and applications to integral equations, J. Nonlinear Sci. Appl., 9(2016), 3527-3544.
[8] Mustafa Z., Sims B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297.
[9] Sedghi S., Shobe N., Zhou H., A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl., Vol. 2007, Article ID 27906, 13 pages.
[10] Sedghi Sh., Shobe N, Aliouche A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(3)(2012), 258-266.
[11] Sedghi Sh., Dung N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(1)(2014), 113-124.
[12] Souayah N., Mlaiki N., A fixed point theorem in S_{b}-metric spaces, J. Math. Computer Sci., 16(2016), 131-139.
[13] Sedghi Sh., Gholidahneh A., Dosenović T., Esfahani J., Radenović S., Common fixed point of four maps in S_{b}-metric spaces, JLTA, 5(2)(2016), 93-104.
[14] Rohen Y., Dosenović T., Radenović S., A note on the paper "A fixed point theorems in S_{b}-metric spaces by Nizar Souayah and Nabil Malaiki, Filomat, 31(11)(2017), 3335-3346.

Bulbul Khomdram
Department of Mathematics
National Institute of Technology Manipur
Langol, Imphal-795004, India
e-mail: bulbulkhomdram@gmail.com
Yumnam Rohen
Department of Mathematics
National Institute of Technology Manipur

Langol, Imphal-795004, India
e-mail: ymnehor2008@yahoo.com
Received on 23.04.2018 and, in revised form, on 15.06.2018.

