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ABSTRACT. We extend and improve the some results of Xh. Z.
Krasniqi [Int. J. of Anal. and Appl. Vol. 1, 33-39 (2013)], M.
L. Mittal and M. V. Singh [Operators, Int. J. of Analysis, Vol.
2015, Article ID 478345, 4 pages| and from many other papers
on summability of Fourier-Laguerre series to strong summability
proving the estimate of the deviation of the partial sums from con-
sidered functions. There also is a remark on summability methods
used in cited papers.
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1. Introduction

Let L be the class of all real-valued functions, integrable in the Lebesgue
sense over R with the norm

1A= 1Ol =/ | f(t) [ dt

Rt

and consider the Fourier-Laguerre series
SO (@)= al ()L (2), with @ > 1,
v=0

where

7C¥mdn

L;La) (l’) _ T ~e dxin ($n+ae—x) _ Z (_Ul‘) <n + Oé> 2

n—v
v=0
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and
(@) £y — 1 )
A = e 6 @y

Let A := (any) and B := (b)) be infinite lower triangular matrices of
real numbers such that

anr > 0 and byr >0 when k£=0,1,2,..n
anr =0 and b,r =0 when k>n,

n n
Za”’k =1 and an,k =1, where n=0,1,2,....
k=0 k=0

Let define the general linear operator by the AB—transformation of partial
sums

Sf (@)= al (L (x)
v=0

as follows .
Tan),Bf (z) == Z Zan,rbr,ksl(ga)f (z)
r=0 k=0
forn=0,1,2,....
The deviation T n(i) pf(0) — f(0) was estimated in the papers [2] and [3]
as follows:

Theorem. Let f € L, 6 >0, a € (71, f%) and w be a positive increas-

ing function such that w (n) — oo as n — oo, and satisfy the conditions

u—(et1) u
(1) F<a+1)/o e [ Ao f (1) dt = o <w <i>>
as u — 0,

n(2a+1)/4 n ¢ 203
(2) 1“(044—1)/5 e 2t T [Aof (t)|dt =o0(w(n))
asn — 0o and
3) o [ A @l = 0w m)

as n — oo, where Aof (t) = f(t) — f(0). If matrices A and B are such that
forqg>0

()a"
(12—7)” when 0 § k S n,

anr = 0 and b, =0 when k>n,

ank > 0 and by =
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in [3] or in special case

ank:L and bnkzﬂ when 0 <k <n,
’ n+1 ’ (14+4q)" o

Qnk = 0 and anq =0 when k> n,
in [2], then
Tnfj?B ©0)—f (0)’ =o0(w(n)).

In this paper, we will study the upper bound of the quantity }S,(ca)f (0)—

f(0)] by a positive function w such that: w(n) — oo for n — oo. The
following strong means

n r 1/s
Hy'y pf (@) = {ZZambr,k(s,g“)f(x)— f () } ,

r=0 k=0

for n =0,1,2,... and s > 0 generated by wide family of matrices A and B
will also be considered.

From our generalizations we derive some corollaries. Finally we also prove
a remark which fulfile the gap in the proofs of mentioned Theorem as well
in cited papers [1], [4] and [5].

2. Statement of the results

At the beginning we will present the estimate of the quantity S,(LO‘) f(0)—

f(0)]. Finally, we will formulate some corollaries and remark.

Theorem 1. Let f € L, § > 0, a € (—1,—%) and w be a positive
nondecreasing function such that w(n) — 0o as n — oco. If w satisfies the
conditions (1), (2), (3), then

S f(0) —f(O)‘ =o(w(n)) as n— oc.

Theorem 2. Let f € L, a € (—1, —%) and w be a positive function such
that w (n) — 00 as n — co. If w satisfies the conditions (1), (3) and

nGat/A

as n — 0o, then

S@ £ (0) —f(())‘ —o(w(n)) as n— oo
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Corollary 1. We can observe that the matrices A and B considered
by Xh. Z. Krasniqi or M. L. Mittal and M. V. Singh in Theorem can be
changed by any infinite lower triangular matrices with nonnegative entries
and since, for s > 1,

T55f (0) = £(0)| < HYS 5/ (0)

SE(0) = £ (0)] = 0 (w ()

< max
0<v<n

Theorem 1 reduces to the results from [2], [3] and many other papers.
Corollary 2. Under the assumption of Theorem 2 we have the relation

n

r 1/s
H% pf(0) =o(1) {Z > ansbrg[w (k)]s}

r=0 k=0
for s > 0 and for not necessary monotonic function w.

Remark 1. We note that in the proofs of the Theorem cited above from
[2], [3] and theorems from many other papers (see e.g. [1], [4], [5]) there is
used the following property

T

Y es(s+1) =0 ((r + 1)5) :

s=0

with 8 > 0, but it should be used for f > —1. Our Lemma 3 shows that this
property also holds when 5 > —1 for sequences (¢, s) generating the Euler
or Cesaro methods.

3. Auxiliary results
We begin this section by some notations from [6]. We have.

k
L () =3 L (), L (0) = ( * ‘“)

1%
v=0

and therefore

«@ 1 > -y, a7 (€
SOPO) =ty [T W Wy

Hence, by evidence equality

1 > 1if v=0
—y aL(a+1) dy = ;
r(a+1)/0 LTI WA =0 i 2o,
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we have

SOTO) =7 0) =y | EEY 0) 20 ()

Next, we present the known estimates:

Lemma 1 ([6], p. 172). Let o be an arbitrary real number, ¢ and 0 be
fixed positive constants. Then

N O (n®) if 0<x<
LgL ) (1:)‘ = { 0 ($—(2a+1)/4n(2a—1)/4) if ¢<a<

Lemma 2 ([6], p. 235). Let o and A be arbitrary real numbers, § > 0
and 0 < n < 4. Then

max e~/ 2 ‘L%a) (:L’)‘ =
We will need additionally the following estimates:
Lemma 3. Let 5 > —1. If ¢ > 0, then
%Zn: <n>qk 14k < <1 + 1) (1+n)°
(1+q)" = \k q
and if v > —1, then

A;) S AT asn’ =0 (1),
n k=0

Proof. Since

1 n+1 q q
(:j_)l =/ (1+z)”dz>/ (1+2)"dz
—1

therefore

1 " /n s 1 "L /n\ (14 k)P

k=

[e=]
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and our first result is evident.

For the second one we know follow by A. Zygmund [7, Vol. I, (1.15) and
Theorem 1.17] that

n

AD) — ("”) O ((n+1)")

is positive for v > —1. Moreover, A(V) is increasing (as a function of n) for
v > 0 and decreasing for —1 < v < 0. Hence, for g < 0,

1 & (-
AL 1+ k)
An k=0

[n/2]-1 n

1 (v=1) 1 (v=1) 8
- A D (14 k)7 AL (L4 k)
A%V) kZ:O k AgL’Y) k:[En:/Q] k
_ [n/2]—1 n
(n+1)~" 8 5 (—1)
—o(T) 1+k°+0(1+n)?) AL
() s () g5 2 45
Ny s (M g\ 1 <= ,6-1)
SO((n—i—l) )Z(lJrk) dz+o((1+n))7 AU
k=0 k An" =0
n k+1
<o(m+1™) / Pz 40 ((1+n))
k=0"Fk
( ) n+1

_ 1y (DT 8Y _
- <(n—|—1) ) e +o(( ))_o((1+n))
If B8 > 0, then the result is evident. Thus our proof is complete. |

4. Proofs of theorems

Proof of Theorem 1. It is clear that
1

S £ (0) — £(0) = M/ooe wy LD () Aof (y) dy

:</1/n //n/ />_J1+J2+J3+J4,

[SK0F(0) = 1 (O)] < Al + 2] + 1] + 1]

then
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and by Lemma 1 and (1)

notl 1/n
|J1| = ?((04‘1‘1;/0 e Yy [Aof (y)|dy = o (w (n)).

Next, by Lemma 1 and integrating by parts with a € (—1, —%), we obtain

1 b
< - -y, (a+1)
|Ja] < ot 1) /Une Y IAof(y)l(Ln (y)’dy

O (na+1/4) 1o d y
_ N\ ) —(20+3)/4 % —tpo A t dt) d
(0t 1) /Uny dy(/oe |[Aof (1)) y
9] (n(2a+1)/4) y )
_ N ) —(2a04+3)/4 —t A t dt):|
Na+1) [y </o ‘ 1B (2) 1/n

5 )
N / 2at3 ot/ < / e—tt“!Aof@)\dt) dy
1/n 4 0

O (n2a+1)/4) s
_ N\ ) 6—(2a+3)/4 </ —tpo | A " dt>
Yo et a0r o)

1/n
n(2a+3)/4 (/ et |A0f (t)| dt)
0
é ) Y
+ / 23 sy ( / e~ Ao f (1) dt) dy
1/n 4 0

- 0L f s ([t 011
0

I'(a+1)

1 Y
b [ FERyeern ( / e—ttamomﬂdt) dy}.
1/n 4 0
Using (1) and the monotonicity of w we get
1
< (20-+1) /4 (20-+1) /4 L
ol < O (nE/1) & 5@t itg ( (
§
N / (2a + Sy_<2a+7>/4> o <w <1)> dy}
1/n 4
s
_ O<n(2a+1)/4w (n)> {5(2a+1 20‘+3/ (2a-3) /4dy}
l/n

— 0 <n(20‘+1)/4w (n)) {5(2a+1>/4 n gz ]: i’; ? j [ (20:+1) /4} 1/n}
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= 0<n(2a+1)/4w (n)) {5(2a+1)/4+204+36(2@+1)/4

200+ 1
_ 2at3 (atn)/a
20+ 1
— 0 (n(2a+1)/4w (n)) {;mj;‘ll&(zaﬂ)/ax B gai?n(2a+1)/4}
« o

o 20+3 (94
< 0<n(2 +l)/4w (n)) {_2(1_'_1” (2 +1)/4} < 0<w (n))

Applying Lemma 2 with o + 1 instead of a, A = % (since max {)\ — %,

%—H _ %} - 20%1) and (2) we obtain

1 n o\ B X )
| J3] < F(a—l—l)/56 Y2y Ra=3)/4 | A F (y)| e /2y 2 +3)/4‘L51 +1) (y)‘dy
o) n(2a+1)/4 n B -
- I(‘(og—i-l))/(S e U2y A f (y)] dy = o (w (n)).

Further, by Lemma 2 with a4+ 1 instead of o and A = % (since max { A — %,

O%H_% :A—%z())and(?))weget

o0
< g O A )l e R L () dy
O() [ o (g0
= F(a(+)1)/ eTY/2y 3 1)/3|A0f(y)|dy:0(w(n))_

Finally, collecting the above estimates we have

S F(0) = £(0)| = o (w(n))

and thus our proof is complete. |

Proof of Theorem 2. Let § > 0, and as above
SWF(0)— f(0)=Jy + o+ J3 + Ju.

For the proof we note that taking § = 1/n, we have J; = 0 and by the
condition (4) we obtain
T3] < o(w(n)).

Moreover, the conditions (1) and (3) imply
1] So(w(n)) and [Jof <o(w(n)),

similarly as above, and thus our proof is complete. |
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