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POINTWISE CONVERGENCE OF
FOURIER-LAGUERRE SERIES OF INTEGRABLE

FUNCTIONS

Abstract. We extend and improve the some results of Xh. Z.
Krasniqi [Int. J. of Anal. and Appl. Vol. 1, 33-39 (2013)], M.
L. Mittal and M. V. Singh [Operators, Int. J. of Analysis, Vol.
2015, Article ID 478345, 4 pages] and from many other papers
on summability of Fourier-Laguerre series to strong summability
proving the estimate of the deviation of the partial sums from con-
sidered functions. There also is a remark on summability methods
used in cited papers.
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1. Introduction

Let L be the class of all real–valued functions, integrable in the Lebesgue
sense over R+ with the norm

‖f‖ = ‖f(·)‖ =

∫
R+

| f(t) | dt

and consider the Fourier-Laguerre series

S(α)f (x) :=

∞∑
ν=0

a(α)ν (f)L(α)
ν (x) , with α > −1,

where

L(α)
n (x) =

x−αex

n!

dn

dxn
(
xn+αe−x

)
=

n∑
ν=0

(−1)ν

ν!

(
n+ α

n− ν

)
xν
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and

a(α)ν (f) =
1

Γ (α+ 1)
(
n+α
n

) ∫ ∞
0

e−yyαL(α)
ν (y) f (y) dy.

Let A := (an,k) and B := (bn,k) be infinite lower triangular matrices of
real numbers such that

an,k ≥ 0 and bn,k ≥ 0 when k = 0, 1, 2, ...n

an,k = 0 and bn,k = 0 when k > n,

n∑
k=0

an,k = 1 and

n∑
k=0

bn,k = 1, where n = 0, 1, 2, ....

Let define the general linear operator by the AB−transformation of partial
sums

S(α)
n f (x) =

n∑
ν=0

a(α)ν (f)L(α)
ν (x)

as follows

T
(α)
n,A,Bf (x) :=

n∑
r=0

r∑
k=0

an,rbr,kS
(α)
k f (x)

for n = 0, 1, 2, . . ..

The deviation T
(α)
n,A,Bf (0)− f (0) was estimated in the papers [2] and [3]

as follows:

Theorem. Let f ∈ L, δ > 0, α ∈
(
−1,−1

2

)
and ω be a positive increas-

ing function such that ω (n)→∞ as n→∞, and satisfy the conditions

(1)
u−(α+1)

Γ (α+ 1)

∫ u

0
e−ttα |∆0f (t)| dt = o

(
ω

(
1

u

))
as u→ 0,

(2)
n(2α+1)/4

Γ (α+ 1)

∫ n

δ
e−

t
2 t

2α−3
4 |∆0f (t)| dt = o (ω (n))

as n→∞ and

(3)
1

Γ (α+ 1)

∫ ∞
n

e−
t
2 tα−

1
3 |∆0f (t)| dt = o (ω (n))

as n→∞, where ∆0f (t) = f (t)− f (0). If matrices A and B are such that
for q > 0

an,k ≥ 0 and bn,k =

(
n
k

)
qk

(1 + q)n
when 0 ≤ k ≤ n,

an,k = 0 and bn,k = 0 when k > n,
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in [3] or in special case

an,k =
1

n+ 1
and bn,k =

(
n
k

)
qk

(1 + q)n
when 0 ≤ k ≤ n,

an,k = 0 and bn,k = 0 when k > n,

in [2], then ∣∣∣T (α)
n,A,B (0)− f (0)

∣∣∣ = o (ω (n)) .

In this paper, we will study the upper bound of the quantity
∣∣∣S(α)
k f (0)−

f (0)| by a positive function ω such that: ω (n) → ∞ for n → ∞. The
following strong means

Hs,α
n,A,Bf (x) :=

{
n∑
r=0

r∑
k=0

an,rbr,k

∣∣∣S(α)
k f (x)− f (x)

∣∣∣s}1/s

,

for n = 0, 1, 2, ... and s > 0 generated by wide family of matrices A and B
will also be considered.

From our generalizations we derive some corollaries. Finally we also prove
a remark which fulfile the gap in the proofs of mentioned Theorem as well
in cited papers [1], [4] and [5].

2. Statement of the results

At the beginning we will present the estimate of the quantity
∣∣∣S(α)
n f (0)−

f (0)|. Finally, we will formulate some corollaries and remark.

Theorem 1. Let f ∈ L, δ > 0, α ∈
(
−1,−1

2

)
and ω be a positive

nondecreasing function such that ω (n) → ∞ as n → ∞. If ω satisfies the
conditions (1), (2), (3), then∣∣∣S(α)

n f (0)− f (0)
∣∣∣ = o (ω (n)) as n→∞.

Theorem 2. Let f ∈ L, α ∈
(
−1,−1

2

)
and ω be a positive function such

that ω (n)→∞ as n→∞. If ω satisfies the conditions (1), (3) and

(4)
n(2α+1)/4

Γ (α+ 1)

∫ n

1/n
e−

t
2 t

2α−3
4 |∆0f (t)| dt = o (ω (n))

as n→∞, then∣∣∣S(α)
n f (0)− f (0)

∣∣∣ = o (ω (n)) as n→∞.
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Corollary 1. We can observe that the matrices A and B considered
by Xh. Z. Krasniqi or M. L. Mittal and M. V. Singh in Theorem can be
changed by any infinite lower triangular matrices with nonnegative entries
and since, for s ≥ 1,∣∣∣T (α)

n,A,Bf (0)− f (0)
∣∣∣ ≤ Hs,α

n,A,Bf (0)

≤ max
0≤ν≤n

∣∣∣S(α)
ν f (0)− f (0)

∣∣∣ = o (ω (n))

Theorem 1 reduces to the results from [2], [3] and many other papers.

Corollary 2. Under the assumption of Theorem 2 we have the relation

Hs,α
n,A,Bf (0) = o (1)

{
n∑
r=0

r∑
k=0

an,rbr,k [ω (k)]s
}1/s

for s > 0 and for not necessary monotonic function ω.

Remark 1. We note that in the proofs of the Theorem cited above from
[2], [3] and theorems from many other papers (see e.g. [1], [4], [5]) there is
used the following property

r∑
s=0

cr,s (s+ 1)β = O
(

(r + 1)β
)
,

with β > 0, but it should be used for β > −1. Our Lemma 3 shows that this
property also holds when β > −1 for sequences (cr,s) generating the Euler
or Cesàro methods.

3. Auxiliary results

We begin this section by some notations from [6]. We have.

L
(α+1)
k (y) =

k∑
ν=0

L(α)
ν (y) , L(α)

ν (0) =

(
ν + α

ν

)
and therefore

S
(α)
k f (0) =

1

Γ (α+ 1)

∫ ∞
0

e−yyαL(α+1)
ν (y) f (y) dy.

Hence, by evidence equality

1

Γ (α+ 1)

∫ ∞
0

e−yyαL(α+1)
ν (y) dy =

{
1 if ν = 0,
0 if ν 6= 0,
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we have

S
(α)
k f (0)− f (0) =

1

Γ (α+ 1)

∫ ∞
0

e−yyαL(α+1)
ν (y) ∆0f (y) dy.

Next, we present the known estimates:

Lemma 1 ([6], p. 172). Let α be an arbitrary real number, c and δ be
fixed positive constants. Then∣∣∣L(α)

n (x)
∣∣∣ =

{
O (nα) if 0 ≤ x ≤ c

n ,

O
(
x−(2α+1)/4n(2α−1)/4

)
if c

n ≤ x ≤ δ.

Lemma 2 ([6], p. 235). Let α and λ be arbitrary real numbers, δ > 0
and 0 < η < 4. Then

max
x

e−x/2xλ
∣∣∣L(α)
n (x)

∣∣∣ =

O
(
nmax(λ− 1

2
,α
2
− 1

4)
)

if δ ≤ x ≤ (4− η)n,

O
(
nmax(λ− 1

3
,α
2
− 1

4)
)

if x ≥ δ.

We will need additionally the following estimates:

Lemma 3. Let β > −1. If q > 0, then

1

(1 + q)n

n∑
k=0

(
n

k

)
qk (1 + k)β ≤

(
1 +

1

q

)
(1 + n)β

and if γ > −1, then

1

A
(γ)
n

n∑
k=0

A
(γ−1)
n−k (1 + k)β = O

(
(1 + n)β

)
.

Proof. Since

(1 + q)n+1

n+ 1
=

∫ q

−1
(1 + z)n dz ≥

∫ q

0
(1 + z)n dz

=

∫ q

0

n∑
k=0

(
n

k

)
zkdz =

n∑
k=0

(
n

k

)
qk+1

k + 1
,

therefore

1

(1 + q)n

n∑
k=0

(
n

k

)
qk (1 + k)β =

1

(1 + q)n

n∑
k=0

(
n

k

)
qk

(1 + k)β+1

1 + k

≤ (1 + n)β+1

q (1 + q)n

n∑
k=0

(
n

k

)
qk+1 1

1 + k

≤ (1 + n)β+1

q (1 + q)n
(1 + q)n+1

n+ 1
=

(
1 +

1

q

)
(1 + n)β
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and our first result is evident.
For the second one we know follow by A. Zygmund [7, Vol. I, (1.15) and

Theorem 1.17] that

A(γ)
n =

(
n+ γ

n

)
' O ((n+ 1)γ)

is positive for γ > −1. Moreover, A
(γ)
n is increasing (as a function of n) for

γ > 0 and decreasing for −1 < γ < 0. Hence, for β < 0,

1

A
(γ)
n

n∑
k=0

A
(γ−1)
n−k (1 + k)β

=
1

A
(γ)
n

[n/2]−1∑
k=0

A
(γ−1)
n−k (1 + k)β +

1

A
(γ)
n

n∑
k=[n/2]

A
(γ−1)
n−k (1 + k)β

= O

(
(n+ 1)γ−1

(n+ 1)γ

)
[n/2]−1∑
k=0

(1 + k)β +O
(

(1 + n)β
) 1

A
(γ)
n

n∑
k=[n/2]

A
(γ−1)
n−k

≤ O
(

(n+ 1)−1
) n∑
k=0

(1 + k)β
∫ k+1

k
dz +O

(
(1 + n)β

) 1

A
(γ)
n

n∑
k=0

A
(γ−1)
n−k

≤ O
(

(n+ 1)−1
) n∑
k=0

∫ k+1

k
zβdz +O

(
(1 + n)β

)
= O

(
(n+ 1)−1

)∫ n+1

0
zβdz +O

(
(1 + n)β

)
= O

(
(n+ 1)−1

) (n+ 1)β+1

β + 1
+O

(
(1 + n)β

)
= O

(
(1 + n)β

)
.

If β ≥ 0, then the result is evident. Thus our proof is complete. �

4. Proofs of theorems

Proof of Theorem 1. It is clear that

S(α)
n f (0)− f (0) =

1

Γ (α+ 1)

∫ ∞
0

e−yyαL(α+1)
n (y) ∆0f (y) dy

=

(∫ 1/n

0
+

∫ δ

1/n
+

∫ n

δ
+

∫ ∞
n

)
= J1 + J2 + J3 + J4,

then ∣∣∣S(α)
n f (0)− f (0)

∣∣∣ ≤ |J1|+ |J2|+ |J3|+ |J4|



Pointwise convergence of . . . 99

and by Lemma 1 and (1)

|J1| =
O
(
nα+1

)
Γ (α+ 1)

∫ 1/n

0
e−yyα |∆0f (y)| dy = o (ω (n)) .

Next, by Lemma 1 and integrating by parts with α ∈
(
−1,−1

2

)
, we obtain

|J2| ≤
1

Γ (α+ 1)

∫ δ

1/n
e−yyα |∆0f (y)|

∣∣∣L(α+1)
n (y)

∣∣∣ dy
=

O
(
n(2α+1)/4

)
Γ (α+ 1)

∫ δ

1/n
y−(2α+3)/4 d

dy

(∫ y

0
e−ttα |∆0f (t)| dt

)
dy

=
O
(
n(2α+1)/4

)
Γ (α+ 1)

{[
y−(2α+3)/4

(∫ y

0
e−ttα |∆0f (t)| dt

)]δ
1/n

+

∫ δ

1/n

2α+ 3

4
y−(2α+7)/4

(∫ y

0
e−ttα |∆0f (t)| dt

)
dy

}

=
O
(
n(2α+1)/4

)
Γ (α+ 1)

{
δ−(2α+3)/4

(∫ δ

0
e−ttα |∆0f (t)| dt

)
− n(2α+3)/4

(∫ 1/n

0
e−ttα |∆0f (t)| dt

)

+

∫ δ

1/n

2α+ 3

4
y−(2α+7)/4

(∫ y

0
e−ttα |∆0f (t)| dt

)
dy

}

=
O
(
n(2α+1)/4

)
Γ (α+ 1)

{
δ−(2α+3)/4

(∫ δ

0
e−ttα |∆0f (t)| dt

)
+

∫ δ

1/n

2α+ 3

4
y−(2α+7)/4

(∫ y

0
e−ttα |∆0f (t)| dt

)
dy

}
.

Using (1) and the monotonicity of ω we get

|J2| ≤ O
(
n(2α+1)/4

){
δ(2α+1)/4o

(
ω

(
1

δ

))
+

∫ δ

1/n

(
2α+ 3

4
y−(2α+7)/4

)
yα+1o

(
ω

(
1

y

))
dy

}

= o
(
n(2α+1)/4ω (n)

){
δ(2α+1)/4 +

2α+ 3

4

∫ δ

1/n
y(2α−3)/4dy

}

= o
(
n(2α+1)/4ω (n)

){
δ(2α+1)/4 +

(2α+ 3) /4

(2α+ 1) /4

[
y(2α+1)/4

]δ
1/n

}
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= o
(
n(2α+1)/4ω (n)

){
δ(2α+1)/4 +

2α+ 3

2α+ 1
δ(2α+1)/4

− 2α+ 3

2α+ 1
n−(2α+1)/4

}
= o

(
n(2α+1)/4ω (n)

){4α+ 4

2α+ 1
δ(2α+1)/4 − 2α+ 3

2α+ 1
n−(2α+1)/4

}
≤ o

(
n(2α+1)/4ω (n)

){
−2α+ 3

2α+ 1
n−(2α+1)/4

}
≤ o (ω (n)) .

Applying Lemma 2 with α + 1 instead of α, λ = 2α−3
4 (since max

{
λ− 1

2 ,
α+1
2 −

1
4

}
= 2α+1

4 ) and (2) we obtain

|J3| ≤
1

Γ (α+ 1)

∫ n

δ
e−y/2y(2α−3)/4 |∆0f (y)| e−y/2y(2α+3)/4

∣∣∣L(α+1)
n (y)

∣∣∣ dy
=
O
(
n(2α+1)/4

)
Γ (α+ 1)

∫ n

δ
e−y/2y(2α−3)/4 |∆0f (y)| dy = o (ω (n)) .

Further, by Lemma 2 with α+1 instead of α and λ = 1
3 (since max

{
λ− 1

3 ,
α+1
2 −

1
4

}
= λ− 1

3 = 0) and (3) we get

|J4| ≤
1

Γ (α+ 1)

∫ ∞
n

e−y/2y(3α−1)/3 |∆0f (y)| e−y/2y1/3
∣∣∣L(α+1)
n (y)

∣∣∣ dy
=

O (1)

Γ (α+ 1)

∫ ∞
n

e−y/2y(3α−1)/3 |∆0f (y)| dy = o (ω (n)) .

Finally, collecting the above estimates we have∣∣∣S(α)
n f (0)− f (0)

∣∣∣ = o (ω (n))

and thus our proof is complete. �

Proof of Theorem 2. Let δ > 0, and as above

S(α)
n f (0)− f (0) = J1 + J2 + J3 + J4.

For the proof we note that taking δ = 1/n, we have J2 = 0 and by the
condition (4) we obtain

|J3| ≤ o (ω (n)) .

Moreover, the conditions (1) and (3) imply

|J1| ≤ o (ω (n)) and |J4| ≤ o (ω (n)) ,

similarly as above, and thus our proof is complete. �
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