W乇odzimierz Łenski and Bogdan Szal
 POINTWISE CONVERGENCE OF FOURIER-LAGUERRE SERIES OF INTEGRABLE FUNCTIONS

Abstract

We extend and improve the some results of Xh. Z. Krasniqi [Int. J. of Anal. and Appl. Vol. 1, 33-39 (2013)], M. L. Mittal and M. V. Singh [Operators, Int. J. of Analysis, Vol. 2015, Article ID 478345, 4 pages] and from many other papers on summability of Fourier-Laguerre series to strong summability proving the estimate of the deviation of the partial sums from considered functions. There also is a remark on summability methods used in cited papers.

KEY words: rate of approximation, summability of Fourier -Laguerre series.

AMS Mathematics Subject Classification: 42A24.

1. Introduction

Let L be the class of all real-valued functions, integrable in the Lebesgue sense over \mathbb{R}^{+}with the norm

$$
\|f\|=\|f(\cdot)\|=\int_{\mathbb{R}^{+}}|f(t)| d t
$$

and consider the Fourier-Laguerre series

$$
S^{(\alpha)} f(x):=\sum_{\nu=0}^{\infty} a_{\nu}^{(\alpha)}(f) L_{\nu}^{(\alpha)}(x), \text { with } \alpha>-1
$$

where

$$
L_{n}^{(\alpha)}(x)=\frac{x^{-\alpha} e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n+\alpha} e^{-x}\right)=\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!}\binom{n+\alpha}{n-\nu} x^{\nu}
$$

and

$$
a_{\nu}^{(\alpha)}(f)=\frac{1}{\Gamma(\alpha+1)\binom{n+\alpha}{n}} \int_{0}^{\infty} e^{-y} y^{\alpha} L_{\nu}^{(\alpha)}(y) f(y) d y
$$

Let $A:=\left(a_{n, k}\right)$ and $B:=\left(b_{n, k}\right)$ be infinite lower triangular matrices of real numbers such that

$$
\begin{aligned}
a_{n, k} \geq 0 & \text { and } \quad b_{n, k} \geq 0 \quad \text { when } k=0,1,2, \ldots n \\
a_{n, k} & =0 \quad \text { and } \quad b_{n, k}=0 \quad \text { when } k>n, \\
\sum_{k=0}^{n} a_{n, k} & =1
\end{aligned} \quad \text { and } \sum_{k=0}^{n} b_{n, k}=1, \quad \text { where } n=0,1,2, \ldots . ~ \$
$$

Let define the general linear operator by the $A B$-transformation of partial sums

$$
S_{n}^{(\alpha)} f(x)=\sum_{\nu=0}^{n} a_{\nu}^{(\alpha)}(f) L_{\nu}^{(\alpha)}(x)
$$

as follows

$$
T_{n, A, B}^{(\alpha)} f(x):=\sum_{r=0}^{n} \sum_{k=0}^{r} a_{n, r} b_{r, k} S_{k}^{(\alpha)} f(x)
$$

for $n=0,1,2, \ldots$.
The deviation $T_{n, A, B}^{(\alpha)} f(0)-f(0)$ was estimated in the papers [2] and [3] as follows:

Theorem. Let $f \in L, \delta>0, \alpha \in\left(-1,-\frac{1}{2}\right)$ and ω be a positive increasing function such that $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$, and satisfy the conditions

$$
\begin{equation*}
\frac{u^{-(\alpha+1)}}{\Gamma(\alpha+1)} \int_{0}^{u} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t=o\left(\omega\left(\frac{1}{u}\right)\right) \tag{1}
\end{equation*}
$$

as $u \rightarrow 0$,

$$
\begin{equation*}
\frac{n^{(2 \alpha+1) / 4}}{\Gamma(\alpha+1)} \int_{\delta}^{n} e^{-\frac{t}{2}} \frac{2 \alpha-3}{4}\left|\Delta_{0} f(t)\right| d t=o(\omega(n)) \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$ and

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha+1)} \int_{n}^{\infty} e^{-\frac{t}{2}} t^{\alpha-\frac{1}{3}}\left|\Delta_{0} f(t)\right| d t=o(\omega(n)) \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\Delta_{0} f(t)=f(t)-f(0)$. If matrices A and B are such that for $q>0$

$$
\begin{aligned}
& a_{n, k} \geq 0 \quad \text { and } \quad b_{n, k}=\frac{\binom{n}{k} q^{k}}{(1+q)^{n}} \quad \text { when } \quad 0 \leq k \leq n \\
& a_{n, k}=0 \quad \text { and } \quad b_{n, k}=0 \quad \text { when } \quad k>n
\end{aligned}
$$

in [3] or in special case

$$
\begin{aligned}
& a_{n, k}=\frac{1}{n+1} \quad \text { and } \quad b_{n, k}=\frac{\binom{n}{k} q^{k}}{(1+q)^{n}} \quad \text { when } \quad 0 \leq k \leq n, \\
& a_{n, k}=0 \quad \text { and } \quad b_{n, k}=0 \quad \text { when } k>n
\end{aligned}
$$

in [2], then

$$
\left|T_{n, A, B}^{(\alpha)}(0)-f(0)\right|=o(\omega(n))
$$

In this paper, we will study the upper bound of the quantity $\mid S_{k}^{(\alpha)} f(0)-$ $f(0) \mid$ by a positive function ω such that: $\omega(n) \rightarrow \infty$ for $n \rightarrow \infty$. The following strong means

$$
H_{n, A, B}^{s, \alpha} f(x):=\left\{\sum_{r=0}^{n} \sum_{k=0}^{r} a_{n, r} b_{r, k}\left|S_{k}^{(\alpha)} f(x)-f(x)\right|^{s}\right\}^{1 / s}
$$

for $n=0,1,2, \ldots$ and $s>0$ generated by wide family of matrices A and B will also be considered.

From our generalizations we derive some corollaries. Finally we also prove a remark which fulfile the gap in the proofs of mentioned Theorem as well in cited papers [1], [4] and [5].

2. Statement of the results

At the beginning we will present the estimate of the quantity $\mid S_{n}^{(\alpha)} f(0)-$ $f(0) \mid$. Finally, we will formulate some corollaries and remark.

Theorem 1. Let $f \in L, \delta>0, \alpha \in\left(-1,-\frac{1}{2}\right)$ and ω be a positive nondecreasing function such that $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$. If ω satisfies the conditions (1), (2), (3), then

$$
\left|S_{n}^{(\alpha)} f(0)-f(0)\right|=o(\omega(n)) \quad \text { as } \quad n \rightarrow \infty
$$

Theorem 2. Let $f \in L, \alpha \in\left(-1,-\frac{1}{2}\right)$ and ω be a positive function such that $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$. If ω satisfies the conditions (1), (3) and

$$
\begin{equation*}
\frac{n^{(2 \alpha+1) / 4}}{\Gamma(\alpha+1)} \int_{1 / n}^{n} e^{-\frac{t}{2}} t^{\frac{2 \alpha-3}{4}}\left|\Delta_{0} f(t)\right| d t=o(\omega(n)) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$, then

$$
\left|S_{n}^{(\alpha)} f(0)-f(0)\right|=o(\omega(n)) \quad \text { as } \quad n \rightarrow \infty
$$

Corollary 1. We can observe that the matrices A and B considered by Xh. Z. Krasniqi or M. L. Mittal and M. V. Singh in Theorem can be changed by any infinite lower triangular matrices with nonnegative entries and since, for $s \geq 1$,

$$
\begin{aligned}
\left|T_{n, A, B}^{(\alpha)} f(0)-f(0)\right| & \leq H_{n, A, B}^{s, \alpha} f(0) \\
& \leq \max _{0 \leq \nu \leq n}\left|S_{\nu}^{(\alpha)} f(0)-f(0)\right|=o(\omega(n))
\end{aligned}
$$

Theorem 1 reduces to the results from [2], [3] and many other papers.
Corollary 2. Under the assumption of Theorem 2 we have the relation

$$
H_{n, A, B}^{s, \alpha} f(0)=o(1)\left\{\sum_{r=0}^{n} \sum_{k=0}^{r} a_{n, r} b_{r, k}[\omega(k)]^{s}\right\}^{1 / s}
$$

for $s>0$ and for not necessary monotonic function ω.
Remark 1. We note that in the proofs of the Theorem cited above from [2], [3] and theorems from many other papers (see e.g. [1], [4], [5]) there is used the following property

$$
\sum_{s=0}^{r} c_{r, s}(s+1)^{\beta}=O\left((r+1)^{\beta}\right)
$$

with $\beta>0$, but it should be used for $\beta>-1$. Our Lemma 3 shows that this property also holds when $\beta>-1$ for sequences $\left(c_{r, s}\right)$ generating the Euler or Cesàro methods.

3. Auxiliary results

We begin this section by some notations from [6]. We have.

$$
L_{k}^{(\alpha+1)}(y)=\sum_{\nu=0}^{k} L_{\nu}^{(\alpha)}(y), \quad L_{\nu}^{(\alpha)}(0)=\binom{\nu+\alpha}{\nu}
$$

and therefore

$$
S_{k}^{(\alpha)} f(0)=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} L_{\nu}^{(\alpha+1)}(y) f(y) d y
$$

Hence, by evidence equality

$$
\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} L_{\nu}^{(\alpha+1)}(y) d y=\left\{\begin{array}{lll}
1 & \text { if } & \nu=0 \\
0 & \text { if } & \nu \neq 0
\end{array}\right.
$$

we have

$$
S_{k}^{(\alpha)} f(0)-f(0)=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} L_{\nu}^{(\alpha+1)}(y) \Delta_{0} f(y) d y
$$

Next, we present the known estimates:
Lemma 1 ([6], p. 172). Let α be an arbitrary real number, c and δ be fixed positive constants. Then

$$
\left|L_{n}^{(\alpha)}(x)\right|= \begin{cases}O\left(n^{\alpha}\right) & \text { if } 0 \leq x \leq \frac{c}{n} \\ O\left(x^{-(2 \alpha+1) / 4} n^{(2 \alpha-1) / 4}\right) & \text { if } \frac{c}{n} \leq x \leq \delta\end{cases}
$$

Lemma 2 ([6], p. 235). Let α and λ be arbitrary real numbers, $\delta>0$ and $0<\eta<4$. Then

$$
\max _{x} e^{-x / 2} x^{\lambda}\left|L_{n}^{(\alpha)}(x)\right|= \begin{cases}O\left(n^{\max \left(\lambda-\frac{1}{2}, \frac{\alpha}{2}-\frac{1}{4}\right)}\right) & \text { if } \delta \leq x \leq(4-\eta) n \\ O\left(n^{\max \left(\lambda-\frac{1}{3}, \frac{\alpha}{2}-\frac{1}{4}\right)}\right) & \text { if } x \geq \delta\end{cases}
$$

We will need additionally the following estimates:
Lemma 3. Let $\beta>-1$. If $q>0$, then

$$
\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k}(1+k)^{\beta} \leq\left(1+\frac{1}{q}\right)(1+n)^{\beta}
$$

and if $\gamma>-1$, then

$$
\frac{1}{A_{n}^{(\gamma)}} \sum_{k=0}^{n} A_{n-k}^{(\gamma-1)}(1+k)^{\beta}=O\left((1+n)^{\beta}\right)
$$

Proof. Since

$$
\begin{aligned}
\frac{(1+q)^{n+1}}{n+1} & =\int_{-1}^{q}(1+z)^{n} d z \geq \int_{0}^{q}(1+z)^{n} d z \\
& =\int_{0}^{q} \sum_{k=0}^{n}\binom{n}{k} z^{k} d z=\sum_{k=0}^{n}\binom{n}{k} \frac{q^{k+1}}{k+1}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k}(1+k)^{\beta} & =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k} \frac{(1+k)^{\beta+1}}{1+k} \\
& \leq \frac{(1+n)^{\beta+1}}{q(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k+1} \frac{1}{1+k} \\
& \leq \frac{(1+n)^{\beta+1}}{q(1+q)^{n}} \frac{(1+q)^{n+1}}{n+1}=\left(1+\frac{1}{q}\right)(1+n)^{\beta}
\end{aligned}
$$

and our first result is evident.
For the second one we know follow by A. Zygmund [7, Vol. I, (1.15) and Theorem 1.17] that

$$
A_{n}^{(\gamma)}=\binom{n+\gamma}{n} \simeq O\left((n+1)^{\gamma}\right)
$$

is positive for $\gamma>-1$. Moreover, $A_{n}^{(\gamma)}$ is increasing (as a function of n) for $\gamma>0$ and decreasing for $-1<\gamma<0$. Hence, for $\beta<0$,

$$
\begin{aligned}
& \frac{1}{A_{n}^{(\gamma)}} \sum_{k=0}^{n} A_{n-k}^{(\gamma-1)}(1+k)^{\beta} \\
& =\frac{1}{A_{n}^{(\gamma)}} \sum_{k=0}^{[n / 2]-1} A_{n-k}^{(\gamma-1)}(1+k)^{\beta}+\frac{1}{A_{n}^{(\gamma)}} \sum_{k=[n / 2]}^{n} A_{n-k}^{(\gamma-1)}(1+k)^{\beta} \\
& =O\left(\frac{(n+1)^{\gamma-1}}{(n+1)^{\gamma}}\right) \sum_{k=0}^{[n / 2]-1}(1+k)^{\beta}+O\left((1+n)^{\beta}\right) \frac{1}{A_{n}^{(\gamma)}} \sum_{k=[n / 2]}^{n} A_{n-k}^{(\gamma-1)} \\
& \leq O\left((n+1)^{-1}\right) \sum_{k=0}^{n}(1+k)^{\beta} \int_{k}^{k+1} d z+O\left((1+n)^{\beta}\right) \frac{1}{A_{n}^{(\gamma)}} \sum_{k=0}^{n} A_{n-k}^{(\gamma-1)} \\
& \leq O\left((n+1)^{-1}\right) \sum_{k=0}^{n} \int_{k}^{k+1} z^{\beta} d z+O\left((1+n)^{\beta}\right) \\
& =O\left((n+1)^{-1}\right) \int_{0}^{n+1} z^{\beta} d z+O\left((1+n)^{\beta}\right) \\
& =O\left((n+1)^{-1}\right) \frac{(n+1)^{\beta+1}}{\beta+1}+O\left((1+n)^{\beta}\right)=O\left((1+n)^{\beta}\right) .
\end{aligned}
$$

If $\beta \geq 0$, then the result is evident. Thus our proof is complete.

4. Proofs of theorems

Proof of Theorem 1. It is clear that

$$
\begin{aligned}
S_{n}^{(\alpha)} f(0)-f(0) & =\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} L_{n}^{(\alpha+1)}(y) \Delta_{0} f(y) d y \\
& =\left(\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{\delta}^{n}+\int_{n}^{\infty}\right)=J_{1}+J_{2}+J_{3}+J_{4}
\end{aligned}
$$

then

$$
\left|S_{n}^{(\alpha)} f(0)-f(0)\right| \leq\left|J_{1}\right|+\left|J_{2}\right|+\left|J_{3}\right|+\left|J_{4}\right|
$$

and by Lemma 1 and (1)

$$
\left|J_{1}\right|=\frac{O\left(n^{\alpha+1}\right)}{\Gamma(\alpha+1)} \int_{0}^{1 / n} e^{-y} y^{\alpha}\left|\Delta_{0} f(y)\right| d y=o(\omega(n))
$$

Next, by Lemma 1 and integrating by parts with $\alpha \in\left(-1,-\frac{1}{2}\right)$, we obtain

$$
\begin{aligned}
\left|J_{2}\right| \leq & \frac{1}{\Gamma(\alpha+1)} \int_{1 / n}^{\delta} e^{-y} y^{\alpha}\left|\Delta_{0} f(y)\right|\left|L_{n}^{(\alpha+1)}(y)\right| d y \\
= & \frac{O\left(n^{(2 \alpha+1) / 4}\right)}{\Gamma(\alpha+1)} \int_{1 / n}^{\delta} y^{-(2 \alpha+3) / 4} \frac{d}{d y}\left(\int_{0}^{y} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right) d y \\
= & \frac{O\left(n^{(2 \alpha+1) / 4}\right)}{\Gamma(\alpha+1)}\left\{\left[y^{-(2 \alpha+3) / 4}\left(\int_{0}^{y} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right)\right]_{1 / n}^{\delta}\right. \\
& \left.+\int_{1 / n}^{\delta} \frac{2 \alpha+3}{4} y^{-(2 \alpha+7) / 4}\left(\int_{0}^{y} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right) d y\right\} \\
= & \frac{O\left(n^{(2 \alpha+1) / 4}\right)}{\Gamma(\alpha+1)}\left\{\delta^{-(2 \alpha+3) / 4}\left(\int_{0}^{\delta} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right)\right. \\
& -n^{(2 \alpha+3) / 4}\left(\int_{0}^{1 / n} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right) \\
& \left.+\int_{1 / n}^{\delta} \frac{2 \alpha+3}{4} y^{-(2 \alpha+7) / 4}\left(\int_{0}^{y} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right) d y\right\} \\
= & \frac{O\left(n^{(2 \alpha+1) / 4}\right)}{\Gamma(\alpha+1)}\left\{\delta^{-(2 \alpha+3) / 4}\left(\int_{0}^{\delta} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right)\right. \\
& \left.+\int_{1 / n}^{\delta} \frac{2 \alpha+3}{4} y^{-(2 \alpha+7) / 4}\left(\int_{0}^{y} e^{-t} t^{\alpha}\left|\Delta_{0} f(t)\right| d t\right) d y\right\}
\end{aligned}
$$

Using (1) and the monotonicity of ω we get

$$
\begin{aligned}
\left|J_{2}\right| \leq & O\left(n^{(2 \alpha+1) / 4}\right)\left\{\delta^{(2 \alpha+1) / 4} o\left(\omega\left(\frac{1}{\delta}\right)\right)\right. \\
& \left.+\int_{1 / n}^{\delta}\left(\frac{2 \alpha+3}{4} y^{-(2 \alpha+7) / 4}\right) y^{\alpha+1} o\left(\omega\left(\frac{1}{y}\right)\right) d y\right\} \\
= & o\left(n^{(2 \alpha+1) / 4} \omega(n)\right)\left\{\delta^{(2 \alpha+1) / 4}+\frac{2 \alpha+3}{4} \int_{1 / n}^{\delta} y^{(2 \alpha-3) / 4} d y\right\} \\
= & o\left(n^{(2 \alpha+1) / 4} \omega(n)\right)\left\{\delta^{(2 \alpha+1) / 4}+\frac{(2 \alpha+3) / 4}{(2 \alpha+1) / 4}\left[y^{(2 \alpha+1) / 4}\right]_{1 / n}^{\delta}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =o\left(n^{(2 \alpha+1) / 4} \omega(n)\right)\left\{\delta^{(2 \alpha+1) / 4}+\frac{2 \alpha+3}{2 \alpha+1} \delta^{(2 \alpha+1) / 4}\right. \\
& \left.-\quad \frac{2 \alpha+3}{2 \alpha+1} n^{-(2 \alpha+1) / 4}\right\} \\
& =o\left(n^{(2 \alpha+1) / 4} \omega(n)\right)\left\{\frac{4 \alpha+4}{2 \alpha+1} \delta^{(2 \alpha+1) / 4}-\frac{2 \alpha+3}{2 \alpha+1} n^{-(2 \alpha+1) / 4}\right\} \\
& \leq o\left(n^{(2 \alpha+1) / 4} \omega(n)\right)\left\{-\frac{2 \alpha+3}{2 \alpha+1} n^{-(2 \alpha+1) / 4}\right\} \leq o(\omega(n)) .
\end{aligned}
$$

Applying Lemma 2 with $\alpha+1$ instead of $\alpha, \lambda=\frac{2 \alpha-3}{4}$ (since $\max \left\{\lambda-\frac{1}{2}\right.$, $\left.\frac{\alpha+1}{2}-\frac{1}{4}\right\}=\frac{2 \alpha+1}{4}$) and (2) we obtain

$$
\begin{aligned}
\left|J_{3}\right| & \leq \frac{1}{\Gamma(\alpha+1)} \int_{\delta}^{n} e^{-y / 2} y^{(2 \alpha-3) / 4}\left|\Delta_{0} f(y)\right| e^{-y / 2} y^{(2 \alpha+3) / 4}\left|L_{n}^{(\alpha+1)}(y)\right| d y \\
& =\frac{O\left(n^{(2 \alpha+1) / 4}\right)}{\Gamma(\alpha+1)} \int_{\delta}^{n} e^{-y / 2} y^{(2 \alpha-3) / 4}\left|\Delta_{0} f(y)\right| d y=o(\omega(n))
\end{aligned}
$$

Further, by Lemma 2 with $\alpha+1$ instead of α and $\lambda=\frac{1}{3}$ (since $\max \left\{\lambda-\frac{1}{3}\right.$, $\left.\frac{\alpha+1}{2}-\frac{1}{4}\right\}=\lambda-\frac{1}{3}=0$) and (3) we get

$$
\begin{aligned}
\left|J_{4}\right| & \leq \frac{1}{\Gamma(\alpha+1)} \int_{n}^{\infty} e^{-y / 2} y^{(3 \alpha-1) / 3}\left|\Delta_{0} f(y)\right| e^{-y / 2} y^{1 / 3}\left|L_{n}^{(\alpha+1)}(y)\right| d y \\
& =\frac{O(1)}{\Gamma(\alpha+1)} \int_{n}^{\infty} e^{-y / 2} y^{(3 \alpha-1) / 3}\left|\Delta_{0} f(y)\right| d y=o(\omega(n))
\end{aligned}
$$

Finally, collecting the above estimates we have

$$
\left|S_{n}^{(\alpha)} f(0)-f(0)\right|=o(\omega(n))
$$

and thus our proof is complete.
Proof of Theorem 2. Let $\delta>0$, and as above

$$
S_{n}^{(\alpha)} f(0)-f(0)=J_{1}+J_{2}+J_{3}+J_{4}
$$

For the proof we note that taking $\delta=1 / n$, we have $J_{2}=0$ and by the condition (4) we obtain

$$
\left|J_{3}\right| \leq o(\omega(n))
$$

Moreover, the conditions (1) and (3) imply

$$
\left|J_{1}\right| \leq o(\omega(n)) \quad \text { and } \quad\left|J_{4}\right| \leq o(\omega(n))
$$

similarly as above, and thus our proof is complete.

References

[1] Khatri K.Mishra V.N., Approximation of functions belonging to $L[0, \infty)$ by product summability means of its Fourier-Laguerre series, Cogent Mathematics, (3)1250854, (2016).
[2] Krasniqi Xh.Z., On the degree of approximation of a function by $(C, 1)(E, q)$ means of its Fourier-Laguerre series, Int. J. of Anal. and Appl., 1(2013), 33-39.
[3] Mittal M.L., Singh M.V., Error Estimation of Functions by Fourier-Laguerre Polynomials Using Matrix-Euler Operators, Int. J. of Analysis, Vol. 2015, Article ID 478345, 4 pages.
[4] Nigam H.K., Sharma A., A study on degree of approximation by $(E, 1)$ summability means of the Fourier-Laguerre expansion, International Journal of Mathematics and Mathematical Sciences, Volume 2010, Article ID 351016, 7 pages.
[5] Sonker S., Approximation of functions by ($C 1 . T$) means of its Fourier -Laguerre series, Recent Advances in Computational Mathematics, http:// www.wseas.us/e-library/conferences/2014/Geneva/ICACM/ICACM-19.pdf.
[6] SzegÖ G., Orthogonal polynomials, Am. Math.Soc. Colloquium Publ., 23 (1939).
[7] Zygmund A., Trigonometric series, Cambride, 1959.

WŁodzimierz Łenski
University of Zielona Góra
Faculty of Mathematics
Computer Science and Econometrics
65-516 Zielona Góra, ul. Szafrana 4a, Poland
e-mail: W.Lenski@wmie.uz.zgora.pl
Bogdan Szal
University of Zielona Góra
Faculty of Mathematics
Computer Science and Econometrics
65-516 Zielona Góra, ul. Szafrana 4a, Poland
e-mail: B.Szal @wmie.uz.zgora.pl

Received on 12.11.2017 and, in revised form, on 08.06.2018.

