S sciendo

Nr 60

2018 DOI:10.1515/fascmath-2018-0010

EMINE K. SÖGÜTCÜ, NEŞET AYDIN AND ÖZNUR GÖLBAŞI **REMARKS ON** $* - (\sigma, \tau) -$ LIE IDEALS OF *-PRIME RINGS WITH DERIVATION

ABSTRACT. Let R be a *-prime ring with characteristic not 2, U a nonzero *- (σ, τ) -Lie ideal of R, d a nonzero derivation of R. Suppose σ, τ be two automorphisms of R such that $\sigma d = d\sigma$, $\tau d = d\tau$ and * commutes with σ, τ, d . In the present paper it is shown that if $d(U) \subseteq Z$ or $d^2(U) \subseteq Z$, then $U \subseteq Z$. KEY WORDS: prime ring, derivation, (σ, τ) -Lie ideal, involution.

AMS Mathematics Subject Classification: 16N60, 16W25, 16U80.

1. Introduction

Let R will be an associative ring with center Z. Let σ and τ two mappings from R into itself. For any $x, y \in R$, we write [x, y] and $[x, y]_{\sigma,\tau}$, for xy - yxand $x\sigma(y) - \tau(y)x$ respectively and make extensive use of basic commutator identities:

$$\begin{split} & [x, yz] = y[x, z] + [x, y]z \\ & [xy, z] = [x, z]y + x[y, z] \\ & [xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau}y \\ & [x, yz]_{\sigma, \tau} = \tau(y)[x, z]_{\sigma, \tau} + [x, y]_{\sigma, \tau}\sigma(z). \end{split}$$

We set $C_{\sigma,\tau} = \{c \in R \mid c\sigma(x) = \tau(x)c \text{ for all } x \in R\}$ and call it (σ,τ) -center of R. Note that $C_{1,1} = Z(R)$, where $1 : R \longrightarrow R$ is the identity map. An additive subgroup U of R is said to be a Lie ideal of R if $[U,R] \subseteq U$. Kaya [4] first introduced the (σ,τ) -Lie ideal as following: Let U be an additive subgroup of $R, \sigma, \tau : R \longrightarrow R$ be two mappings. Then (i) U is a (σ,τ) -right Lie ideal of R if $[U,R]_{\sigma,\tau} \subseteq U$. (ii) U is a (σ,τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau} \subseteq U$. (iii) U is a (σ,τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau} \subseteq U$. (iii) U is a (σ,τ) -left Lie ideal of R if $[U,R]_{\sigma,\tau} \subseteq U$. (iii) U is both

This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-514.

a (σ, τ) -right Lie ideal and (σ, τ) -left Lie ideal of R. Every Lie ideal of Ris a (1, 1)-left (and right) Lie ideal of R, where $1 : R \longrightarrow R$ is the identity map of R. But there exist (σ, τ) -Lie ideals which are not Lie ideals (Such an example due to [4]).

Recall that a ring R is prime if xRy = 0 for $x, y \in R$ implies x = 0 or y = 0. An additive mapping $*: R \to R$ is called an involution if $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or *-ring. A ring with an involution is said to *-prime if $xRy = xRy^* = 0$ or $xRy = x^*Ry = 0$ for $x, y \in R$ implies that x = 0 or y = 0. Every prime ring with an involution is *-prime but the converse need not hold general. An example due to Oukhtite [9] justifies the above statement that is, R be a prime ring, $S = R \times R^o$ where R^o is the opposite ring of R. Define involution * on S as $(x, y)^* = (y, x)$. S is *-prime, but not prime. This example shows that *-prime rings constitute a more general class of prime rings. In all that follows the symbol $S_*(R)$, first introduced by Oukhtite, will denote the set of symmetric and skew symmetric elements of R, i.e. $S_*(R) = \{x \in R \mid x^* = \pm x\}$. An (σ, τ) -Lie ideal of R is said to be a $* - (\sigma, \tau)$ -Lie ideal if U is invariant under *, i.e. $U^* = U$.

Following Posner [10], an additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. Many results in the literature indicate that the global structure of a ring R is often tightly connected to the behavior of additive mappings defined on R. For example derivations with certain properties investigated in various papers. Bergen et al. proved the following results in [3]: Let R be a prime ring of characteristic different from 2, U a nonzero Lie ideal of R and d a nonzero derivation. If $d(U) \subseteq Z$, then $U \subseteq Z$. In [5], Lee and Lee proved that if R is a prime ring of characteristic different from 2, U a nonzero Lie ideal of R and d a nonzero derivation such that $d^2(U) \subseteq Z$ then $U \subseteq Z$. Further, the above results were extended to (σ, τ) – Lie ideals of R in [1] and [11]. Oukhtite et al. showed that these results are valid for *-prime rings in [8]. In this paper our objective is to generalize the above results for a nonzero $* - (\sigma, \tau)$ -Lie ideal of a *-prime ring with characteristic not two.

2. Results

Lemma 1 ([12], Lemma 2.8). Let R be a *-prime ring, U a nonzero $* - (\sigma, \tau)$ -left Lie ideal of R such that τ commutes with *. If $U \subseteq C_{\sigma,\tau}$, then $U \subseteq Z$.

Lemma 2 ([12], Theorem 2.11). Let R be a *-prime ring with characteristic not 2, U a nonzero $* - (\sigma, \tau)$ -Lie ideal of R such that τ commutes with *. If $a \in S_*(R)$ and [U, a] = 0 then $a \in Z$ or $U \subseteq Z$.

Lemma 3 ([2], Theorem 2.10). Let R be a *-prime ring with characteristic not 2, U a nonzero $*-(\sigma, \tau)-Lie$ ideal of R, d a nonzero derivation of Rsuch that $d\tau = \tau d, \sigma d = d\sigma$ and * commutes with σ, τ and d. If $d^2(U) = (0)$, then $U \subseteq Z$.

Lemma 4. Let R be a *-prime ring, U a nonzero *- (σ, τ) -left Lie ideal of R such that σ and τ commutes with *. If $[R, U]_{\sigma,\tau} \subseteq Z$, then $U \subseteq Z$.

Proof. For any $x \in R$, $u \in U$, we get $[x, u]_{\sigma,\tau} \in Z$. Replacing x by $x\sigma(u), u \in U$ in the this equation, we obtain

$$[x, u]_{\sigma, \tau} \sigma(u) \in \mathbb{Z}, \text{ for all } x \in \mathbb{R}, u \in U$$

and so

$$[x, u]_{\sigma, \tau} \sigma(u) r = r[x, u]_{\sigma, \tau} \sigma(u), \text{ for all } x, r \in R, u \in U.$$

By the hypothesis, we have

$$[x, u]_{\sigma, \tau} [\sigma(u), r] = 0$$
, for all $x, r \in R, u \in U$.

Again using the hypothesis, we obtain

(1)
$$[x, u]_{\sigma,\tau} R[\sigma(u), r] = 0, \text{ for all } x, r \in R, u \in U.$$

Assume that $u \in U \cap S_*(R)$. In (1), replacing r^*, u^* instead of r, u respectively, and using $*\sigma = \sigma *$, we get

$$[x, u]_{\sigma, \tau} R\left([\sigma(u), r]\right)^* = 0, \text{ for all } x, r \in R, \ u \in U \cap S_*(R).$$

Thus,

$$[x, u]_{\sigma,\tau} R\left[\sigma(u), r\right] = [x, u]_{\sigma,\tau} R\left([\sigma(u), r]\right)^* = 0,$$

for all $x, r \in R, u \in U \cap S_*(R)$

By the *-primeness of R, we have

$$[x, u]_{\sigma, \tau} = 0$$
 or $[\sigma(u), r] = 0$, for all $x \in R, u \in U \cap S_*(R)$.

Now, let $[x, u]_{\sigma,\tau} = 0$, for all $u \in U \cap S_*(R)$. For any $u \in U$, we find that $u - u^* \in U \cap S_*(R)$, and so $[x, u]_{\sigma,\tau} = [x, u^*]_{\sigma,\tau}$, for all $u \in U, x \in R$. In (1), taking r^*, u^* instead of r, u respectively and using $*\sigma = \sigma*$, we get

$$[x, u]_{\sigma,\tau} R ([\sigma(u), r])^* = 0$$
, for all $x, r \in R, u \in U$.

On the other hand, we get $[\sigma(u), r] = 0$, for all $u \in U \cap S_*(R)$. For any $u \in U$, again taking $u - u^* \in U \cap S_*(R)$, and so, $[\sigma(u), r] = [\sigma(u^*), r]$ for all

 $r \in R, u \in U$. Replacing r by r^* in (1) and using this equation, $\sigma * = *\sigma$, we have

$$[x, u]_{\sigma,\tau} R\left([\sigma(u), r]\right)^* = 0, \text{ for all } x, r \in R, u \in U.$$

Hence we find that

(2)
$$[x, u]_{\sigma,\tau} R\left([\sigma(u), r]\right)^* = 0, \text{ for all } x, r \in R, u \in U.$$

for any cases. By (1) and (2), we get

$$[x, u]_{\sigma, \tau} R[\sigma(u), r] = [x, u]_{\sigma, \tau} R([\sigma(u), r])^* = 0, \text{ for all } x, r \in R, u \in U.$$

Since R is *-prime ring and σ is automorphism, we obtain

$$[x, u]_{\sigma, \tau} = 0 \text{ or } u \in Z \text{ for all } x \in R, \ u \in U.$$

We set $K = \{u \in U \mid [x, u]_{\sigma,\tau} = 0\}$ and $L = \{u \in U \mid u \in Z\}$. Clearly each of K and L is additive subgroup of U. Morever, U is the set-theoretic union of K and L. But a group can not be the set-theoretic union of its two proper subgroups, hence K = U or L = U. In the former case, $U \subseteq C_{\sigma,\tau}$. By Lemma 1, we have $U \subseteq Z$. In the latter case, $U \subseteq Z$. This completes the proof.

Theorem 1. Let R be a *-prime ring with characteristic not 2, U a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, d a nonzero derivation of R such that $d\tau = \tau d, \sigma d = d\sigma$ and * commutes with σ, τ and d. If $d(U) \subseteq Z$, then $U \subseteq Z$.

Proof. For any $x \in R$, $u, v \in U$ and $[d(v)x, u]_{\sigma,\tau} \in U$. Thus we have

$$d([d(v)x, u]_{\sigma, \tau}) = d(d(v)[x, u]_{\sigma, \tau} + [d(v), \tau(u)]x) = d(d(v)[x, u]_{\sigma, \tau}) \in Z$$

and so

$$d^2(v)[x,u]_{\sigma,\tau} + d(v)d([x,u]_{\sigma,\tau}) \in \mathbb{Z}, \text{ for all } x \in \mathbb{R}, u, v \in U.$$

Using the hypothesis, we get

$$d^2(v)[x,u]_{\sigma,\tau} \in \mathbb{Z}, \text{ for all } x \in \mathbb{R}, u, v \in U.$$

Since $d^2(v)[x, u]_{\sigma, \tau} \in \mathbb{Z}$, we have

$$d^{2}(v)[x,u]_{\sigma,\tau}r = rd^{2}(v)[x,u]_{\sigma,\tau}, \text{ for all } x,r \in R, \ u,v \in U.$$

Again using hypothesis, we obtain that

$$d^{2}(v)[[x,u]_{\sigma,\tau},r] = 0, \text{ for all } x,r \in R, u,v \in U,$$

165

and so

$$d^{2}(v)R[[x, u]_{\sigma, \tau}, r] = 0, \text{ for all } x, r \in R, u, v \in U.$$

Replacing v by v^* in last equation and using $d^* = *d$, we have

$$(d^2(v))^* R[[x, u]_{\sigma, \tau}, r] = 0, \text{ for all } x, r \in R, u, v \in U.$$

Combining the last two equations and using the *- primeness of R, we arrive at

$$d^2(v) = 0$$
 or $[x, u]_{\sigma, \tau} \subseteq Z$, for all $x \in R, u, v \in U$.

In the former case, we get $U \subseteq Z$ by Lemma 3. In the latter case, $[R, U]_{\sigma,\tau} \subseteq Z$, and so, $U \subseteq Z$ by Lemma 4. This completes the proof.

Theorem 2. Let R be a *-prime ring with characteristic not 2, U a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, d a nonzero derivation of R such that * commutes with σ, τ, d . If $a \in S_*(R)$, $d(Z) \neq 0$ and $[d(U), a]_{\sigma,\tau} = 0$, then $a \in Z$ or $U \subseteq Z$.

Proof. Choose $\alpha \in Z$ such that $d(\alpha) \neq 0$. It is easily seen that $\alpha, d(\alpha), d(\alpha^*) \in Z$ and $0 \neq d(\alpha)^* = d(\alpha^*)$. For all $x \in R, u \in U$, we get

$$0 = [d([x, u]_{\sigma,\tau}\alpha), a]_{\sigma,\tau} = [d([x, u]_{\sigma,\tau})\alpha + [x, u]_{\sigma,\tau}d(\alpha), a]_{\sigma,\tau}$$
$$= [d([x, u]_{\sigma,\tau}), a]_{\sigma,\tau}\alpha + d([x, u]_{\sigma,\tau})[\alpha, \sigma(a)]$$
$$+ [[x, u]_{\sigma,\tau}, a]_{\sigma,\tau}d(\alpha) + [x, u]_{\sigma,\tau}[d(\alpha), \sigma(a)].$$

Using the hypothesis and $\alpha, d(\alpha) \in \mathbb{Z}$, we obtain

$$[[x, u]_{\sigma, \tau}, a]_{\sigma, \tau} d(\alpha) = 0$$
, for all $x \in R, u \in U$

and so for all $\alpha \in Z$ such that $d(\alpha) \neq 0$, we get

$$[[x, u]_{\sigma,\tau}, a]_{\sigma,\tau} Rd(\alpha) = 0$$
, for all $x \in R, u \in U$.

Arguing the same ways above and using * commutes with d and $\alpha^* \in Z$ such that $d(\alpha^*) \neq 0$, we obtain that

$$[[x, u]_{\sigma, \tau}, a]_{\sigma, \tau} Rd(\alpha)^* = 0$$
, for all $x \in R, u \in U$

Hence we get

$$[[x, u]_{\sigma, \tau}, a]_{\sigma, \tau} Rd(\alpha) = [[x, u]_{\sigma, \tau}, a]_{\sigma, \tau} Rd(\alpha)^* = 0, \text{ for all } x \in R, u \in U.$$

Since R is *-prime ring and $0 \neq d(\alpha) \in Z$, we see that

(3)
$$[[x, u]_{\sigma,\tau}, a]_{\sigma,\tau} = 0, \text{ for all } x \in R, u \in U.$$

Substituting $x\sigma(u)$ for x in (3) and using this equation, we obtain

$$[x, u]_{\sigma, \tau} \sigma([u, a]) = 0$$
, for all $x \in R, u \in U$.

Replacing x by $\tau(y)x, y \in R$ in the last equation and using this equation, we get

(4)
$$\tau([y,u]) R\sigma([u,a]) = 0, \text{ for all } y \in R, u \in U.$$

Suppose that $u \in U \cap S_*(R)$. Taking y^* instead of y in (4) and using $\tau * = *\tau$, we have

$$\tau^*\left([y,u]\right)R\sigma([u,a]) = 0, \text{ for all } x \in R, \ u \in U \cap S_*(R).$$

That is,

$$\tau([y,u]) R\sigma([u,a]) = \tau^*([y,u]) R\sigma([u,a]) = 0, \text{ for all } y \in R, \ u \in U \cap S_*(R).$$

Since R is a *-prime ring and σ, τ are automorphisms, we get

$$u \in Z$$
 or $[u, a] = 0$, for all $u \in U \cap S_*(R)$.

This implies that [u, a] = 0, for all $u \in U \cap S_*(R)$.

Assume that $u \in U$. We know that $u - u^* \in U \cap S_*(R)$. The last equation gives that $[u, a] = [u^*, a]$, for all $u \in U$. Replacing y, u by y^*, u^* respectively in (4) and using $\tau^* = *\tau$, we get

(5)
$$\tau^*\left([y,u]\right)R\sigma([u,a]) = 0, \text{ for all } y \in R, \ u \in U.$$

By (4) and (5), we get

$$\tau^*\left([y,u]\right)R\sigma([u,a])=\tau\left([y,u]\right)R\sigma([u,a])=0, \text{ for all } y\in R, \ u\in U.$$

Since R is a *-prime ring and σ, τ are automorphisms, we get

 $u \in Z$ or [u, a] = 0, for all $u \in U$.

We have [U, a] = 0 for any cases. Hence we arrive at $a \in Z$ or $U \subseteq Z$ by Lemma 2. This the proof is completed.

Theorem 3. Let R be a *-prime ring with characteristic not 2 and 3, U a nonzero $* - (\sigma, \tau)$ -Lie ideal of R, d a nonzero derivation of R such that $d\tau = \tau d, \sigma d = d\sigma$ and * commutes with σ, τ and d. If $d(U) \subseteq U$ and $d^2(U) \subseteq Z$, then $U \subseteq Z$.

166

Remarks on
$$* - (\sigma, \tau)$$
 – Lie ideals of $*$ -prime ... 167

Proof. Assume that d(Z) = (0). This implies that

$$d^{3}(U) = d(d^{2}(U)) \subseteq d(Z) = (0).$$

For any $x \in R$, $u \in U$ and $\tau(u)[x, u]_{\sigma,\tau} \in U$, we get

$$d^3(\tau(u)[x,u]_{\sigma,\tau}) = 0$$
, for all $x \in R, u \in U$.

Expanding this equation by using $d\tau = \tau d$ and $d^3(U) = (0)$, we arrive at

$$0 = 3(d^{2}(\tau(u))d([x, u]_{\sigma, \tau}) + d(\tau(u))d^{2}([x, u]_{\sigma, \tau}).$$

Since $charR \neq 3$, we obtain

$$d^{2}(\tau(u))d([x, u]_{\sigma, \tau}) + d(\tau(u))d^{2}([x, u]_{\sigma, \tau}) = 0, \text{ for all } x \in R, \ u \in U.$$

Replacing u by d(u) in the last equation and using $\tau d = d\tau$, $d^3(U) = 0$, we have

$$d^{2}(\tau(u))d^{2}([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

By the hypothesis, we have

(6)
$$d^2(\tau(u))Rd^2([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

Assume that $u \in U \cap S_*(R)$. In (6), replacing u by u^* and using * commutes with τ and d, we get

$$d^{2}(\tau(u))^{*}Rd^{2}([x,d(u)]_{\sigma,\tau}) = 0$$
, for all $x \in R, u \in U \cap S_{*}(R)$.

This yields that

$$d^{2}(\tau(u))Rd^{2}([x,d(u)]_{\sigma,\tau}) = \left(d^{2}(\tau(u))\right)^{*}Rd^{2}([x,d(u)]_{\sigma,\tau}) = 0,$$

for all $x, r \in R$, $u \in U \cap S_*(R)$. The *-primeness of R gives

$$d^{2}(\tau(u)) = 0$$
 or $d^{2}([x, d(u)]_{\sigma, \tau}) = 0$, for all $x \in R, u \in U \cap S_{*}(R)$.

Now, let $d^2(\tau(u)) = 0$ for all $u \in U \cap S_*(R)$. For any $u \in U$, we know that $u - u^* \in U \cap S_*(R)$, and so $d^2(\tau(u)) = d^2(\tau(u^*))$ for all $u \in U$. By using the last equation in (6) and using * commutes with τ and d, we get

$$(d^2(\tau(u)))^* Rd^2([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

On the other hand, we get $d^2([x, d(u)]_{\sigma,\tau}) = 0$, for all $u \in U \cap S_*(R)$. For any $u \in U$, again taking $u - u^* \in U \cap S_*(R)$, and so, $d^2([x, d(u)]_{\sigma,\tau}) =$ $d^2([x, d(u^*)]_{\sigma,\tau})$, for all $x \in R, u \in U$. Replacing u by u^* in (6) and using this equation, * commutes with τ and d, we arrive at

$$(d^2(\tau(u)))^* Rd^2([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

Hence we find that

(7)
$$(d^2(\tau(u)))^* R d^2([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

for any cases. By (6) and (7), we get

$$d^{2}(\tau(u))Rd^{2}([x,d(u)]_{\sigma,\tau}) = \left(d^{2}(\tau(u))\right)^{*}Rd^{2}([x,d(u)]_{\sigma,\tau}) = 0,$$

for all $x \in R$, $u \in U$. Since R is *-prime ring, τ is automorphism and $d\tau = \tau d$, we obtain

$$d^{2}(u) = \text{ or } d^{2}([x, d(u)]_{\sigma, \tau}) = 0 \text{ for all } x \in R, \ u \in U.$$

Let us define $K = \{u \in U | d^2(u) = 0\}$ and $L = \{u \in U | d^2([x, d(u)]_{\sigma,\tau}) = 0, \text{ for all } x \in R\}$. Clearly, both K and L are additive subgroups of U. Moreover, U is the set-theoretic union of K and L. But a group cannot be the set-theoretic union of two proper subgroups. Hence K = U or L = U. If K = U then $U \subseteq Z$ by Lemma 3. So, we have L = U. That is,

(8)
$$d^2([x, d(u)]_{\sigma, \tau}) = 0, \text{ for all } x \in R, \ u \in U.$$

Replacing x by $\tau(d(u))x$ in (8) and using $\tau d = \tau d$, we get

$$0 = d^{2}([\tau(d(u))x, d(u)]_{\sigma,\tau}) = d^{2}(\tau(d(u))[x, d(u)]_{\sigma,\tau})$$

= $\tau(d^{3}(u))[x, d(u)]_{\sigma,\tau} + 2\tau(d^{2}(u))d([x, d(u)]_{\sigma,\tau})$
+ $\tau(d(u))d^{2}([x, d(u)]_{\sigma,\tau}).$

By equation (8) and $d^3(U) = (0)$, $charR \neq 2$, we get

$$\tau(d^2(u))d([x, d(u)]_{\sigma, \tau}) = 0$$
, for all $x \in R, u \in U$.

Using the same arguments after equation (6), we have

$$d^{2}(u) = 0$$
 or $d([x, d(u)]_{\sigma, \tau}) = 0$, for all $x \in R, u \in U$.

Let $M = \{u \in U | d^2(u) = 0\}$ and $N = \{u \in U | d([x, d(u)]_{\sigma,\tau}) = 0, \forall x \in R\}$. Each of M and N is an additive subgroup of U such that $U = M \cup N$. The above trick gives us U = M or U = N. In the former case, $d^2(U) = 0$, which forces $U \subseteq Z$ by Lemma 3. If U = N, then $d([x, d(u)]_{\sigma,\tau}) = 0$ for all $u \in U$. Replacing x by $\tau(d(u))x$ in this equation, we have

$$\tau(d^2(u))[x, d(u)]_{\sigma,\tau} = 0$$
, for all $x \in R, u \in U$.

Using $d^2(u) \in Z$ and again applying the above trick, we obtain that $[x, d(u)]_{\sigma,\tau} = 0$. Writing x by $xy, y \in R$ in this equation and using the last equation, we have

$$0 = [xy, d(u)]_{\sigma,\tau} = x[y, d(u)]_{\sigma,\tau} + [x, \sigma(d(u))]y = [x, \sigma(d(u))]y,$$

and so

$$[x, \sigma(d(u))]R = 0$$
, for all $x \in R, u \in U$.

Replacing x by x^* , u by u^* and using * commutes with σ and d, we get

$$([x,\sigma(d(u))])^* R = 0$$
, for all $x \in R, u \in U$.

Thus we have

$$[x, \sigma(d(u))]R = ([x, \sigma(d(u))])^* R = 0, \text{ for all } x \in R, u \in U.$$

Since R is a *-prime ring and σ is an automorphism, we obtain $d(U) \subseteq Z$. Theorem 1 gives that $U \subseteq Z$. Hence the proof is completed in the case of d(Z) = (0).

Now, we suppose that $d(Z) \neq (0)$. Choose $\alpha \in Z$ such that $d(\alpha) \neq 0$. For any $x \in R$, $u \in U$ and $[\alpha x, u]_{\sigma,\tau} = \alpha [x, u]_{\sigma,\tau} \in U$. By the hypothesis, we have

$$d^{2}(\alpha[x,u]_{\sigma,\tau}) = d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}) + \alpha d^{2}([x,u]_{\sigma,\tau}) \in \mathbb{Z}$$

and so

(9)
$$d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}) \in \mathbb{Z}, \text{ for all } x \in \mathbb{R}, u \in U.$$

Replacing x by $x\alpha$ in (9), we get

$$(d^{2}(\alpha)[x,u]_{\sigma,\tau} + 2d(\alpha)d([x,u]_{\sigma,\tau}))\alpha + 2d(\alpha)[x,u]_{\sigma,\tau}d(\alpha) \in \mathbb{Z}.$$

Using equation (9), we obtain

$$d(\alpha)[x,u]_{\sigma,\tau}d(\alpha) \in Z.$$

That is $(d(\alpha))^2 [x, u]_{\sigma, \tau} \in \mathbb{Z}$ and so

$$(d(\alpha))^2 [x, u]_{\sigma,\tau} r = r (d(\alpha))^2 [x, u]_{\sigma,\tau} \text{ for all } x, r \in R, \ u \in U.$$

Again using hypothesis, we arrive at

$$(d(\alpha))^2[[x,u]_{\sigma,\tau},r]=0, \text{ for all } x,r\in R, u\in U,$$

and so for all $\alpha \in Z$ such that $d(\alpha) \neq 0$, we have

$$(d(\alpha))^2 R[[x, u]_{\sigma, \tau}, r] = 0$$
, for all $x, r \in R, u \in U$.

Arguing the same ways above and using * commutes with d and $\alpha^* \in Z$ such that $d(\alpha^*) \neq 0$, we have

$$\left((d(\alpha))^2 \right)^* R\left[[x, u]_{\sigma, \tau}, r \right] = 0, \text{ for all } x, r \in R, \ u \in U.$$

Combining the last two equations and using the *- primeness of R, we arrive at

$$(d(\alpha))^2 = 0$$
 or $[x, u]_{\sigma, \tau} \subseteq Z$, for all $x \in R, u, v \in U$.

Since $0 \neq d(\alpha) \in Z$, we must have $[R, U]_{\sigma, \tau} \subseteq Z$. Lemma 4 yields that $U \subseteq Z$. This completes the proof.

Dedication: This study is dedicated to our pioneer in this area, Prof. Dr. Hatice Kandamar.

References

- AYDIN N., SOYTÜRK M., (σ, τ)-Lie ideals in prime rings with derivation, Doğa- Tr. J. of Math., 19(1995), 239-244.
- [2] AYDIN N., KOÇ E., GÖLBAŞI Ö., On * (σ, τ) Lie Ideals Of *-Prime Rings With Derivation, Hacettepe Journal of Math. and Statistics, DOI: 10.15672/HJMS.2017.501.
- [3] BERGEN J., HERSTEIN I.N., KERR J.W., Lie ideals and derivations of prime rings, J. of Algebra, 71(1981), 259-267.
- [4] KAYA K., (σ, τ)- Lie ideals in prime rings, An. Univ. Timisoara, Stiinte Mat., 30(2-3)(1992), 251-255.
- [5] LEE P.H., LEE T.K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin., 11(1983), 75-80.
- [6] OUKHTITE L., SALHI S., On commutativity of σ -prime rings, *Glasnik Mathematicki*, 41(61)(2006), 57-64.
- [7] OUKHTITE L., SALHI S., σ-prime rings with a special kind of automorphism, *International Journal Contemp Math. Sci.*, 2(3)(2007), 127-133.
- [8] OUKHTITE L., SALHI S., Lie ideals and derivations of σ -prime rings, International Jornal of Algebra, 1(1)(2007), 25-30.
- [9] OUKHTITE L., SALHI S., Centralizing automorphisms and Jordan left derivations on *-prime rings, Advances in Algebra, 1(1), (2008), 19-26.
- [10] POSNER E.C., Derivations in prime rings, Proc. Amer. Soc., 8(1957), 1093-1100.
- [11] SOYTÜRK M., (σ, τ) -Lie ideals in prime rings with derivation, *Turkish Journal* of Math., 20(1993), 239-244.
- [12] TÜRKMEN S., AYDIN N., Generalized *-Lie ideal of *-prime rings, Turkish Journal of Math., DOI: 10.3906/mat-1408-52.

Emine Koç Sögütcü Cumhuriyet University Faculty of Science Department of Mathematics Sivas, Turkey *e-mail:* eminekoc@cumhuriyet.edu.tr

NEŞET AYDIN Çanakkale 18 Mart University Faculty of Arts and Science Department of Mathematics Çanakkale, Turkey *e-mail:* neseta@comu.edu.tr

Öznur Gölbaşı Cumhuriyet University Faculty of Science Department of Mathematics Sivas, Turkey *e-mail:* ogolbasi@cumhuriyet.edu.tr

Received on 01.11.2017 and, in revised form, on 25.05.2018.