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Abstract. Let R be a ∗−prime ring with characteristic not 2,
U a nonzero ∗ − (σ, τ)−Lie ideal of R, d a nonzero derivation of
R. Suppose σ, τ be two automorphisms of R such that σd = dσ,
τd = dτ and ∗ commutes with σ, τ , d. In the present paper it is
shown that if d(U) ⊆ Z or d2(U) ⊆ Z, then U ⊆ Z.
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1. Introduction

Let R will be an associative ring with center Z. Let σ and τ two mappings
from R into itself. For any x, y ∈ R, we write [x, y] and [x, y]σ,τ , for xy− yx
and xσ(y)− τ(y)x respectively and make extensive use of basic commutator
identities:

[x, yz] = y[x, z] + [x, y]z

[xy, z] = [x, z]y + x[y, z]

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy

[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z).

We set Cσ,τ = {c ∈ R | cσ(x) = τ(x)c for all x ∈ R} and call it
(σ, τ)−center of R. Note that C1,1 = Z(R), where 1 : R −→ R is the
identity map. An additive subgroup U of R is said to be a Lie ideal of R if
[U,R] ⊆ U . Kaya [4] first introduced the (σ, τ)−Lie ideal as following: Let
U be an additive subgroup of R, σ, τ : R −→ R be two mappings. Then (i)
U is a (σ, τ)−right Lie ideal of R if [U,R]σ,τ ⊆ U . (ii) U is a (σ, τ)−left Lie
ideal of R if [R,U ]σ,τ ⊆ U . (iii) U is a (σ, τ)−Lie ideal of R if U is both
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a (σ, τ)−right Lie ideal and (σ, τ)−left Lie ideal of R. Every Lie ideal of R
is a (1, 1)−left (and right) Lie ideal of R, where 1 : R −→ R is the identity
map of R. But there exist (σ, τ)−Lie ideals which are not Lie ideals (Such
an example due to [4]).

Recall that a ring R is prime if xRy = 0 for x, y ∈ R implies x = 0 or
y = 0. An additive mapping ∗ : R→ R is called an involution if (xy)∗ = y∗x∗

and (x∗)∗ = x for all x, y ∈ R. A ring equipped with an involution is called a
ring with involution or ∗−ring. A ring with an involution is said to ∗−prime
if xRy = xRy∗ = 0 or xRy = x∗Ry = 0 for x, y ∈ R implies that x = 0
or y = 0. Every prime ring with an involution is ∗−prime but the converse
need not hold general. An example due to Oukhtite [9] justifies the above
statement that is, R be a prime ring, S = R×Ro where Ro is the opposite
ring of R. Define involution ∗ on S as (x, y)∗ = (y, x). S is ∗−prime, but not
prime. This example shows that ∗−prime rings constitute a more general
class of prime rings. In all that follows the symbol S∗(R), first introduced
by Oukhtite, will denote the set of symmetric and skew symmetric elements
of R, i.e. S∗(R) = {x ∈ R | x∗ = ±x}. An (σ, τ)−Lie ideal of R is said to
be a ∗ − (σ, τ)−Lie ideal if U is invariant under ∗, i.e. U∗ = U.

Following Posner [10], an additive mapping d : R→ R is called a deriva-
tion if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. Many results in the
literature indicate that the global structure of a ring R is often tightly con-
nected to the behavior of additive mappings defined on R. For example
derivations with certain properties investigated in various papers. Bergen et
al. proved the following results in [3]: Let R be a prime ring of characteristic
different from 2, U a nonzero Lie ideal of R and d a nonzero derivation. If
d(U) ⊆ Z, then U ⊆ Z. In [5], Lee and Lee proved that if R is a prime
ring of characteristic different from 2, U a nonzero Lie ideal of R and d a
nonzero derivation such that d2(U) ⊆ Z then U ⊆ Z. Further, the above
results were extended to (σ, τ)− Lie ideals of R in [1] and [11]. Oukhtite et
al. showed that these results are valid for ∗−prime rings in [8]. In this paper
our objective is to generalize the above results for a nonzero ∗ − (σ, τ)−Lie
ideal of a ∗−prime ring with characteristic not two.

2. Results

Lemma 1 ([12], Lemma 2.8). Let R be a ∗−prime ring, U a nonzero
∗ − (σ, τ)−left Lie ideal of R such that τ commutes with ∗. If U ⊆ Cσ,τ ,
then U ⊆ Z.

Lemma 2 ([12], Theorem 2.11). Let R be a ∗−prime ring with charac-
teristic not 2, U a nonzero ∗ − (σ, τ)−Lie ideal of R such that τ commutes
with ∗. If a ∈ S∗(R) and [U, a] = 0 then a ∈ Z or U ⊆ Z.
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Lemma 3 ([2], Theorem 2.10). Let R be a ∗−prime ring with character-
istic not 2, U a nonzero ∗−(σ, τ)−Lie ideal of R, d a nonzero derivation of R
such that dτ = τd, σd = dσ and ∗ commutes with σ, τ and d. If d2(U) = (0),
then U ⊆ Z.

Lemma 4. Let R be a ∗−prime ring, U a nonzero ∗ − (σ, τ)−left Lie
ideal of R such that σ and τ commutes with ∗. If [R,U ]σ,τ ⊆ Z, then U ⊆ Z.

Proof. For any x ∈ R, u ∈ U, we get [x, u]σ,τ ∈ Z. Replacing x by
xσ(u), u ∈ U in the this equation, we obtain

[x, u]σ,τσ(u) ∈ Z, for all x ∈ R, u ∈ U

and so

[x, u]σ,τσ(u)r = r[x, u]σ,τσ(u), for all x, r ∈ R, u ∈ U.

By the hypothesis, we have

[x, u]σ,τ [σ(u), r] = 0, for all x, r ∈ R, u ∈ U.

Again using the hypothesis, we obtain

(1) [x, u]σ,τR [σ(u), r] = 0, for all x, r ∈ R, u ∈ U.

Assume that u ∈ U ∩ S∗(R). In (1), replacing r∗, u∗ instead of r, u respec-
tively, and using ∗σ = σ∗, we get

[x, u]σ,τR ([σ(u), r])∗ = 0, for all x, r ∈ R, u ∈ U ∩ S∗(R).

Thus,

[x, u]σ,τR [σ(u), r] = [x, u]σ,τR ([σ(u), r])∗ = 0,

for all x, r ∈ R, u ∈ U ∩ S∗(R)
By the ∗−primeness of R, we have

[x, u]σ,τ = 0 or [σ (u) , r] = 0, for all x ∈ R, u ∈ U ∩ S∗(R).

Now, let [x, u]σ,τ = 0, for all u ∈ U ∩S∗(R). For any u ∈ U, we find that
u− u∗ ∈ U ∩ S∗(R), and so [x, u]σ,τ = [x, u∗]σ,τ , for all u ∈ U, x ∈ R. In (1),
taking r∗, u∗ instead of r, u respectively and using ∗σ = σ∗, we get

[x, u]σ,τR ([σ(u), r])∗ = 0, for all x, r ∈ R, u ∈ U.

On the other hand, we get [σ (u) , r] = 0, for all u ∈ U ∩ S∗(R). For any
u ∈ U, again taking u−u∗ ∈ U ∩S∗(R),and so, [σ (u) , r] = [σ (u∗) , r] for all
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r ∈ R, u ∈ U . Replacing r by r∗ in (1) and using this equation, σ∗ = ∗σ,
we have

[x, u]σ,τR ([σ(u), r])∗ = 0, for all x, r ∈ R, u ∈ U.

Hence we find that

(2) [x, u]σ,τR ([σ(u), r])∗ = 0, for all x, r ∈ R, u ∈ U.

for any cases. By (1) and (2), we get

[x, u]σ,τR [σ(u), r] = [x, u]σ,τR ([σ(u), r])∗ = 0, for all x, r ∈ R, u ∈ U.

Since R is ∗−prime ring and σ is automorphism, we obtain

[x, u]σ,τ = 0 or u ∈ Z for all x ∈ R, u ∈ U.

We set K = {u ∈ U | [x, u]σ,τ = 0 } and L = {u ∈ U | u ∈ Z}. Clearly
each of K and L is additive subgroup of U. Morever, U is the set-theoretic
union of K and L. But a group can not be the set-theoretic union of its two
proper subgroups, hence K = U or L = U. In the former case, U ⊆ Cσ,τ . By
Lemma 1, we have U ⊆ Z. In the latter case, U ⊆ Z. This completes the
proof. �

Theorem 1. Let R be a ∗−prime ring with characteristic not 2, U a
nonzero ∗ − (σ, τ)−Lie ideal of R, d a nonzero derivation of R such that
dτ = τd, σd = dσ and ∗ commutes with σ, τ and d. If d(U) ⊆ Z, then
U ⊆ Z.

Proof. For any x ∈ R, u, v ∈ U and [d(v)x, u]σ,τ ∈ U. Thus we have

d([d(v)x, u]σ,τ ) = d(d(v)[x, u]σ,τ + [d(v), τ(u)]x) = d(d(v)[x, u]σ,τ ) ∈ Z

and so

d2(v)[x, u]σ,τ + d(v)d([x, u]σ,τ ) ∈ Z, for all x ∈ R, u, v ∈ U.

Using the hypothesis, we get

d2(v)[x, u]σ,τ ∈ Z, for all x ∈ R, u, v ∈ U.

Since d2(v)[x, u]σ,τ ∈ Z, we have

d2(v)[x, u]σ,τr = rd2(v)[x, u]σ,τ , for all x, r ∈ R, u, v ∈ U.

Again using hypothesis, we obtain that

d2(v) [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u, v ∈ U,
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and so
d2(v)R [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u, v ∈ U.

Replacing v by v∗ in last equation and using d∗ = ∗d, we have(
d2(v)

)∗
R [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u, v ∈ U.

Combining the last two equations and using the ∗−primeness of R, we arrive
at

d2(v) = 0 or [x, u]σ,τ ⊆ Z, for all x ∈ R, u, v ∈ U.

In the former case, we get U ⊆ Z by Lemma 3. In the latter case, [R,U ]σ,τ ⊆
Z, and so, U ⊆ Z by Lemma 4. This completes the proof. �

Theorem 2. Let R be a ∗−prime ring with characteristic not 2, U a
nonzero ∗ − (σ, τ)−Lie ideal of R, d a nonzero derivation of R such that ∗
commutes with σ, τ, d. If a ∈ S∗(R), d (Z) 6= 0 and [d (U) , a]σ,τ = 0, then
a ∈ Z or U ⊆ Z.

Proof. Choose α ∈ Z such that d(α) 6= 0. It is easily seen that
α, d(α), d(α∗) ∈ Z and 0 6= d(α)∗ = d(α∗). For all x ∈ R, u ∈ U , we
get

0 = [d([x, u]σ,τα), a]σ,τ = [d([x, u]σ,τ )α+ [x, u]σ,τd(α), a]σ,τ

= [d([x, u]σ,τ ), a]σ,τα+ d([x, u]σ,τ )[α, σ(a)]

+ [[x, u]σ,τ , a]σ,τd(α) + [x, u]σ,τ [d(α), σ(a)].

Using the hypothesis and α, d(α) ∈ Z, we obtain

[[x, u]σ,τ , a]σ,τd(α) = 0, for all x ∈ R, u ∈ U

and so for all α ∈ Z such that d(α) 6= 0, we get

[[x, u]σ,τ , a]σ,τRd(α) = 0, for all x ∈ R, u ∈ U.

Arguing the same ways above and using ∗ commutes with d and α∗ ∈ Z
such that d(α∗) 6= 0, we obtain that

[[x, u]σ,τ , a]σ,τRd(α)∗ = 0, for all x ∈ R, u ∈ U

Hence we get

[[x, u]σ,τ , a]σ,τRd(α) = [[x, u]σ,τ , a]σ,τRd(α)∗ = 0, for all x ∈ R, u ∈ U.

Since R is ∗−prime ring and 0 6= d(α) ∈ Z, we see that

(3) [[x, u]σ,τ , a]σ,τ = 0, for all x ∈ R, u ∈ U.
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Substituting xσ(u) for x in (3) and using this equation, we obtain

[x, u]σ,τσ([u, a]) = 0, for all x ∈ R, u ∈ U.

Replacing x by τ(y)x, y ∈ R in the last equation and using this equation,
we get

(4) τ ([y, u])Rσ([u, a]) = 0, for all y ∈ R, u ∈ U.

Suppose that u ∈ U∩S∗(R). Taking y∗ instead of y in (4) and using τ∗ = ∗τ,
we have

τ∗ ([y, u])Rσ([u, a]) = 0, for all x ∈ R, u ∈ U ∩ S∗(R).

That is,

τ ([y, u])Rσ([u, a]) = τ∗ ([y, u])Rσ([u, a]) = 0, for all y ∈ R, u ∈ U∩S∗(R).

Since R is a ∗−prime ring and σ, τ are automorphisms, we get

u ∈ Z or [u, a] = 0, for all u ∈ U ∩ S∗(R).

This implies that [u, a] = 0, for all u ∈ U ∩ S∗(R).
Assume that u ∈ U . We know that u−u∗ ∈ U ∩S∗(R). The last equation

gives that [u, a] = [u∗, a], for all u ∈ U. Replacing y, u by y∗, u∗ respectively
in (4) and using τ∗ = ∗τ , we get

(5) τ∗ ([y, u])Rσ([u, a]) = 0, for all y ∈ R, u ∈ U.

By (4) and (5), we get

τ∗ ([y, u])Rσ([u, a]) = τ ([y, u])Rσ([u, a]) = 0, for all y ∈ R, u ∈ U.

Since R is a ∗−prime ring and σ, τ are automorphisms, we get

u ∈ Z or [u, a] = 0, for all u ∈ U.

We have [U, a] = 0 for any cases. Hence we arrive at a ∈ Z or U ⊆ Z by
Lemma 2. This the proof is completed. �

Theorem 3. Let R be a ∗−prime ring with characteristic not 2 and 3,
U a nonzero ∗ − (σ, τ)−Lie ideal of R, d a nonzero derivation of R such
that dτ = τd, σd = dσ and ∗ commutes with σ, τ and d. If d(U) ⊆ U and
d2(U) ⊆ Z, then U ⊆ Z.
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Proof. Assume that d(Z) = (0). This implies that

d3(U) = d(d2(U)) ⊆ d(Z) = (0).

For any x ∈ R, u ∈ U and τ(u)[x, u]σ,τ ∈ U , we get

d3(τ(u)[x, u]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Expanding this equation by using dτ = τd and d3(U) = (0), we arrive at

0 = 3(d2(τ(u))d([x, u]σ,τ ) + d(τ(u))d2([x, u]σ,τ ).

Since charR 6= 3, we obtain

d2(τ(u))d([x, u]σ,τ ) + d(τ(u))d2([x, u]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Replacing u by d(u) in the last equation and using τd = dτ , d3(U) = 0, we
have

d2(τ(u))d2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

By the hypothesis, we have

(6) d2(τ(u))Rd2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Assume that u ∈ U ∩S∗(R). In (6), replacing u by u∗ and using ∗ commutes
with τ and d, we get

d2(τ(u))∗Rd2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U ∩ S∗(R).

This yields that

d2(τ(u))Rd2([x, d(u)]σ,τ ) =
(
d2(τ(u))

)∗
Rd2([x, d(u)]σ,τ ) = 0,

for all x, r ∈ R, u ∈ U ∩ S∗(R). The ∗−primeness of R gives

d2(τ(u)) = 0 or d2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U ∩ S∗(R).

Now, let d2(τ(u)) = 0 for all u ∈ U ∩ S∗(R). For any u ∈ U , we know
that u − u∗ ∈ U ∩ S∗(R), and so d2(τ(u)) = d2(τ(u∗)) for all u ∈ U . By
using the last equation in (6) and using ∗ commutes with τ and d, we get(

d2(τ(u))
)∗
Rd2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

On the other hand, we get d2([x, d(u)]σ,τ ) = 0, for all u ∈ U ∩ S∗(R).
For any u ∈ U, again taking u − u∗ ∈ U ∩ S∗(R), and so, d2([x, d(u)]σ,τ ) =
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d2([x, d(u∗)]σ,τ ), for all x ∈ R, u ∈ U. Replacing u by u∗ in (6) and using
this equation, ∗ commutes with τ and d, we arrive at(

d2(τ(u))
)∗
Rd2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Hence we find that

(7)
(
d2(τ(u))

)∗
Rd2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

for any cases. By (6) and (7), we get

d2(τ(u))Rd2([x, d(u)]σ,τ ) =
(
d2(τ(u))

)∗
Rd2([x, d(u)]σ,τ ) = 0,

for all x ∈ R, u ∈ U . Since R is ∗−prime ring, τ is automorphism and
dτ = τd, we obtain

d2(u) = or d2([x, d(u)]σ,τ ) = 0 for all x ∈ R, u ∈ U.

Let us define K = {u ∈ U |d2(u) = 0} and L = {u ∈ U |d2([x, d(u)]σ,τ ) =
0, for all x ∈ R}. Clearly, both K and L are additive subgroups of U .
Moreover, U is the set-theoretic union of K and L. But a group cannot be
the set-theoretic union of two proper subgroups. Hence K = U or L = U .
If K = U then U ⊆ Z by Lemma 3. So, we have L = U. That is,

(8) d2([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Replacing x by τ(d(u))x in (8) and using τd = τd, we get

0 = d2([τ(d(u))x, d(u)]σ,τ ) = d2(τ(d(u))[x, d(u)]σ,τ )

= τ(d3(u))[x, d(u)]σ,τ + 2τ(d2(u))d([x, d(u)]σ,τ )

+ τ(d(u))d2([x, d(u)]σ,τ ).

By equation (8) and d3(U) = (0), charR 6= 2, we get

τ(d2(u))d([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Using the same arguments after equation (6), we have

d2(u) = 0 or d([x, d(u)]σ,τ ) = 0, for all x ∈ R, u ∈ U.

Let M = {u ∈ U |d2(u) = 0} and N = {u ∈ U |d([x, d(u)]σ,τ ) = 0, ∀x ∈
R}. Each of M and N is an additive subgroup of U such that U = M ∪N .
The above trick gives us U = M or U = N . In the former case, d2(U) = 0,
which forces U ⊆ Z by Lemma 3. If U = N , then d([x, d(u)]σ,τ ) = 0 for all
u ∈ U . Replacing x by τ(d(u))x in this equation, we have

τ(d2(u))[x, d(u)]σ,τ = 0, for all x ∈ R, u ∈ U.
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Using d2(u) ∈ Z and again applying the above trick, we obtain that [x, d(u)]σ,τ
= 0. Writing x by xy, y ∈ R in this equation and using the last equation,
we have

0 = [xy, d(u)]σ,τ = x[y, d(u)]σ,τ + [x, σ(d(u))]y = [x, σ(d(u))]y,

and so

[x, σ(d(u))]R = 0, for all x ∈ R, u ∈ U.

Replacing x by x∗, u by u∗ and using ∗ commutes with σ and d, we get

([x, σ(d(u))])∗R = 0, for all x ∈ R, u ∈ U.

Thus we have

[x, σ(d(u))]R = ([x, σ(d(u))])∗R = 0, for all x ∈ R, u ∈ U.

Since R is a ∗−prime ring and σ is an automorphism, we obtain d(U) ⊆ Z.
Theorem 1 gives that U ⊆ Z. Hence the proof is completed in the case of
d(Z) = (0).

Now, we suppose that d(Z) 6= (0). Choose α ∈ Z such that d(α) 6= 0.
For any x ∈ R, u ∈ U and [αx, u]σ,τ = α[x, u]σ,τ ∈ U. By the hypothesis, we
have

d2(α[x, u]σ,τ ) = d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ) + αd2([x, u]σ,τ ) ∈ Z

and so

(9) d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ) ∈ Z, for all x ∈ R, u ∈ U.

Replacing x by xα in (9), we get

(d2(α)[x, u]σ,τ + 2d(α)d([x, u]σ,τ ))α+ 2d(α)[x, u]σ,τd(α) ∈ Z.

Using equation (9), we obtain

d(α)[x, u]σ,τd(α) ∈ Z.

That is (d(α))2 [x, u]σ,τ ∈ Z and so

(d(α))2 [x, u]σ,τr = r (d(α))2 [x, u]σ,τ for all x, r ∈ R, u ∈ U.

Again using hypothesis, we arrive at

(d(α))2 [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u ∈ U,
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and so for all α ∈ Z such that d(α) 6= 0, we have

(d(α))2R [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u ∈ U.

Arguing the same ways above and using ∗ commutes with d and α∗ ∈ Z
such that d(α∗) 6= 0, we have(

(d(α))2
)∗
R [[x, u]σ,τ , r] = 0, for all x, r ∈ R, u ∈ U.

Combining the last two equations and using the ∗−primeness of R, we arrive
at

(d(α))2 = 0 or [x, u]σ,τ ⊆ Z, for all x ∈ R, u, v ∈ U.

Since 0 6= d(α) ∈ Z, we must have [R,U ]σ,τ ⊆ Z. Lemma 4 yields that
U ⊆ Z. This completes the proof. �

Dedication: This study is dedicated to our pioneer in this area, Prof. Dr.
Hatice Kandamar.
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