Emine K. Sögütcü, Neşet Aydin and Öznur Gölbaşı

REMARKS ON $*-(\sigma, \tau)-$ LIE IDEALS OF $*-$ PRIME RINGS WITH DERIVATION

Abstract

Let R be a $*-$ prime ring with characteristic not 2 , U a nonzero $*-(\sigma, \tau)$-Lie ideal of R, d a nonzero derivation of R. Suppose σ, τ be two automorphisms of R such that $\sigma d=d \sigma$, $\tau d=d \tau$ and $*$ commutes with σ, τ, d. In the present paper it is shown that if $d(U) \subseteq Z$ or $d^{2}(U) \subseteq Z$, then $U \subseteq Z$. KEY words: prime ring, derivation, (σ, τ)-Lie ideal, involution. AMS Mathematics Subject Classification: 16N60, 16W25, 16 U 80.

1. Introduction

Let R will be an associative ring with center Z. Let σ and τ two mappings from R into itself. For any $x, y \in R$, we write $[x, y]$ and $[x, y]_{\sigma, \tau}$, for $x y-y x$ and $x \sigma(y)-\tau(y) x$ respectively and make extensive use of basic commutator identities:

$$
\begin{aligned}
& {[x, y z]=y[x, z]+[x, y] z} \\
& {[x y, z]=[x, z] y+x[y, z]} \\
& {[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y} \\
& {[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z) .}
\end{aligned}
$$

We set $C_{\sigma, \tau}=\{c \in R \mid c \sigma(x)=\tau(x) c$ for all $x \in R\}$ and call it (σ, τ)-center of R. Note that $C_{1,1}=Z(R)$, where $1: R \longrightarrow R$ is the identity map. An additive subgroup U of R is said to be a Lie ideal of R if $[U, R] \subseteq U$. Kaya [4] first introduced the (σ, τ)-Lie ideal as following: Let U be an additive subgroup of $R, \sigma, \tau: R \longrightarrow R$ be two mappings. Then (i) U is a (σ, τ)-right Lie ideal of R if $[U, R]_{\sigma, \tau} \subseteq U$. (ii) U is a (σ, τ)-left Lie ideal of R if $[R, U]_{\sigma, \tau} \subseteq U$. (iii) U is a (σ, τ)-Lie ideal of R if U is both

[^0]a (σ, τ)-right Lie ideal and (σ, τ)-left Lie ideal of R. Every Lie ideal of R is a $(1,1)$-left (and right) Lie ideal of R, where $1: R \longrightarrow R$ is the identity map of R. But there exist (σ, τ)-Lie ideals which are not Lie ideals (Such an example due to [4]).

Recall that a ring R is prime if $x R y=0$ for $x, y \in R$ implies $x=0$ or $y=0$. An additive mapping $*: R \rightarrow R$ is called an involution if $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or $*$-ring. A ring with an involution is said to $*-$ prime if $x R y=x R y^{*}=0$ or $x R y=x^{*} R y=0$ for $x, y \in R$ implies that $x=0$ or $y=0$. Every prime ring with an involution is $*-$ prime but the converse need not hold general. An example due to Oukhtite [9] justifies the above statement that is, R be a prime ring, $S=R \times R^{o}$ where R^{o} is the opposite ring of R. Define involution $*$ on S as $(x, y)^{*}=(y, x) . S$ is $*-$ prime, but not prime. This example shows that $*$-prime rings constitute a more general class of prime rings. In all that follows the symbol $S_{*}(R)$, first introduced by Oukhtite, will denote the set of symmetric and skew symmetric elements of R, i.e. $S_{*}(R)=\left\{x \in R \mid x^{*}= \pm x\right\}$. An (σ, τ)-Lie ideal of R is said to be a $*-(\sigma, \tau)-$ Lie ideal if U is invariant under $*$, i.e. $U^{*}=U$.

Following Posner [10], an additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. Many results in the literature indicate that the global structure of a ring R is often tightly connected to the behavior of additive mappings defined on R. For example derivations with certain properties investigated in various papers. Bergen et al. proved the following results in [3]: Let R be a prime ring of characteristic different from $2, U$ a nonzero Lie ideal of R and d a nonzero derivation. If $d(U) \subseteq Z$, then $U \subseteq Z$. In [5], Lee and Lee proved that if R is a prime ring of characteristic different from $2, U$ a nonzero Lie ideal of R and d a nonzero derivation such that $d^{2}(U) \subseteq Z$ then $U \subseteq Z$. Further, the above results were extended to $(\sigma, \tau)-$ Lie ideals of R in [1] and [11]. Oukhtite et al. showed that these results are valid for $*-$ prime rings in [8]. In this paper our objective is to generalize the above results for a nonzero $*-(\sigma, \tau)-$ Lie ideal of a $*$-prime ring with characteristic not two.

2. Results

Lemma 1 ([12], Lemma 2.8). Let R be $a *$-prime ring, U a nonzero * $-(\sigma, \tau)$-left Lie ideal of R such that τ commutes with $*$. If $U \subseteq C_{\sigma, \tau}$, then $U \subseteq Z$.

Lemma 2 ([12], Theorem 2.11). Let R be $a *$-prime ring with characteristic not $2, U$ a nonzero $*-(\sigma, \tau)-$ Lie ideal of R such that τ commutes with $*$. If $a \in S_{*}(R)$ and $[U, a]=0$ then $a \in Z$ or $U \subseteq Z$.

Lemma 3 ([2], Theorem 2.10). Let R be $a *-$ prime ring with characteristic not $2, U$ a nonzero $*-(\sigma, \tau)-$ Lie ideal of R, d a nonzero derivation of R such that $d \tau=\tau d, \sigma d=d \sigma$ and $*$ commutes with σ, τ and d. If $d^{2}(U)=(0)$, then $U \subseteq Z$.

Lemma 4. Let R be $a *$-prime ring, U a nonzero $*-(\sigma, \tau)$-left Lie ideal of R such that σ and τ commutes with $*$. If $[R, U]_{\sigma, \tau} \subseteq Z$, then $U \subseteq Z$.

Proof. For any $x \in R, u \in U$, we get $[x, u]_{\sigma, \tau} \in Z$. Replacing x by $x \sigma(u), u \in U$ in the this equation, we obtain

$$
[x, u]_{\sigma, \tau} \sigma(u) \in Z, \text { for all } x \in R, u \in U
$$

and so

$$
[x, u]_{\sigma, \tau} \sigma(u) r=r[x, u]_{\sigma, \tau} \sigma(u), \text { for all } x, r \in R, u \in U
$$

By the hypothesis, we have

$$
[x, u]_{\sigma, \tau}[\sigma(u), r]=0, \text { for all } x, r \in R, u \in U
$$

Again using the hypothesis, we obtain

$$
\begin{equation*}
[x, u]_{\sigma, \tau} R[\sigma(u), r]=0, \text { for all } x, r \in R, u \in U \tag{1}
\end{equation*}
$$

Assume that $u \in U \cap S_{*}(R)$. In (1), replacing r^{*}, u^{*} instead of r, u respectively, and using $* \sigma=\sigma *$, we get

$$
[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0, \text { for all } x, r \in R, u \in U \cap S_{*}(R)
$$

Thus,

$$
[x, u]_{\sigma, \tau} R[\sigma(u), r]=[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0
$$

for all $x, r \in R, u \in U \cap S_{*}(R)$
By the $*$-primeness of R, we have

$$
[x, u]_{\sigma, \tau}=0 \text { or }[\sigma(u), r]=0, \text { for all } x \in R, u \in U \cap S_{*}(R)
$$

Now, let $[x, u]_{\sigma, \tau}=0$, for all $u \in U \cap S_{*}(R)$. For any $u \in U$, we find that $u-u^{*} \in U \cap S_{*}(R)$, and so $[x, u]_{\sigma, \tau}=\left[x, u^{*}\right]_{\sigma, \tau}$, for all $u \in U, x \in R$. In (1), taking r^{*}, u^{*} instead of r, u respectively and using $* \sigma=\sigma *$, we get

$$
[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0, \text { for all } x, r \in R, u \in U
$$

On the other hand, we get $[\sigma(u), r]=0$, for all $u \in U \cap S_{*}(R)$. For any $u \in U$, again taking $u-u^{*} \in U \cap S_{*}(R)$, and so, $[\sigma(u), r]=\left[\sigma\left(u^{*}\right), r\right]$ for all
$r \in R, u \in U$. Replacing r by r^{*} in (1) and using this equation, $\sigma *=* \sigma$, we have

$$
[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0, \text { for all } x, r \in R, u \in U
$$

Hence we find that

$$
\begin{equation*}
[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0, \text { for all } x, r \in R, u \in U \tag{2}
\end{equation*}
$$

for any cases. By (1) and (2), we get

$$
[x, u]_{\sigma, \tau} R[\sigma(u), r]=[x, u]_{\sigma, \tau} R([\sigma(u), r])^{*}=0, \text { for all } x, r \in R, u \in U
$$

Since R is $*$-prime ring and σ is automorphism, we obtain

$$
[x, u]_{\sigma, \tau}=0 \text { or } u \in Z \text { for all } x \in R, u \in U
$$

We set $K=\left\{u \in U \mid[x, u]_{\sigma, \tau}=0\right\}$ and $L=\{u \in U \mid u \in Z\}$. Clearly each of K and L is additive subgroup of U. Morever, U is the set-theoretic union of K and L. But a group can not be the set-theoretic union of its two proper subgroups, hence $K=U$ or $L=U$. In the former case, $U \subseteq C_{\sigma, \tau}$. By Lemma 1, we have $U \subseteq Z$. In the latter case, $U \subseteq Z$. This completes the proof.

Theorem 1. Let R be $a *$-prime ring with characteristic not $2, U$ a nonzero $*-(\sigma, \tau)-$ Lie ideal of R, d a nonzero derivation of R such that $d \tau=\tau d, \sigma d=d \sigma$ and $*$ commutes with σ, τ and d. If $d(U) \subseteq Z$, then $U \subseteq Z$.

Proof. For any $x \in R, u, v \in U$ and $[d(v) x, u]_{\sigma, \tau} \in U$. Thus we have

$$
d\left([d(v) x, u]_{\sigma, \tau}\right)=d\left(d(v)[x, u]_{\sigma, \tau}+[d(v), \tau(u)] x\right)=d\left(d(v)[x, u]_{\sigma, \tau}\right) \in Z
$$

and so

$$
d^{2}(v)[x, u]_{\sigma, \tau}+d(v) d\left([x, u]_{\sigma, \tau}\right) \in Z, \text { for all } x \in R, u, v \in U
$$

Using the hypothesis, we get

$$
d^{2}(v)[x, u]_{\sigma, \tau} \in Z, \text { for all } x \in R, u, v \in U
$$

Since $d^{2}(v)[x, u]_{\sigma, \tau} \in Z$, we have

$$
d^{2}(v)[x, u]_{\sigma, \tau} r=r d^{2}(v)[x, u]_{\sigma, \tau}, \text { for all } x, r \in R, u, v \in U
$$

Again using hypothesis, we obtain that

$$
d^{2}(v)\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u, v \in U
$$

and so

$$
d^{2}(v) R\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u, v \in U
$$

Replacing v by v^{*} in last equation and using $d *=* d$, we have

$$
\left(d^{2}(v)\right)^{*} R\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u, v \in U
$$

Combining the last two equations and using the $*-$ primeness of R, we arrive at

$$
d^{2}(v)=0 \text { or }[x, u]_{\sigma, \tau} \subseteq Z, \text { for all } x \in R, u, v \in U
$$

In the former case, we get $U \subseteq Z$ by Lemma 3 . In the latter case, $[R, U]_{\sigma, \tau} \subseteq$ Z, and so, $U \subseteq Z$ by Lemma 4. This completes the proof.

Theorem 2. Let R be $a *$-prime ring with characteristic not $2, U$ a nonzero $*-(\sigma, \tau)-$ Lie ideal of R, d a nonzero derivation of R such that $*$ commutes with σ, τ, d. If $a \in S_{*}(R), d(Z) \neq 0$ and $[d(U), a]_{\sigma, \tau}=0$, then $a \in Z$ or $U \subseteq Z$.

Proof. Choose $\alpha \in Z$ such that $d(\alpha) \neq 0$. It is easily seen that $\alpha, d(\alpha), d\left(\alpha^{*}\right) \in Z$ and $0 \neq d(\alpha)^{*}=d\left(\alpha^{*}\right)$. For all $x \in R, u \in U$, we get

$$
\begin{aligned}
0= & {\left[d\left([x, u]_{\sigma, \tau} \alpha\right), a\right]_{\sigma, \tau}=\left[d\left([x, u]_{\sigma, \tau}\right) \alpha+[x, u]_{\sigma, \tau} d(\alpha), a\right]_{\sigma, \tau} } \\
= & {\left[d\left([x, u]_{\sigma, \tau}\right), a\right]_{\sigma, \tau} \alpha+d\left([x, u]_{\sigma, \tau}\right)[\alpha, \sigma(a)] } \\
& +\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} d(\alpha)+[x, u]_{\sigma, \tau}[d(\alpha), \sigma(a)] .
\end{aligned}
$$

Using the hypothesis and $\alpha, d(\alpha) \in Z$, we obtain

$$
\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} d(\alpha)=0, \text { for all } x \in R, u \in U
$$

and so for all $\alpha \in Z$ such that $d(\alpha) \neq 0$, we get

$$
\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} R d(\alpha)=0, \text { for all } x \in R, u \in U
$$

Arguing the same ways above and using $*$ commutes with d and $\alpha^{*} \in Z$ such that $d\left(\alpha^{*}\right) \neq 0$, we obtain that

$$
\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} R d(\alpha)^{*}=0, \text { for all } x \in R, u \in U
$$

Hence we get

$$
\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} R d(\alpha)=\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau} R d(\alpha)^{*}=0, \text { for all } x \in R, u \in U
$$

Since R is $*$-prime ring and $0 \neq d(\alpha) \in Z$, we see that

$$
\begin{equation*}
\left[[x, u]_{\sigma, \tau}, a\right]_{\sigma, \tau}=0, \text { for all } x \in R, u \in U \tag{3}
\end{equation*}
$$

Substituting $x \sigma(u)$ for x in (3) and using this equation, we obtain

$$
[x, u]_{\sigma, \tau} \sigma([u, a])=0, \text { for all } x \in R, u \in U
$$

Replacing x by $\tau(y) x, y \in R$ in the last equation and using this equation, we get

$$
\begin{equation*}
\tau([y, u]) R \sigma([u, a])=0, \text { for all } y \in R, u \in U \tag{4}
\end{equation*}
$$

Suppose that $u \in U \cap S_{*}(R)$. Taking y^{*} instead of y in (4) and using $\tau *=* \tau$, we have

$$
\tau^{*}([y, u]) R \sigma([u, a])=0, \text { for all } x \in R, u \in U \cap S_{*}(R)
$$

That is,
$\tau([y, u]) R \sigma([u, a])=\tau^{*}([y, u]) R \sigma([u, a])=0$, for all $y \in R, u \in U \cap S_{*}(R)$.
Since R is a $*-$ prime ring and σ, τ are automorphisms, we get

$$
u \in Z \text { or }[u, a]=0, \text { for all } u \in U \cap S_{*}(R)
$$

This implies that $[u, a]=0$, for all $u \in U \cap S_{*}(R)$.
Assume that $u \in U$. We know that $u-u^{*} \in U \cap S_{*}(R)$. The last equation gives that $[u, a]=\left[u^{*}, a\right]$, for all $u \in U$. Replacing y, u by y^{*}, u^{*} respectively in (4) and using $\tau *=* \tau$, we get

$$
\begin{equation*}
\tau^{*}([y, u]) R \sigma([u, a])=0, \text { for all } y \in R, u \in U \tag{5}
\end{equation*}
$$

By (4) and (5), we get

$$
\tau^{*}([y, u]) R \sigma([u, a])=\tau([y, u]) R \sigma([u, a])=0, \text { for all } y \in R, u \in U
$$

Since R is a $*$-prime ring and σ, τ are automorphisms, we get

$$
u \in Z \text { or }[u, a]=0, \text { for all } u \in U
$$

We have $[U, a]=0$ for any cases. Hence we arrive at $a \in Z$ or $U \subseteq Z$ by Lemma 2. This the proof is completed.

Theorem 3. Let R be $a *$-prime ring with characteristic not 2 and 3 , U a nonzero $*-(\sigma, \tau)-$ Lie ideal of R, d a nonzero derivation of R such that $d \tau=\tau d, \sigma d=d \sigma$ and $*$ commutes with σ, τ and d. If $d(U) \subseteq U$ and $d^{2}(U) \subseteq Z$, then $U \subseteq Z$.

Proof. Assume that $d(Z)=(0)$. This implies that

$$
d^{3}(U)=d\left(d^{2}(U)\right) \subseteq d(Z)=(0)
$$

For any $x \in R, u \in U$ and $\tau(u)[x, u]_{\sigma, \tau} \in U$, we get

$$
d^{3}\left(\tau(u)[x, u]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

Expanding this equation by using $d \tau=\tau d$ and $d^{3}(U)=(0)$, we arrive at

$$
0=3\left(d^{2}(\tau(u)) d\left([x, u]_{\sigma, \tau}\right)+d(\tau(u)) d^{2}\left([x, u]_{\sigma, \tau}\right)\right.
$$

Since $\operatorname{char} R \neq 3$, we obtain

$$
d^{2}(\tau(u)) d\left([x, u]_{\sigma, \tau}\right)+d(\tau(u)) d^{2}\left([x, u]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

Replacing u by $d(u)$ in the last equation and using $\tau d=d \tau, d^{3}(U)=0$, we have

$$
d^{2}(\tau(u)) d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

By the hypothesis, we have

$$
\begin{equation*}
d^{2}(\tau(u)) R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U \tag{6}
\end{equation*}
$$

Assume that $u \in U \cap S_{*}(R)$. In (6), replacing u by u^{*} and using $*$ commutes with τ and d, we get

$$
d^{2}(\tau(u))^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U \cap S_{*}(R)
$$

This yields that

$$
d^{2}(\tau(u)) R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=\left(d^{2}(\tau(u))\right)^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0
$$

for all $x, r \in R, u \in U \cap S_{*}(R)$. The $*-$ primeness of R gives

$$
d^{2}(\tau(u))=0 \text { or } d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U \cap S_{*}(R)
$$

Now, let $d^{2}(\tau(u))=0$ for all $u \in U \cap S_{*}(R)$. For any $u \in U$, we know that $u-u^{*} \in U \cap S_{*}(R)$, and so $d^{2}(\tau(u))=d^{2}\left(\tau\left(u^{*}\right)\right)$ for all $u \in U$. By using the last equation in (6) and using $*$ commutes with τ and d, we get

$$
\left(d^{2}(\tau(u))\right)^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

On the other hand, we get $d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0$, for all $u \in U \cap S_{*}(R)$. For any $u \in U$, again taking $u-u^{*} \in U \cap S_{*}(R)$, and so, $d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=$
$d^{2}\left(\left[x, d\left(u^{*}\right)\right]_{\sigma, \tau}\right)$, for all $x \in R, u \in U$. Replacing u by u^{*} in (6) and using this equation, $*$ commutes with τ and d, we arrive at

$$
\left(d^{2}(\tau(u))\right)^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

Hence we find that

$$
\begin{equation*}
\left(d^{2}(\tau(u))\right)^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U \tag{7}
\end{equation*}
$$

for any cases. By (6) and (7), we get

$$
d^{2}(\tau(u)) R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=\left(d^{2}(\tau(u))\right)^{*} R d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0
$$

for all $x \in R, u \in U$. Since R is $*$-prime ring, τ is automorphism and $d \tau=\tau d$, we obtain

$$
d^{2}(u)=\text { or } d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0 \text { for all } x \in R, u \in U
$$

Let us define $K=\left\{u \in U \mid d^{2}(u)=0\right\}$ and $L=\left\{u \in U \mid d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=\right.$ 0 , for all $x \in R\}$. Clearly, both K and L are additive subgroups of U. Moreover, U is the set-theoretic union of K and L. But a group cannot be the set-theoretic union of two proper subgroups. Hence $K=U$ or $L=U$. If $K=U$ then $U \subseteq Z$ by Lemma 3. So, we have $L=U$. That is,

$$
\begin{equation*}
d^{2}\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U \tag{8}
\end{equation*}
$$

Replacing x by $\tau(d(u)) x$ in (8) and using $\tau d=\tau d$, we get

$$
\begin{aligned}
0= & d^{2}\left([\tau(d(u)) x, d(u)]_{\sigma, \tau}\right)=d^{2}\left(\tau(d(u))[x, d(u)]_{\sigma, \tau}\right) \\
= & \tau\left(d^{3}(u)\right)[x, d(u)]_{\sigma, \tau}+2 \tau\left(d^{2}(u)\right) d\left([x, d(u)]_{\sigma, \tau}\right) \\
& +\tau(d(u)) d^{2}\left([x, d(u)]_{\sigma, \tau}\right) .
\end{aligned}
$$

By equation (8) and $d^{3}(U)=(0)$, char $R \neq 2$, we get

$$
\tau\left(d^{2}(u)\right) d\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

Using the same arguments after equation (6), we have

$$
d^{2}(u)=0 \text { or } d\left([x, d(u)]_{\sigma, \tau}\right)=0, \text { for all } x \in R, u \in U
$$

Let $M=\left\{u \in U \mid d^{2}(u)=0\right\}$ and $N=\left\{u \in U \mid d\left([x, d(u)]_{\sigma, \tau}\right)=0, \forall x \in\right.$ $R\}$. Each of M and N is an additive subgroup of U such that $U=M \cup N$. The above trick gives us $U=M$ or $U=N$. In the former case, $d^{2}(U)=0$, which forces $U \subseteq Z$ by Lemma 3 . If $U=N$, then $d\left([x, d(u)]_{\sigma, \tau}\right)=0$ for all $u \in U$. Replacing x by $\tau(d(u)) x$ in this equation, we have

$$
\tau\left(d^{2}(u)\right)[x, d(u)]_{\sigma, \tau}=0, \text { for all } x \in R, u \in U
$$

Using $d^{2}(u) \in Z$ and again applying the above trick, we obtain that $[x, d(u)]_{\sigma, \tau}$ $=0$. Writing x by $x y, y \in R$ in this equation and using the last equation, we have

$$
0=[x y, d(u)]_{\sigma, \tau}=x[y, d(u)]_{\sigma, \tau}+[x, \sigma(d(u))] y=[x, \sigma(d(u))] y
$$

and so

$$
[x, \sigma(d(u))] R=0, \text { for all } x \in R, u \in U
$$

Replacing x by x^{*}, u by u^{*} and using $*$ commutes with σ and d, we get

$$
([x, \sigma(d(u))])^{*} R=0, \text { for all } x \in R, u \in U
$$

Thus we have

$$
[x, \sigma(d(u))] R=([x, \sigma(d(u))])^{*} R=0, \text { for all } x \in R, u \in U
$$

Since R is a $*$-prime ring and σ is an automorphism, we obtain $d(U) \subseteq Z$. Theorem 1 gives that $U \subseteq Z$. Hence the proof is completed in the case of $d(Z)=(0)$.

Now, we suppose that $d(Z) \neq(0)$. Choose $\alpha \in Z$ such that $d(\alpha) \neq 0$. For any $x \in R, u \in U$ and $[\alpha x, u]_{\sigma, \tau}=\alpha[x, u]_{\sigma, \tau} \in U$. By the hypothesis, we have

$$
d^{2}\left(\alpha[x, u]_{\sigma, \tau}\right)=d^{2}(\alpha)[x, u]_{\sigma, \tau}+2 d(\alpha) d\left([x, u]_{\sigma, \tau}\right)+\alpha d^{2}\left([x, u]_{\sigma, \tau}\right) \in Z
$$

and so

$$
\begin{equation*}
d^{2}(\alpha)[x, u]_{\sigma, \tau}+2 d(\alpha) d\left([x, u]_{\sigma, \tau}\right) \in Z, \text { for all } x \in R, u \in U \tag{9}
\end{equation*}
$$

Replacing x by $x \alpha$ in (9), we get

$$
\left(d^{2}(\alpha)[x, u]_{\sigma, \tau}+2 d(\alpha) d\left([x, u]_{\sigma, \tau}\right)\right) \alpha+2 d(\alpha)[x, u]_{\sigma, \tau} d(\alpha) \in Z
$$

Using equation (9), we obtain

$$
d(\alpha)[x, u]_{\sigma, \tau} d(\alpha) \in Z
$$

That is $(d(\alpha))^{2}[x, u]_{\sigma, \tau} \in Z$ and so

$$
(d(\alpha))^{2}[x, u]_{\sigma, \tau} r=r(d(\alpha))^{2}[x, u]_{\sigma, \tau} \text { for all } x, r \in R, u \in U
$$

Again using hypothesis, we arrive at

$$
(d(\alpha))^{2}\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u \in U,
$$

and so for all $\alpha \in Z$ such that $d(\alpha) \neq 0$, we have

$$
(d(\alpha))^{2} R\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u \in U
$$

Arguing the same ways above and using $*$ commutes with d and $\alpha^{*} \in Z$ such that $d\left(\alpha^{*}\right) \neq 0$, we have

$$
\left((d(\alpha))^{2}\right)^{*} R\left[[x, u]_{\sigma, \tau}, r\right]=0, \text { for all } x, r \in R, u \in U
$$

Combining the last two equations and using the $*$-primeness of R, we arrive at

$$
(d(\alpha))^{2}=0 \text { or }[x, u]_{\sigma, \tau} \subseteq Z, \text { for all } x \in R, u, v \in U
$$

Since $0 \neq d(\alpha) \in Z$, we must have $[R, U]_{\sigma, \tau} \subseteq Z$. Lemma 4 yields that $U \subseteq Z$. This completes the proof.

Dedication: This study is dedicated to our pioneer in this area, Prof. Dr. Hatice Kandamar.

References

[1] Aydin N., Soytürk M., (σ, τ)-Lie ideals in prime rings with derivation, Doğa- Tr. J. of Math., 19(1995), 239-244.
[2] Aydin N., Koç E., Gölbaşı Ö., On $*-(\sigma, \tau)-$ Lie Ideals Of $*$-Prime Rings With Derivation, Hacettepe Journal of Math. and Statistics, DOI: 10.15672/HJMS.2017.501.
[3] Bergen J., Herstein I.N., Kerr J.W., Lie ideals and derivations of prime rings, J. of Algebra, 71(1981), 259-267.
[4] Kaya K., (σ, τ) - Lie ideals in prime rings, An. Üniv. Timisoara, Stiinte Mat., 30(2-3)(1992), 251-255.
[5] Lee P.H., Lee T.K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin., 11(1983), 75-80.
[6] Oukhtite L., Salhi S., On commutativity of σ-prime rings, Glasnik Mathematicki, 41(61)(2006), 57-64.
[7] Oukhtite L., Salhi S., σ-prime rings with a special kind of automorphism, International Journal Contemp Math. Sci., 2(3)(2007), 127-133.
[8] Oukhtite L., Salhi S., Lie ideals and derivations of σ-prime rings, International Jornal of Algebra, 1(1)(2007), 25-30.
[9] Oukhtite L., Salhi S., Centralizing automorphisms and Jordan left derivations on *-prime rings, Advances in Algebra, 1(1), (2008), 19-26.
[10] Posner E.C., Derivations in prime rings, Proc. Amer. Soc., 8(1957), 10931100.
[11] Soytürk M., (σ, τ)-Lie ideals in prime rings with derivation, Turkish Journal of Math., 20(1993), 239-244.
[12] Türkmen S., Aydin N., Generalized *-Lie ideal of *-prime rings, Turkish Journal of Math., DOI: 10.3906/mat-1408-52.

Remarks on $*-(\sigma, \tau)-$ Lie ideals of $*-$ Prime \ldots

Emine Koç Sögütcü
Cumhuriyet University
Faculty of Science
Department of Mathematics
Sivas, Turkey
e-mail: eminekoc@cumhuriyet.edu.tr

Neget Aydin
Çanakkale 18 Mart University
Faculty of Arts and Science
Department of Mathematics
Çanakkale, Turkey
e-mail: neseta@comu.edu.tr
Öznur Gölbaşi
Cumhuriyet University
Faculty of Science
Department of Mathematics
Sivas, Turkey
e-mail: ogolbasi@cumhuriyet.edu.tr

Received on 01.11.2017 and, in revised form, on 25.05.2018.

[^0]: This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-514.

