Cheng Xiong Sun

NORMAL FAMILIES AND SHARED FUNCTIONS

Abstract

Let $k \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$, and for $f, g \in \mathcal{F}$, $f f^{(k)}-a(z)$ and $g g^{(k)}-a(z)$ share 0 , then \mathcal{F} is normal in D. Some examples are given to show that the conditions are best, and the result removes the condition " m is an even integer" in the result due to Sun [Kragujevac Journal of Math 38(2), 173-282, 2014]. KEY words: meromorphic function, normal criterion, Shared function.

AMS Mathematics Subject Classification: 30D35, 30D45.

1. Introduction and main results

Let $D \subset \mathbb{C}$ be a domain, and let \mathcal{F} be a family of meromorphic functions defined in D. Then \mathcal{F} is said to be normal in D, if for every sequence $f_{n} \in \mathcal{F}$ there exists a subsequence $f_{n_{k}}$ converges spherically locally uniformly to a meromorphic function or ∞.

Let f and g be two meromorphic functions in D, and let $\phi(z)$ be a function. If the functions $f(z)-\phi(z)$ and $g(z)-\phi(z)$ have the same zeros (ignoring multiplicity) in D, then we say that f and g share a function $\phi(z)$ IM.

Chen and Fang [1] proved the following theorem.
Theorem A. If f is a transcendental meromorphic function, then $f f^{\prime}$ takes any non-zero finite complex number infinitely times.

Lu and Gu [4] considered the general order derivative in Theorem A. They proved the following result.

Theorem B. Let $k \in \mathbb{N}$. If f is a transcendental meromorphic function, all of whose zeros have multiplicity $k+2$ at least, then $f f^{(k)}$ takes any non-zero finite complex number infinitely times.

Theorem C. Let $k \in \mathbb{N}, a \in \mathbb{C} \backslash\{0\}$ and let \mathcal{F} be a family of meromorphic function in D. If $f f^{(k)} \neq a$ for each function $f \in \mathcal{F}$, and if the zeros of f have multiplicities at least $k+2$, then \mathcal{F} is normal in D.

This result has undergone various improvements in [8], [5], [6], [9], Meng and Hu proved the following result.

Theorem D. Let $k \in \mathbb{N}, a \in \mathbb{C} \backslash\{0\}$. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+1$, and for $f, g \in \mathcal{F}, f f^{(k)}-a$ and $g g^{(k)}-a$ share 0 , then \mathcal{F} is normal in D.

Recently, Sun [6] considered the case of sharing a holomorphic function and obtained the following theorem.

Theorem E. Let $k \in \mathbb{N}$, m is an even integer, and let $a(z)(\equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$, and for $f, g \in \mathcal{F}, f f^{(k)}-a(z)$ and $g g^{(k)}-a(z)$ share 0 , then \mathcal{F} is normal in D.

The following problem was posed by the author in [6].
What happens to Theorem E if the condition " m is an even integer" is removed.

In this paper, we answer this question and prove the following theorems.
Theorem 1. Let $k \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$, and for $f, g \in \mathcal{F}, f f^{(k)}-a(z)$ and $g g^{(k)}-a(z)$ share 0 , then \mathcal{F} is normal in D.

Theorem 2. Let $k \in \mathbb{N}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$, and for $f \in \mathcal{F}, f f^{(k)}-a(z)$ has at most one zero in D, then \mathcal{F} is normal in D.

Example 1. Let $D=\{z:|z|<1\}$ and $a(z) \equiv 0$. Let $\mathcal{F}=\left\{f_{n}(z)\right\}$ where

$$
f_{n}(z)=e^{n z}, \quad z \in D, \quad n=1,2 \cdots
$$

Then $f_{n} f_{n}^{(k)}-a(z)$ does not have zero in D for each positive integer n, however \mathcal{F} is not normal at $z=0$. This shows that $a(z) \not \equiv 0$ is necessary in Theorem 1-2.

Example 2. Let $D=\{z:|z|<1\}$ and $a(z)=\frac{1}{z^{k+2}}$. Let $\mathcal{F}=\left\{f_{n}(z)\right\}$ where

$$
f_{n}(z)=\frac{1}{n z}, \quad z \in D, \quad n=1,2 \cdots, \quad n^{2} \neq(-1)^{k} k!
$$

Then $f_{n} f_{n}^{(k)}-a(z)$ does not have zero in D for each positive integer n, however \mathcal{F} is not normal at $z=0$. This shows that Theorem 1-2 are not valid if $a(z)$ is a meromorphic function in D.

Example 3. Let $D=\{z:|z|<1\}, a(z)=1$. Let $\mathcal{F}=\left\{f_{n}(z)\right\}$ where

$$
f_{n}(z)=n z-\frac{n}{4}+\frac{1}{n}, \quad z \in D, \quad n=1,2 \cdots
$$

Then

$$
f_{n} f_{n}^{\prime}-a(z)=f_{n} f_{n}^{\prime}-1=n^{2} z-\frac{n^{2}}{4}
$$

which has exactly one zero in D for each positive integer n, however \mathcal{F} is not normal at $z=\frac{1}{4}$. This shows that the condition "all zeros of f have multiplicity at least $k+m+1$ " in Theorem 1-2 is necessary.

2. Some lemmas

Let us set some notations. we use \longrightarrow to stand for convergence, \Rightarrow to stand for spherical local uniform convergence in $D \subset \mathbb{C}$.

To prove our Theorems, we need the following lemmas.
Lemma 1 ([7]). Let \mathcal{F} be a family of functions meromorphic in the unit disk Δ such that all zeros of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q<\alpha<1$. Then \mathcal{F} is not normal in any neighborhood of $z_{0} \in \Delta$ if and only if there exist
(a) points $z_{n}, z_{n} \rightarrow z_{0}, z_{0} \in \Delta$,
(b) functions $f_{n} \in \mathcal{F}$, and
(c) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)=g_{n}(\xi) \Rightarrow g(\xi)$ spherically uniformly on compact subsets of \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic function in \mathbb{C} satisfying that all zeros of $g(\xi)$ have multiplicity at least q.

Lemma 2 ([9]). Let $k \in \mathbb{N}, a \in \mathbb{C} \backslash\{0\}$, and let $f(z)$ be a non-constant meromorphic in \mathbb{C} with all zeros that have multiplicity at least $k+1$. Then $f(z) f^{(k)}(z)-a$ have at least two distinct zeros.

Lemma 3. Let $k, m \in \mathbb{N}$, let $p(z)$ be a polynomial with $\operatorname{deg}(p)=m$, and let $f(z)$ be a non-constant rational function in \mathbb{C} with $f(z) \neq 0$. Then $f(z) f^{(k)}(z)-p(z)$ has at least $k+2$ distinct zeros.

The proof of Lemma 3 is almost the same with Chang [2] and Lemma 11 in Deng etc. [3], we omit the detail.

Lemma 4 ([6]). Let $k, m \in \mathbb{N}$, let $p(z)$ be a polynomial with $\operatorname{deg}(p)=$ m, and let $f(z)$ be a non-constant meromorphic in \mathbb{C}, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$. Then $f(z) f^{(k)}(z)-p(z)$ has at least two distinct zeros.

Lemma 5. Let $k \in \mathbb{N}$, and let $\left\{f_{n}\right\}$ be a sequence of meromorphic functions in $D, g_{n}(z)$ be a sequence of holomorphic functions in D such that $g_{n}(z) \Rightarrow g(z)$, where $g(z)(\neq 0)$ be a holomorphic function. If, for each $n \in \mathbb{N}$, all zeros of function $f_{n}(z)$ have multiplicity at least $k+1$, and $f_{n}(z) f_{n}^{(k)}(z)-g_{n}(z)$ has at most one zero in D, then $\left\{f_{n}\right\}$ is normal in D.

Proof. Suppose that $\left\{f_{n}\right\}$ is not normal at $z_{0} \in D$. By Lemma 1 , there exists a sequence z_{n} of complex numbers $z_{n} \rightarrow z_{0}$, a sequence ρ_{n} of positive numbers $\rho_{n} \rightarrow 0$, and a subsequence of $\left\{f_{n}\right\}$ (we may still denote by $\left\{f_{n}\right\}$)such that

$$
h_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\frac{k}{2}}} \Rightarrow h(\xi)
$$

locally uniformly on compact subsets of \mathbb{C}, where $h(\xi)$ is a non-constant meromorphic function in \mathbb{C}. By Hurwitz's theorem, all zeros of $h(\xi)$ have multiplicity at least $k+1$. Then

$$
\begin{aligned}
& h_{n}(\xi) h_{n}^{(k)}(\xi)-g_{n}\left(z_{n}+\rho_{n} \xi\right) \\
& \quad=f_{n}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-g_{n}\left(z_{n}+\rho_{n} \xi\right) \\
& \quad \Rightarrow h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right)
\end{aligned}
$$

for all $\xi \in \mathbb{C} /\left\{h^{-1}(\infty)\right\}$.
Obviously, $h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right) \not \equiv 0$.
In fact, suppose that $h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right) \equiv 0$, then $h(\xi) \neq 0$ since $g\left(z_{0}\right) \neq 0$. It follows that

$$
\frac{1}{h^{2}(\xi)} \equiv \frac{h^{(k)}(\xi)}{g\left(z_{0}\right) h(\xi)}
$$

Hence

$$
2 m\left(r, \frac{1}{h}\right)=m\left(r, \frac{h^{(k)}}{g\left(z_{0}\right) h}\right)=S(r, h)
$$

Then $T(r, h)=S(r, h)$ since $h \neq 0$. So h is a constant, a contradiction.
Next, we claim that $h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right)$ has at most one zero.

Otherwise, suppose that ξ_{1}, ξ_{2} are two distinct zeros of $h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right)$. We choose a positive number δ small enough such that $D_{1} \cap D_{2}=\emptyset$ and $h(\xi) h^{(k)}(\xi)-g\left(z_{0}\right)$ has no other zeros in $D_{1} \cup D_{2}$ except for ξ_{1} and ξ_{2}, where $D_{1}=\left\{\xi:\left|\xi-\xi_{1}\right|<\delta\right\}$ and $D_{2}=\left\{\xi:\left|\xi-\xi_{2}\right|<\delta\right\}$.

By Hurwitz's theorem,for sufficiently large n, there exist points $\xi_{1, n} \rightarrow \xi_{1}$ and $\xi_{2, n} \rightarrow \xi_{2}$ such that

$$
\begin{aligned}
& f_{n}\left(z_{n}+\rho_{n} \xi_{1, n}\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi_{1, n}\right)-g_{n}\left(z_{n}+\rho_{n} \xi_{1, n}\right)=0 \\
& f_{n}\left(z_{n}+\rho_{n} \xi_{2, n}\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi_{2, n}\right)-g_{n}\left(z_{n}+\rho_{n} \xi_{2, n}\right)=0
\end{aligned}
$$

Since $f_{n}(z) f_{n}^{(k)}(z)-g_{n}(z)$ has at most one zero in D, then $z_{n}+\rho_{n} \xi_{1, n}=$ $z_{n}+\rho_{n} \xi_{2, n}$, this is $\xi_{1, n}=\xi_{2, n}=\frac{z_{0}-z_{n}}{\rho_{n}}$, which contradicts the fact $D_{1} \cap D_{2}=\emptyset$. The claim is proved.

It follows from Lemma 2 that $h(z) h^{(k)}(z)-g\left(z_{0}\right)$ has at least two distinct zeros, a contradiction. Thus $\left\{f_{n}\right\}$ is normal in D.

3. Proof of theorem

Proof of Theorem 2. Suppose that \mathcal{F} is not normal at z_{0}. From Lemma 5, we have $a\left(z_{0}\right)=0$. Without loss of generality, we assume that $z_{0}=0$ and $a(z)=z^{t} b(z)$, where $1 \leq t \leq m, b(0)=1$. Then by Lemma 1 , there exists a sequence of complex numbers $z_{n} \longrightarrow 0$, a sequence of functions $f_{n} \in \mathcal{F}$ and a sequence of positive numbers $\rho_{n} \longrightarrow 0$ such that

$$
g_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\frac{k+t}{2}}} \Rightarrow g(\xi)
$$

locally uniformly on compact subsets of \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic functions in \mathbb{C}. By Hurwitz's theorem, all zeros of $g(\xi)$ have multiplicity at least $k+m+1$ and all of poles of $g(\xi)$ have multiplicity at least $m+1$.

Next, we consider two cases.
Case 1. $\frac{z_{n}}{\rho_{n}} \rightarrow \infty$. Set

$$
F_{n}(\xi)=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\frac{k+t}{2}}}
$$

It follows that

$$
\begin{aligned}
& F_{n}(\xi) F_{n}^{(k)}(\xi)-(1+\xi)^{t} b\left(z_{n}+z_{n} \xi\right) \\
& \quad=\frac{f_{n}\left(z_{n}+z_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+z_{n} \xi\right)-a\left(z_{n}+z_{n} \xi\right)}{z_{n}^{t}}
\end{aligned}
$$

As the same argument as in Lemma 5, we can deduce that $F_{n}(\xi) F_{n}^{(k)}(\xi)-$ $(1+\xi)^{t} b\left(z_{n}+z_{n} \xi\right)$ has at most one zero in $\Delta=\{\xi:|\xi|<1\}$.

Since all zeros of F_{n} have multiplicity at least $k+m+1$, and $(1+\xi)^{t} b\left(z_{n}+\right.$ $\left.z_{n} \xi\right) \rightarrow(1+\xi)^{t} \neq 0$ for $\xi \in \Delta$. Then by Lemma $5,\left\{F_{n}\right\}$ is normal in Δ.

Therefore, there exists a subsequence of $\left\{F_{n}(z)\right\}$ (we still express it as $\left.\left\{F_{n}(z)\right\}\right)$ such that $\left\{F_{n}(z)\right\}$ converges spherically locally uniformly to a meromorphic function $F(z)$ or ∞.

If $F(0) \neq \infty$, then

$$
\begin{aligned}
g^{(k+m)}(\xi) & =\lim _{n \rightarrow \infty} g_{n}^{(k+m)}(\xi) \\
& =\lim _{n \rightarrow \infty} \frac{f_{n}^{(k+m)}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\frac{k+t}{2}-(k+m)}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\rho_{n}}{z_{n}}\right)^{k+m-\frac{k+t}{2}} F_{n}^{(k+m)}\left(\frac{\rho_{n}}{z_{n}} \xi\right)=0
\end{aligned}
$$

for all $\xi \in \mathbb{C} /\left\{g^{-1}(\infty)\right\}$.
Hence $g^{(k+m)} \equiv 0$. It follows that g is a polynomial with $\operatorname{deg}(g) \leq k+m$. Since all zeros of g have multiplicity at least $k+m+1$, then we deduce that g is a constant, which is a contradiction.

If $F(0)=\infty$, then

$$
\frac{1}{F_{n}\left(\frac{\rho_{n}}{z_{n}} \xi\right)}=\frac{z_{n}^{\frac{k+t}{2}}}{f_{n}\left(z_{n}+\rho_{n} \xi\right)} \rightarrow \frac{1}{F(0)}=0
$$

when $\xi \in \mathbb{C} /\left\{g^{-1}(0)\right\}$, we have

$$
\begin{aligned}
\frac{1}{g(\xi)} & =\lim _{n \rightarrow \infty} \frac{\rho_{n}^{\frac{k+t}{2}}}{f_{n}\left(z_{n}+\rho_{n} \xi\right)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{\rho_{n}}{z_{n}}\right)^{\frac{k+t}{2}} \frac{z_{n}^{\frac{k+t}{2}}}{f_{n}\left(z_{n}+\rho_{n} \xi\right)}=0
\end{aligned}
$$

Hence $g(\xi)=\infty$, which contradicts that $g(\xi)$ is a non-constant meromorphic function.

Case 2. $\frac{z_{n}}{\rho_{n}} \rightarrow \alpha, \alpha \in \mathbb{C}$. Then we obtain

$$
\begin{aligned}
& g_{n}(\xi) g_{n}^{(k)}(\xi)-\left(\xi+\frac{z_{n}}{\rho_{n}}\right)^{t} b\left(z_{n}+\rho_{n} \xi\right) \\
& \quad=\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-a\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{t}} \\
& \quad \Rightarrow g(\xi) g^{(k)}(\xi)-(\xi+\alpha)^{t}
\end{aligned}
$$

for all $\xi \in \mathbb{C} /\left\{g^{-1}(\infty)\right\}$.
Since for sufficiently large $n, f_{n}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-a\left(z_{n}+\rho_{n} \xi\right)$ has one distinct zero,from the proof Lemma 5 , we can deduce that $g(\xi) g^{(k)}(\xi)$ $-(\xi+\alpha)^{t}$ has at most one distinct zero.

By Lemma 4, $g(\xi) g^{(k)}(\xi)-(\xi+\alpha)^{t}$ have at least two distinct zeros. Thus $g(\xi)$ is a constant, we can get a contradiction. Thus \mathcal{F} is normal at $z_{0}=0$.

Hence \mathcal{F} is normal in D.
Proof of Theorem 1. Let $z_{0} \in D$, we show that \mathcal{F} is normal at z_{0}, let $f \in \mathcal{F}$.

We consider two cases.
Case 1. $f\left(z_{0}\right) f^{(k)}\left(z_{0}\right) \neq a\left(z_{0}\right)$.
Then there exists a disk $D_{\sigma}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\sigma\right\}$ such that $f(z) f^{(k)}(z)$ $\neq a(z)$ in $D_{\sigma}\left(z_{0}\right)$.

Since $f, g \in \mathcal{F}, f(z) f^{(k)}(z)-a(z)$ and $g(z) g^{(k)}(z)-a(z)$ share 0 in D. So, for each $g \in \mathcal{F}, g(z) g^{(k)}(z) \neq a(z)$ in $D_{\sigma}\left(z_{0}\right)$. By Theorem $2, \mathcal{F}$ is normal in $D_{\sigma}\left(z_{0}\right)$. Hence \mathcal{F} is normal at z_{0}.

Case 2. $f\left(z_{0}\right) f^{(k)}\left(z_{0}\right)=a\left(z_{0}\right)$.
Then there exists a disk $D_{\sigma}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\sigma\right\}$ such that $f(z) f^{(k)}(z)$ $\neq a(z)$ in $D_{\sigma}^{0}\left(z_{0}\right)=\left\{z: 0<\left|z-z_{0}\right|<\sigma\right\}$.

Since $f, g \in \mathcal{F}, f(z) f^{(k)}(z)-a(z)$ and $g(z) g^{(k)}(z)-a(z)$ share 0 in D. Thus, for each $g \in \mathcal{F}, g(z) g^{(k)}(z) \neq a(z)$ in $D_{\sigma}^{0}\left(z_{0}\right)$ and $g\left(z_{0}\right) g^{(k)}\left(z_{0}\right)=a\left(z_{0}\right)$. Therefore, $g(z) g^{(k)}(z)-a(z)$ have only distinct zero in $D_{\sigma}\left(z_{0}\right)$. By Theorem $2, \mathcal{F}$ is normal in $D_{\sigma}\left(z_{0}\right)$. Thus \mathcal{F} is normal at z_{0}.

Hence \mathcal{F} is normal in D.
Acknowledgment. The author would like to thank the referee for several helpful suggestions to this paper.

References

[1] Chen H.H., Fang M.L., On the value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A, 38(1995), 789-798.
[2] Chang J.M., Normality and quasinormality of zero-free meromorphic functions, (Engl. Ser.), Acta Math. Sin., 28(2012), 707-716.
[3] Deng B.M., Fang M.L., Liu D., Normal families of zero-free meromorphic functions, J. Aust. Math. Soc., 91(2011), 313-322.
[4] Lu Q., Gu Y.X., Zeros of differential polynomial $f f^{(k)}-a$ and its normality, Chinese Quart. J. Math., 24(2009), 75-80.
[5] Meng D.W., Hu P.Ch., Normality criteria of meromorphic functions sharing one value, J. Math. Anal. Appl., 381(2011), 724-731.
[6] Sun C.X., Normal families of meromorphic functions sharing a holomorphic function, Kragujevac Journal of Mathematics, 38(2)(2014), 273-282.
[7] Pang X.C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 32(2000), 325-331.
[8] Xu J.F., Cao W.S., Some normality criteria of meromorphic functions, J. Inequal. Appl., (2010), art. ID 926302, 10pp.
[9] Zeng S.P., Lahiri I., A normality criterion for meromorphic functions having multiple zeros, Annales Polonici Mathematici, 110(3)(2014), 283-294.

Cheng Xiong Sun
School of Mathematics
Xuanwei Senior School
Xuanwei 655400, Yunnan Province, PR China
e-mail: suen123luck@126.com

Received on 08.08.2017 and, in revised form, on 11.05.2018.

