S sciendo

Nr 60

2018 DOI:10.1515/fascmath-2018-0012

Luong Quoc Tuyen and Ong Van Tuyen

SOME PROPERTIES OF RECTIFIABLE SPACES

ABSTRACT. In this paper, we give some properties of rectifiable spaces and their relationship with P-space, metrizable space. These results are used to generalize some results in [2], [9] and [12]. Moreover, we give the conditions for a rectifiable space to be second-countable.

KEY WORDS: Topological group, rectifiable space, G_{δ} -set, P-space, metrizable space, second-countable space.

AMS Mathematics Subject Classification: 54A25, 54B05.

1. Introduction and preliminaries

In 1936, G. Birkhoff introduced topological groups ([3]). After that, M.M. Choban introduced rectifiable spaces ([4]) and V.V. Uspenskij showed that every topological group is a rectifiable space but there exists a rectifiable space which is not a topological group ([16]). Recently, rectifiable spaces had been studied by many authors ([7], [8], [10], [15], for example).

In this paper, we give some properties of rectifiable spaces (see Theorem 1) and their relationship with P-space (see Theorem 2), metrizable space (see Theorem 3). These results are used to generalize results below:

- 1. Let G be a topological group and F be a non-empty compact G_{δ} -set in G. Then, there exists a G_{δ} -set P in G such that $e \in P$ and $FP \subset F$ ([2], Proposition 3.1.19).
- 2. Let H be a dense subgroup of a topological group G. If H is a P-space, then G is a P-space ([2], Lemma 4.4.1).
- 3. A κ -Fréchet-Urysohn, biradial topological group G is metrizable ([12], Theorem 3.4).
- 4. Every bisequential rectifiable space G is metrizable ([9], Theorem 3.3).

Moreover, we give the conditions for a rectifiable space to be second-countable (see Theorem 4).

Throughout this paper, all spaces are T_1 , \mathbb{N} denotes the set of all natural numbers, and group G have a unit element e.

Definition 1 ([3]). A topological group G is a group G with a topology such that the product map of $G \times G$ into G is jointly continuous and the inverse map onto itself associating x^{-1} with $x \in G$ is continuous.

Definition 2 ([4], [5]). A rectification on a space G is a homeomorphism $\varphi: G \times G \to G \times G$ with the following two properties:

(a) $\varphi(\{x\} \times G) = \{x\} \times G$, for every $x \in G$;

(b) There exists an element $e \in G$ such that $\varphi(x, x) = (x, e)$, for every $x \in G$.

The point $e \in G$ is called a right unit element of G. A space with a rectification is called a rectifiable space. Every rectifiable space is homogenous.

Remark 1 ([16]). A topological group is a rectifiable space. However, there exists a rectifiable space which is not a topological group.

Definition 3 ([11]). Let \mathcal{P} be a family of subsets of a space X. For each $x \in X$, \mathcal{P} is a network at x in X, if $x \in P$ for every $P \in \mathcal{P}$, and if $x \in U$ with U open in X, then there exists $P \in \mathcal{P}$ such that $x \in P \subset U$.

Definition 4. Let X be a topological space. Then,

- 1. X is called a P-space ([2]) if every G_{δ} -set in X is open.
- 2. X is called a cosmic space ([13]) if X is regular and has a countable network.

Definition 5 ([1]). Let ξ and η be any family of non-empty subsets of X. 1. The family ξ is called a prefilter on a space X if for any $A \in \xi$ and $B \in \xi$ there exists $C \in \xi$ such that $C \subset A \cap B$.

- 2. A prefilter ξ on a space X is said to converge to a point $x \in X$ if every open neighborhood of x contains an element of ξ .
- 3. If $x \in X$ belongs to the closure of every element of a prefilter ξ on X, we say that ξ accumulates to x or x is a cluster point of ξ .
- 4. Two prefilter ξ and η are called to be synchronous if for any $A \in \xi$ and for any $B \in \eta$, $A \cap B \neq \emptyset$.
- 5. A chain in X is any prefilter ξ in X such that for every $A \in \xi$ and $B \in \eta$ either $A \subset B$ or $B \subset A$. A chain ξ consisting of open subsets of a space X is called a nest in X.

Definition 6. Let X be a topological space. Then,

- 1. X is called bisequential ([14]) if for every prefilter ξ in X and every cluster point x of ξ there exists a countable prefilter η in X converging to x and synchronous with ξ .
- 2. X is called biradial ([1]) if for every prefilter ξ in X accumulating to a point $x \in X$ there exitsts a chain in X converging to x and synchronous with ξ .

- 3. X is said to be π -nested ([1]) at a point $x \in X$ if there exists a nest in X converging to x.
- 4. X is called nested ([1]) if for every point $x \in X$ if there exists a nest in X which is a base for X at x.
- 5. X is called κ -Fréchet-Urysohn ([12]) if for every open subset U of X and every $x \in \overline{U}$ there exists a sequence $\{x_n\}$ of points of U converging to x.

Remark 2. 1. Every bisequential space is biradial. However, there exists a biradial space which is not a bisequential space ([1]).

2. Every bisequential space is κ -Fréchet-Urysohn. However, there exists a κ -Fréchet-Urysohn space which is not a bisequential space ([12]).

Remark 3 ([1]). Every nested space is biradial.

Lemma 1 ([1]). Every biradial regular space is π -nested at every point.

Lemma 2 ([5]). A topological space G is rectifiable if and only if there are two continuous mappings $p: G \times G \to G$, $q: G \times G \to G$ such that for any $x \in G$, $y \in G$, and some $e \in G$ the next identities hold.

$$p(x, q(x, y)) = q(x, p(x, y)) = y \text{ and } q(x, x) = e.$$

Remark 4 ([7]). Let G be a rectifiable space and $x \in G$, we have

$$p(x,e) = p(x,q(x,x)) = x.$$

Moreover, we sometimes write xy instead of p(x, y) for any $x, y \in G$ and AB instead of p(A, B) for any $A, B \subset G$.

Lemma 3 ([8]). Let G be a rectifiable space. Fixed a point $x \in G$, then $f_x, g_x : G \to G$ defined with $f_x(y) = p(x, y)$ and $g_x(y) = q(x, y)$, for each $y \in G$, are homeomorphism, respectively.

Definition 7 ([8]). Let A be a subset of a rectifiable space G. Then A is called a rectifiable subspace of G if we have $p(A, A) \subset A$ and $q(A, A) \subset A$.

Lemma 4 ([6]). If A is dense in X, then $\overline{U} = \overline{A \cap U}$ for every U open in X.

Lemma 5 ([7]). If G is a rectifiable space, then G is regular.

Lemma 6 ([7]). Let X be a rectifiable, first-countable T_0 space. Then X is metrizable.

2. Main results

Lemma 7. Let G be a rectifiable space, $A \subset G$ and U be an open subset in G. Then, p(A, U) and q(A, U) are open subsets in G.

Proof. Let $x \in A$, it follows from Lemma 3 that f_x, g_x are homeomorphism. This implies that they are open maps. Therefore, $f_x(U) = p(x, U)$ and $g_x(U) = q(x, U)$ are open subsets in G. Moreover, since

$$p(A,U) = \bigcup_{x \in A} p(x,U);$$
$$q(A,U) = \bigcup_{x \in A} q(x,U),$$

we have p(A, U) and q(A, U) are open subsets in G.

Lemma 8. Let G be a rectifiable space and $x \in G$. Then, the following statements hold.

- 1. If U is an open neighborhood of x, then there exists an open neighborhood V of e in G such that $xV \subset U$;
- 2. If U is an open neighborhood of e in G, then xU is an open neighborhood of x, and there exists an open neighborhood V of e in G such that $q(xV,x) \subset U$.

Proof. (1) By Lemma 2 and Remark 4, p(x, e) = x and p is continuous. Moreover, since U is an open neighborhood of x, there exist an open neighborhood W of x and an open neighborhood V of e such that $xV = p(x, V) \subset p(W, V) \subset U$.

(2) Since U is an open neighborhood of e, xU is an open neighborhood of x by Lemma 7. On the other hand, by Lemma 2, we have q(x, x) = e and q is continuous. Thus, there exist two open neighborhoods V_1 and V_2 of x such that $q(V_1, V_2) \subset U$. By (1), there exists an open neighborhood V of e such that $x \in xV \subset V_1 \cap V_2$. Therefore, $q(xV, x) \subset U$.

Lemma 9. Let K be a compact subset and F be a closed subset of a rectifiable space G such that $K \cap F = \emptyset$. Then, there exists an open neighborhood V of e in G such that $KV \cap F = \emptyset$.

Proof. Since $K \cap F = \emptyset$ and F is closed, it implies that for each $x \in K$, there exists an open neighborhood U_x of x such that

$$U_x \cap F = \emptyset.$$

By Lemma 8, there exists an open neighborhood V_x of e such that $xV_x \subset U_x$, and xV_x is an open neighborhood of x. It follows from Lemma 2 and

Remark 4 that p(x, e) = x and p is continuous. Thus, there exist an open neighborhood W_x of x and an open neighborhood $U_e(x)$ of e such that $p(W_x, U_e(x)) \subset xV_x$. Since W_x is an open neighborhood of x, it follows from Lemma 8(1) that there exists an open neighborhood $V_e(x)$ of e such that $xV_e(x) \subset W_x$. Thus,

$$p(xV_e(x), U_e(x)) \subset p(W_x, U_e(x)) \subset xV_x.$$

It follows from Lemma 8(2) that $x(U_e(x) \cap V_e(x))$ is an open neighborhood of x for all $x \in K$. On the other hand, since $\{x(U_e(x) \cap V_e(x)) : x \in K\}$ is an open cover of K compact, there exists a finite subset $L \subset K$ such that

$$K \subset \bigcup_{x \in L} x (U_e(x) \cap V_e(x)).$$

Now, if we put $V = \bigcap_{x \in L} (U_e(x) \cap V_e(x))$, then V is an open neighborhood of e. Furthermore, we have $KV \cap F = \emptyset$. In fact, let $y \in K$. Then, there exists $x \in L$ such that $y \in x(U_e(x) \cap V_e(x))$. Thus,

$$yV \subset p\Big(x\big(U_e(x) \cap V_e(x)\big), \big(U_e(x) \cap V_e(x)\big)\Big) \subset xV_x \subset G \setminus F.$$

Therefore, $yV \cap F = \emptyset$ for every $y \in K$, it implies that $KV \cap F = \emptyset$.

Theorem 1. Let G be a rectifiable space and F be a non-empty compact G_{δ} -set in G. Then, there exists a G_{δ} -set P in G such that $e \in P$ and $FP \subset F$.

Proof. Let $\{U_n : n \in \mathbb{N}\}$ be a sequence consisting of open subsets of G, and $F = \bigcap_{n \in \mathbb{N}} U_n$. Then, $G \setminus U_n$ closed in G and $F \cap (G \setminus U_n) = \emptyset$ for every $n \in \mathbb{N}$. Moreover, since F is a non-empty compact in G, by Lemma 9, for each $n \in \mathbb{N}$, there exists an open neighborhood V_n of e such that

$$FV_n \cap (G \setminus U_n) = \emptyset.$$

This implies that $FV_n \subset U_n$ for every $n \in \mathbb{N}$. Now, if we put $P = \bigcap_{n \in \mathbb{N}} V_n$, then P is a G_{δ} -set in G and $e \in P$. Furthermore, we have

$$FP = p(F, \bigcap_{n \in \mathbb{N}} V_n) \subset \bigcap_{n \in \mathbb{N}} p(F, V_n) \subset \bigcap_{n \in \mathbb{N}} U_n = F.$$

By Remark 1 and Theorem 1, we obtained the following corollary.

Corollary 1 ([2], Proposition 3.1.19). Let G be a topological group and F be a non-empty compact G_{δ} -set in G. Then, there exists a G_{δ} -set P in G such that $e \in P$ and $FP \subset F$.

Theorem 2. Let H be a dense rectifiable subspace of a rectifiable space G. If H is a P-space, then G is a P-space.

Proof. Because every rectifiable space is homogenous, we only need to prove that each G_{δ} -set in G which contains e in G is open. Let $\{U_n : n \in \mathbb{N}\}$ be a sequence consisting of open neighborhoods of e in G, and $U = \bigcap U_n$. $n \in \mathbb{N}$ Now, we only have to prove that U open in G. In fact, let $x \in U$, so $x \in U_n$ for every $n \in \mathbb{N}$. Since U_1 open in G, it follows from Lemma 8(1) that there exists an open neighborhood V_1 of e in G such that $xV_1 \subset U_1$. It follows from Lemma 5 that there exists an open neighborhood W_1 of e in G such that $W_1 \subset V_1$. On the other hand, since U_2 open in G, it follows from Lemma 8(1) that there exists an neighborhood open W_2 of e in G such that $xW_2 \subset U_2$. Furthermore, because $W_1 \cap W_2$ is an open neighborhood of e in G, it follows from Lemma 5 that there exists an open neighborhood V_2 of e in G such that $\overline{V_2} \subset W_1 \cap W_2$. Continue the process, we can find a sequence $\{V_n : n \in \mathbb{N}\}$ consisting of open neighborhoods of e in G such that $\overline{V_{n+1}} \subset V_n$ and $xV_n \subset U_n$ for every $n \in \mathbb{N}$. Put $V = \bigcap V_n$, it implies that $n \in \mathbb{N}$

V closed in G. Since H is a P-space, we have

$$V \cap H = \bigcap_{n \in \mathbb{N}} (V_n \cap H)$$

open in H. Hence, there exists W open in G such that $V \cap H = W \cap H$. Because H is dense in G, by Lemma 4, we have

$$\overline{W} = \overline{W \cap H} = \overline{V \cap H} \subset \overline{V} = V.$$

Then, we have

$$p(x,V) = p\left(x,\bigcap_{n\in\mathbb{N}}V_n\right) \subset \bigcap_{n\in\mathbb{N}}p(x,V_n) = \bigcap_{n\in\mathbb{N}}xV_n \subset \bigcap_{n\in\mathbb{N}}U_n = U_n$$

Lastly, since H is a rectifiable subspace of G, it follows from Lemma 2 that for every $y \in H$, we have

$$e = q(y, y) \in q(H, H) \subset H.$$

Thus, $e \in V \cap H \subset W$. Hence, by Remark 4, we get

$$x = p(x, e) \in p(x, W) \subset p(x, \overline{W}) \subset p(x, V) \subset U.$$

Since p(x, W) is an open neighborhood of x in G by Lemma 8(2), it implies that U open in G.

By Remark 1 and Theorem 2, we obtained the following corollary.

Corollary 2 ([2], Lemma 4.4.1). Let H be a dense subgroup of a topological group G. If H is a P-space, then G is a P-space.

Lemma 10. If a rectifiable space G is π -nested at some point $a \in G$, then the space G is nested.

Proof. By homogeneity of the space G we can assume that a is the right unit element e of G. Then, since G is π -nested at e, there exists a nest ξ in G converging to e. Now, if we put

$$\eta = \{q(U,U) : U \in \xi\},\$$

then η is a nest which is a base for G at e. In fact,

(1) η is a nest in G. We prove (a), (b) and (c) below.

(a) η is a prefilter in G. Indeed, for every $A \in \eta$ and $B \in \eta$, there exist $U \in \xi$ and $V \in \xi$ such that A = q(U, U) and B = q(V, V). Then,

$$A \cap B = q(U, U) \cap q(V, V).$$

Moreover, since ξ is a prefilter in G, there exists $W \in \xi$ such that $W \subset U \cap V$. It implies that

$$q(W,W) \subset q(U \cap V, U \cap V) \subset q(U,U) \cap q(V,V) = A \cap B.$$

If we put C = q(W, W), then $C \subset A \cap B$ and $C \in \eta$. Therefore, η is a prefilter in G.

(b) For every $A \in \eta$ and $B \in \eta$, we have $A \subset B$ or $B \subset A$. Indeed, since $A \in \eta$ and $B \in \eta$, there exist $U \in \xi$ and $V \in \xi$ such that A = q(U, U) and B = q(V, V). Furthermore, because ξ is a chain in G, we have $U \subset V$ or $V \subset U$. This implies that $A \subset B$ or $B \subset A$.

(c) For every $A \in \eta$, A open in G. Indeed, since $A \in \eta$, there exists $U \in \xi$ such that A = q(U, U). Moreover, because ξ is a nest in G, U open in G. It follows from Lemma 7 that A = q(U, U) open in G.

(2) η is a base for G at e. Indeed, let W be an open neighborhood of e. Then, since q(e, e) = e and q is continuous, there exist two open neighborhoods U_1 and U_2 of e such that $e \in q(U_1, U_2) \subset W$. Now, if we put $U = U_1 \cap U_2$, then $e \in q(U, U) \subset W$ and U is an open neighborhood of e. Moreover, since ξ converges to e, there exists $V \in \xi$ such that $V \subset U$. This implies that $q(V, V) \subset q(U, U)$. On the other hand, for every $x \in V$, we have

$$e = q(x, x) \in q(V, V) \subset q(U, U) \subset W.$$

Next, if we put A = q(V, V) then $A \in \eta$ and $e \in A \subset W$. Therefore, η is a base for G at e.

Hence, η is a nest which is a base for G at e. Lastly, since G is homogenous it follows that G is nested.

Theorem 3. A κ -Fréchet-Urysohn, biradial rectifiable space G is metrizable.

Proof. Because G is a biradial rectifiable space, we have G is nested by Lemma 1, Lemmas 5 and 10. Let e be the right unit element of G. Then, there is a nest in G which is a base at e.

Case 1: e is isolated. It implies that $\{e\}$ open in G. Hence, G is first-countable because G is homogenous. It follows from Lemma 6 that G is metrizable.

Case 2: *e* is not isolated. Then, $e \in G \setminus \{e\}$ and $G \setminus \{e\}$ open in *G*. Since *G* is κ -Fréchet-Urysohn, there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subset G \setminus \{e\}$ such that $x_n \to e$. Let $\{V_\alpha : \alpha \in \Lambda\}$ is a nest in *G* which is a base at *e*. If we put $x_{n_1} = x_1$ then $e \in G \setminus \{x_{n_1}\}$ and $G \setminus \{x_{n_1}\}$ open in *G*. Since *G* is regular by Lemma 5, there is $\alpha_1 \in \Lambda$ such that

$$e \in V_{\alpha_1} \subset \overline{V_{\alpha_1}} \subset G \setminus \{x_{n_1}\}.$$

Because $\{x_n\}_{n\in\mathbb{N}}$ converges to e and V_{α_1} is an open neighborhood of e, there is $n_2 > n_1$ such that

$$x_{n_2} \in V_{\alpha_1}$$
 and $e \in G \setminus \{x_i : i \le n_2\}.$

Moreover, since G is regular and $G \setminus \{x_i : i \leq n_2\}$ open in G, there exists $\alpha_2 \in \Lambda$ such that

$$e \in V_{\alpha_2} \subset \overline{V_{\alpha_2}} \subset G \setminus \{x_i : i \le n_2\}.$$

By induction, we have for every $k \in \mathbb{N}$, there exist $\alpha_k \in \Lambda$ and $n_k \in \mathbb{N}$ such that

$$e \in V_{\alpha_k} \subset \overline{V_{\alpha_k}} \subset G \setminus \{x_i : i \le n_k\}.$$

Next, we show that $\{V_{\alpha_k} : k \in \mathbb{N}\}$ is a base at e. Indeed, let W be an open neighborhood of e. Then, since $\{V_{\alpha} : \alpha \in \Lambda\}$ is a base at e, there exists $\beta \in \Lambda$ such that $V_{\beta} \subset W$ and there exists $m \in \mathbb{N}$ such that $x_m \in V_{\beta}$. Choose $i \in \mathbb{N}$ such that $n_i > m$, then $x_m \notin V_{\alpha_i}$. Moreover, since $\{V_{\alpha} : \alpha \in \Lambda\}$ is a chain and $V_{\beta} \setminus V_{\alpha_i} \neq \emptyset$, then $V_{\alpha_i} \subset V_{\beta} \subset W$. Hence, $\{V_{\alpha_k} : k \in \mathbb{N}\}$ is a base at e. It follows from G is homogenous that G is first-countable. By Lemma 6, G is metrizable.

By Remark 1 and Theorem 3, we obtained the following corollary.

Corollary 3 ([12], Theorem 3.4). A κ -Fréchet-Urysohn, biradial topological group G is metrizable.

By Remark 2 and Theorem 3, we obtained the following corollary.

Corollary 4 ([9], Theorem 3.3). Every bisequential rectifiable space G is metrizable.

Theorem 4. Every first-countable cosmic rectifiable space is second-countable.

Proof. Let G be a first-countable cosmic rectifiable space. Then, it follows from Lemma 6 that G is metrizable. Moreover, because G is a cosmic space, we have G is separable. On the other hand, since a separable metrizable space is second-countable, it implies that G is second-countable.

References

- ARHANGEL'SKII A.V., On biradial topological spaces and groups, *Topology* Appl., 36(1990), 173-180.
- [2] ARHANGEL'SKII A.V., TKACHENKO M.G., Topological Groups and Related Structures, Atlantis Press/World Scientific, Paris-Amsterdam, 2008.
- BIRKHOFF G., A note on topological groups, Comput. Math., 3(1936), 427 -430.
- [4] CHOBAN M.M., On topological homogeneous algebras, In: Interim Reports of II Prague Topol. Symp., Prague, (1987), 25-26.
- [5] CHOBAN M.M., The structure of locally compact algebras, Serdica, 3(1992), 129-137.
- [6] ENGELKING R., General Topology, Heldermann Verlag, Berlin, 1989.
- [7] GUL'KO A.S., Rectifiable spaces, *Topology Appl.*, 68(1996), 107-112.
- [8] LIN F.C., LIU C., LIN S., A note on rectifiable spaces, *Topology Appl.*, 159 (2012), 2090-2101.
- [9] LIN F.C., SHEN R.X., On rectifiable spaces and paratopological groups, *Topology Appl.*, 158(2011), 597-610.
- [10] LIN F.C., ZHANG J., ZHANG K.X., Locally σ -compact rectifiable spaces, Topology Appl., 193(2015), 182-191.
- [11] LIN S., *Point-Countable Covers and Sequence-Covering Mappings*, Chinese Science Press, Beijing, 2002.
- [12] LIU C., LUDWIG L.D., κ -Fréchet-Urysohn spaces, Houston J. Math., 31 (2005), 391-401.
- [13] MICHAEL E., ℵ₀-spaces, J. Math. Mech., 15(1966), 983-1002.
- [14] MICHAEL E., A quintuple quotient quest, General Topology Appl., 2(1972), 91-138.
- [15] PENG L.-X., GUO S.J., Two questions on rectifiable spaces and related conclusions, *Topology Appl.*, 159 (2012), 3335-3339.
- [16] USPENSKIJ V.V., Topological groups and Dugundji compacta, *Mat. Sb.*, 180(8) (1989), 1092-1118 (in Russian); English transl. in: Math. USSR Sb., 67(2) (1990), 555-580.

Luong Quoc Tuyen and Ong Van Tuyen

LUONG QUOC TUYEN DEPARTMENT OF MATHEMATICS DA NANG UNIVERSITY VIETNAM *e-mail:* tuyendhdn@gmail.com

ONG VAN TUYEN ONG ICH KHIEM HIGH SCHOOL DA NANG CITY, VIETNAM *e-mail:* tuyenvan612dn@gmail.com

Received on 21.02.2017 and, in revised form, on 25.05.2018.