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ABSTRACT. In this paper, we give some properties of rectifi-
able spaces and their relationship with P-space, metrizable space.
These results are used to generalize some results in [2], [9] and
[12]. Moreover, we give the conditions for a rectifiable space to be
second-countable.
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1. Introduction and preliminaries

In 1936, G. Birkhoff introduced topological groups ([3]). After that, M.M.
Choban introduced rectifiable spaces ([4]) and V.V. Uspenskij showed that
every topological group is a rectifiable space but there exists a rectifiable
space which is not a topological group ([16]). Recently, rectifiable spaces
had been studied by many authors ([7], [8], [10], [15], for example).

In this paper, we give some properties of rectifiable spaces (see The-
orem 1) and their relationship with P-space (see Theorem 2), metrizable
space (see Theorem 3). These results are used to generalize results below:

1. Let G be a topological group and F' be a non-empty compact Gs-set in
G. Then, there exists a Gs-set P in G such that e € P and F'/P C F ([2],
Proposition 3.1.19).

2. Let H be a dense subgroup of a topological group G. If H is a P-space,
then G is a P-space ([2], Lemma 4.4.1).

3. A k-Fréchet-Urysohn, biradial topological group G is metrizable ([12],
Theorem 3.4).

4. Every bisequential rectifiable space G is metrizable ([9], Theorem 3.3).

Moreover, we give the conditions for a rectifiable space to be second-countable
(see Theorem 4).

Throughout this paper, all spaces are 11, N denotes the set of all natural
numbers, and group G have a unit element e.
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Definition 1 ([3]). A topological group G is a group G with a topology
such that the product map of G X G into G is jointly continuous and the
inverse map onto itself associating =1 with x € G is continuous.

Definition 2 ([4], [5]). A rectification on a space G is a homeomorphism
v : G x G— G x G with the following two properties:

(@) p({z} x G) = {z} x G, for every x € G;

(b) There exists an element e € G such that o(x,x) = (z,e), for every
req.

The point e € G is called a right unit element of G. A space with a recti-
fication is called a rectifiable space. Fvery rectifiable space is homogenous.

Remark 1 ([16]). A topological group is a rectifiable space. However,
there exists a rectifiable space which is not a topological group.

Definition 3 ([11]). Let P be a family of subsets of a space X. For each
x € X, P is a network at x in X, if x € P for every P € P, and if x € U
with U open in X, then there exists P € P such thatx € P C U.

Definition 4. Let X be a topological space. Then,
1. X is called a P-space ([2]) if every Gs-set in X is open.
2. X is called a cosmic space ([13]) if X is regular and has a countable
network.

Definition 5 ([1]). Let & and n be any family of non-empty subsets of X .

1. The family & is called a prefilter on a space X if for any A € £ and
B € ¢ there exists C' € £ such that C C AN B.

2. A prefilter £ on a space X is said to converge to a point x € X if every
open neighborhood of x contains an element of &.

3. If x € X belongs to the closure of every element of a prefilter € on X,
we say that & accumulates to x or x is a cluster point of £.

4. Two prefilter & and n are called to be synchronous if for any A € € and
for any Ben, ANB # 0.

5. A chain in X is any prefilter £ in X such that for every A € £ and
B e n either AC B or BC A. A chain £ consisting of open subsets of
a space X is called a nest in X.

Definition 6. Let X be a topological space. Then,

1. X is called bisequential ([14]) if for every prefilter & in X and every
cluster point x of £ there exitsts a countable prefilter n in X converging
to x and synchronous with &.

2. X is called biradial ([1]) if for every prefilter £ in X accumulating to a
point x € X there exitsts a chain in X converging to x and synchronous
with €.
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3. X is said to be m-nested ([1]) at a point x € X if there exists a nest in
X converging to x.

4. X s called nested ([1]) if for every point x € X if there exists a nest
in X which is a base for X at x.

5. X is called k-Fréchet-Urysohn ([12]) if for every open subset U of X
and every x € U there erists a sequence {x,} of points of U converging
to x.

Remark 2. 1. Every bisequential space is biradial. However, there
exists a biradial space which is not a bisequential space ([1]).
2. Every bisequential space is x-Fréchet-Urysohn. However, there exists
a r-Fréchet-Urysohn space which is not a bisequential space ([12]).

Remark 3 ([1]). Every nested space is biradial.
Lemma 1 ([1]). Every biradial reqular space is w-nested at every point.

Lemma 2 ([5]). A topological space G is rectifiable if and only if there
are two continuous mappings p: G x G — G, q: G x G — G such that for
any x € G, y € G, and some e € G the next identities hold.

p(z,q(z,y) = q(z,p(z,y)) =y and q(z,z)=e.

Remark 4 ([7]). Let G be a rectifiable space and = € G, we have

p(x,e) = p(x, q(z, x)) = .

Moreover, we sometimes write zy instead of p(z,y) for any z, y € G and
AB instead of p(A, B) for any A, B C G.

Lemma 3 ([8]). Let G be a rectifiable space. Fized a point x € G, then

foi9s : G = G defined with fo(y) = p(z,y) and g:(y) = a(z,y), for cach
y € G, are homeomorphism, respectively.

Definition 7 ([8]). Let A be a subset of a rectifiable space G. Then A is
called a rectifiable subspace of G if we have p(A, A) C A and q(A, A) C A.

Lemma 4 ([6]). If A is dense in X, then U = ANU for every U open
in X.
Lemma 5 ([7]). If G is a rectifiable space, then G is regular.

Lemma 6 ([7]). Let X be a rectifiable, first-countable Ty space. Then X
is metrizable.
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2. Main results

Lemma 7. Let G be a rectifiable space, A C G and U be an open subset
in G. Then, p(A,U) and q(A,U) are open subsets in G.

Proof. Let x € A, it follows from Lemma 3 that f,,g, are homeomor-
phism. This implies that they are open maps. Therefore, f,(U) = p(z,U)
and g, (U) = q(z,U) are open subsets in G. Moreover, since

p(A, U) = U p(a:,U);

€A
9(A,U) = | q(x,0),
€A
we have p(A,U) and g(A,U) are open subsets in G. [

Lemma 8. Let G be a rectifiable space and x € G. Then, the following
statements hold.
1. If U is an open neighborhood of x, then there exists an open neighbor-
hood V' of e in G such that V C U;
2. If U is an open meighborhood of e in G, then xU is an open neighbor-
hood of x, and there exists an open neighborhood V of e in G such that
q(zV,z) C U.

Proof. (1) By Lemma 2 and Remark 4, p(z,e) = = and p is contin-
uous. Moreover, since U is an open neighborhood of z, there exist an
open neighborhood W of z and an open neighborhood V of e such that
zV =p(z,V) Cp(W,V) CU.

(2) Since U is an open neighborhood of e, U is an open neighborhood
of x by Lemma 7. On the other hand, by Lemma 2, we have ¢(x,z) = e and
q is continuous. Thus, there exist two open neighborhoods V; and V5 of z
such that ¢(V1,V,) C U. By (1), there exists an open neighborhood V of e
such that z € V' C V3 N V,. Therefore, q(zV,z) C U. |

Lemma 9. Let K be a compact subset and F be a closed subset of
a rectifiable space G such that K N F = (. Then, there exists an open
neighborhood V' of e in G such that KV N F = ().

Proof. Since KN F = () and F is closed, it implies that for each z € K,
there exists an open neighborhood U, of x such that

U NF =0.

By Lemma 8, there exists an open neighborhood V. of e such that =V, C
Uy, and zV, is an open neighborhood of z. It follows from Lemma 2 and
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Remark 4 that p(x,e) = z and p is continuous. Thus, there exist an open
neighborhood W, of x and an open neighborhood U.(x) of e such that
p(Wy,Ue(z)) C aV,. Since W, is an open neighborhood of w, it follows
from Lemma 8(1) that there exists an open neighborhood V,(x) of e such
that zV.(xz) C W,. Thus,

p(2Ve(z),Ue(z)) C p(Wa, Ue(z)) C 2V

It follows from Lemma 8(2) that (Ue(z) N Ve(z)) is an open neighborhood
of z for all z € K. On the other hand, since {z(Ue(z) N Ve(z)) : v € K} is
an open cover of K compact, there exists a finite subset L. C K such that

K c | 2(Ue(z) NVe(2)).

zeL

Now, if we put V. = () (Ue(x) N Ve(z)), then V is an open neighborhood
zeL
of e. Furthermore, we have KV N F = (). In fact, let y € K. Then, there

exists € L such that y € z(Ue(x) N Ve(x)). Thus,
yV C p(a:(Ue(a;) NVe(z)), (Ue(z) N Ve(x))) C aVy C G\ F.
Therefore, yV N F = ) for every y € K, it implies that KV N F = (. [ |

Theorem 1. Let G be a rectifiable space and F' be a non-empty compact
Gs-set in G. Then, there exists a Gg-set P in G such that e € P and
FPCF.

Proof. Let {U, : n € N} be a sequence consisting of open subsets of G,

and F = () U,. Then, G\ U, closed in G and F N (G \ U,) = 0 for every
neN
n € N. Moreover, since F' is a non-empty compact in G, by Lemma 9, for

each n € N, there exists an open neighborhood V,, of e such that
FV,Nn(G\U,) =0.

This implies that F'V,, C U, for every n € N. Now, if we put P = [ Vi,
neN
then P is a Gg-set in G and e € P. Furthermore, we have

FP=p(F,(\Va) C () p(F Vo) C [ Un=F.
neN neN neN

By Remark 1 and Theorem 1, we obtained the following corollary.
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Corollary 1 ([2], Proposition 3.1.19). Let G be a topological group and
F be a non-empty compact Gg-set in G. Then, there exists a Gg-set P in G
such that e € P and FP C F.

Theorem 2. Let H be a dense rectifiable subspace of a rectifiable space
G. If H is a P-space, then G is a P-space.

Proof. Because every rectifiable space is homogenous, we only need to
prove that each Gs-set in G which contains e in G is open. Let {U,, : n € N}

be a sequence consisting of open neighborhoods of e in G, and U = [ U,.
neN
Now, we only have to prove that U open in G. In fact, let x € U, so x € U,

for every n € N. Since U; open in G, it follows from Lemma 8(1) that there
exists an open neighborhood Vj of e in G such that zV; C U;y. It follows
from Lemma 5 that there exists an open neighborhood W of e in G such
that W; C V4. On the other hand, since Us open in G, it follows from
Lemma 8(1) that there exists an neighborhood open W of e in G such that
Wy C Us. Furthermore, because Wi N Wy is an open neighborhood of e
in G, it follows from Lemma 5 that there exists an open neighborhood V5
of e in G such that V5 C W; N Ws. Continue the process, we can find a
sequence {V,, : n € N} consisting of open neighborhoods of e in G such that

Vi1 C V,, and 2V, C U, for every n € N. Put V = () Vj, it implies that
neN
V closed in G. Since H is a P-space, we have

VNH=)(V.nH)
neN

open in H. Hence, there exists W open in G such that VN H = W N H.
Because H is dense in G, by Lemma 4, we have

W=WnNnH=VNHCV=V.

Then, we have

pz, V) =p(z, [ Vn) c(p@Va)=[)aVaC (U =U.

neN neN neN neN

Lastly, since H is a rectifiable subspace of G, it follows from Lemma 2 that
for every y € H, we have

e=q(y,y) €q(H,H) C H.
Thus, e € VN H C W. Hence, by Remark 4, we get

x = p(z,e) € p(x, W) C p(x, W) C p(x,V) C U.
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Since p(z, W) is an open neighborhood of z in G by Lemma 8(2), it implies
that U open in G. |

By Remark 1 and Theorem 2, we obtained the following corollary.

Corollary 2 ([2], Lemma 4.4.1). Let H be a dense subgroup of a topo-
logical group G. If H is a P-space, then G is a P-space.

Lemma 10. If a rectifiable space G is m-nested at some point a € G,
then the space G is nested.

Proof. By homogeneity of the space G we can assume that a is the right
unit element e of G. Then, since G is m-nested at e, there exists a nest £ in
G converging to e. Now, if we put

n=1{q(U,U): U €&},

then n is a nest which is a base for G at e. In fact,

(1)  is a nest in G. We prove (a), (b) and (c¢) below.

(a) n is a prefilter in G. Indeed, for every A € n and B € 7, there exist
Uegand V e ¢ such that A=¢q(U,U) and B = q(V, V). Then,

ANB=qUU)Nq(V,V).

Moreover, since € is a prefilter in G, there exists W € £ such that W C UNV.
It implies that

qW,W) CcqUnV,UNV) CqU,U)Ng(V,V)=ANB.

If we put C = q(W, W), then C € AN B and C € n. Therefore, n is a
prefilter in G.

(b) For every A € n and B € n, we have A C B or B C A. Indeed, since
A € nand B € n, there exist U € £ and V' € ¢ such that A = ¢(U,U) and
B = ¢q(V,V). Furthermore, because £ is a chain in G, we have U C V or
V C U. This implies that A C B or B C A.

(c) For every A € n, A open in G. Indeed, since A € 7, there exists U € £
such that A = q(U,U). Moreover, because ¢ is a nest in G, U open in G. It
follows from Lemma 7 that A = q(U,U) open in G.

(2) n is a base for G at e. Indeed, let W be an open neighborhood
of e. Then, since g(e,e) = e and ¢ is continuous, there exist two open
neighborhoods U; and Uj of e such that e € q(Uy,Uz) C W. Now, if we put
U =U; NU,, then e € q(U,U) C W and U is an open neighborhood of e.
Moreover, since & converges to e, there exists V € £ such that V' C U. This
implies that ¢(V,V) C ¢q(U,U). On the other hand, for every x € V, we
have

€= Q(xwr) € Q(‘/v V) - Q(U) U) cw.
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Next, if we put A = ¢(V, V) then A € n and e € A C W. Therefore, 1 is a
base for G at e.

Hence, 1 is a nest which is a base for G at e. Lastly, since G is homogenous
it follows that G is nested. |

Theorem 3. A k-Fréchet-Urysohn, biradial rectifiable space G is metriz-
able.

Proof. Because G is a biradial rectifiable space, we have G is nested by
Lemma 1, Lemmas 5 and 10. Let e be the right unit element of G. Then,
there is a nest in G which is a base at e.

Case 1: e is isolated. It implies that {e} open in G. Hence, G is
first-countable because G is homogenous. It follows from Lemma 6 that
G is metrizable.

Case 2: e is not isolated. Then, e € G\ {e} and G'\ {e} open in G. Since
G is k-Fréchet-Urysohn, there is a sequence {zp}neny C G\ {e} such that
xn, — e. Let {V, : @ € A} is a nest in G which is a base at e. If we put
Zp, = x1 then e € G\ {zy, } and G\ {z,,} open in G. Since G is regular by
Lemma 5, there is oy € A such that

e € Vo, CVa, CG\A{xp,}

Because {xy, }nen converges to e and V,, is an open neighborhood of e, there
is no > nq such that

Tpy € Vo, and e € G\ {z;:i<na}.

Moreover, since G is regular and G \ {z; : i < na} open in G, there exists
a9 € A such that

€ € Vay CVay CG\ {z;:i <na}.

By induction, we have for every k € N, there exist a; € A and ny € N such
that
e€ Vo, CVo, CG\{z;:i<ng}.

Next, we show that {V,, : k € N} is a base at e. Indeed, let W be an
open neighborhood of e. Then, since {V,, : & € A} is a base at e, there exists
B € A such that Vg C W and there exists m € N such that z,, € V3. Choose
i € N such that n; > m, then z,, ¢ V,.. Moreover, since {V, : « € A} is a
chain and Vg \ Vp, # 0, then V,,, C Vg C W. Hence, {V,, : k € N} is a base
at e. It follows from G is homogenous that G is first-countable. By Lemma
6, GG is metrizable. |

By Remark 1 and Theorem 3, we obtained the following corollary.
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Corollary 3 ([12], Theorem 3.4). A k-Fréchet-Urysohn, biradial topo-
logical group G is metrizable.

By Remark 2 and Theorem 3, we obtained the following corollary.

Corollary 4 (][9], Theorem 3.3). Every bisequential rectifiable space G
s metrizable.

Theorem 4. Every first-countable cosmic rectifiable space is second-coun-
table.

Proof. Let G be a first-countable cosmic rectifiable space. Then, it fol-
lows from Lemma 6 that GG is metrizable. Moreover, because G is a cosmic
space, we have G is separable. On the other hand, since a separable metriz-
able space is second-countable, it implies that G is second-countable. |
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