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SOME PROPERTIES OF RECTIFIABLE SPACES

Abstract. In this paper, we give some properties of rectifi-
able spaces and their relationship with P -space, metrizable space.
These results are used to generalize some results in [2], [9] and
[12]. Moreover, we give the conditions for a rectifiable space to be
second-countable.

Key words: Topological group, rectifiable space, Gδ-set,
P -space, metrizable space, second-countable space.

AMS Mathematics Subject Classification: 54A25, 54B05.

1. Introduction and preliminaries

In 1936, G. Birkhoff introduced topological groups ([3]). After that, M.M.
Choban introduced rectifiable spaces ([4]) and V.V. Uspenskij showed that
every topological group is a rectifiable space but there exists a rectifiable
space which is not a topological group ([16]). Recently, rectifiable spaces
had been studied by many authors ([7], [8], [10], [15], for example).

In this paper, we give some properties of rectifiable spaces (see The-
orem 1) and their relationship with P -space (see Theorem 2), metrizable
space (see Theorem 3). These results are used to generalize results below:

1. Let G be a topological group and F be a non-empty compact Gδ-set in
G. Then, there exists a Gδ-set P in G such that e ∈ P and FP ⊂ F ([2],
Proposition 3.1.19).

2. Let H be a dense subgroup of a topological group G. If H is a P -space,
then G is a P -space ([2], Lemma 4.4.1).

3. A κ-Fréchet-Urysohn, biradial topological group G is metrizable ([12],
Theorem 3.4).

4. Every bisequential rectifiable space G is metrizable ([9], Theorem 3.3).

Moreover, we give the conditions for a rectifiable space to be second-countable
(see Theorem 4).

Throughout this paper, all spaces are T1, N denotes the set of all natural
numbers, and group G have a unit element e.
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Definition 1 ([3]). A topological group G is a group G with a topology
such that the product map of G × G into G is jointly continuous and the
inverse map onto itself associating x−1 with x ∈ G is continuous.

Definition 2 ([4], [5]). A rectification on a space G is a homeomorphism
ϕ : G×G→ G×G with the following two properties:

(a) ϕ({x} ×G) = {x} ×G, for every x ∈ G;
(b) There exists an element e ∈ G such that ϕ(x, x) = (x, e), for every

x ∈ G.
The point e ∈ G is called a right unit element of G. A space with a recti-

fication is called a rectifiable space. Every rectifiable space is homogenous.

Remark 1 ([16]). A topological group is a rectifiable space. However,
there exists a rectifiable space which is not a topological group.

Definition 3 ([11]). Let P be a family of subsets of a space X. For each
x ∈ X, P is a network at x in X, if x ∈ P for every P ∈ P, and if x ∈ U
with U open in X, then there exists P ∈ P such that x ∈ P ⊂ U .

Definition 4. Let X be a topological space. Then,
1. X is called a P -space ([2]) if every Gδ-set in X is open.
2. X is called a cosmic space ([13]) if X is regular and has a countable
network.

Definition 5 ([1]). Let ξ and η be any family of non-empty subsets of X.
1. The family ξ is called a prefilter on a space X if for any A ∈ ξ and
B ∈ ξ there exists C ∈ ξ such that C ⊂ A ∩B.

2. A prefilter ξ on a space X is said to converge to a point x ∈ X if every
open neighborhood of x contains an element of ξ.

3. If x ∈ X belongs to the closure of every element of a prefilter ξ on X,
we say that ξ accumulates to x or x is a cluster point of ξ.

4. Two prefilter ξ and η are called to be synchronous if for any A ∈ ξ and
for any B ∈ η, A ∩B 6= ∅.

5. A chain in X is any prefilter ξ in X such that for every A ∈ ξ and
B ∈ η either A ⊂ B or B ⊂ A. A chain ξ consisting of open subsets of
a space X is called a nest in X.

Definition 6. Let X be a topological space. Then,
1. X is called bisequential ([14]) if for every prefilter ξ in X and every
cluster point x of ξ there exitsts a countable prefilter η in X converging
to x and synchronous with ξ.

2. X is called biradial ([1]) if for every prefilter ξ in X accumulating to a
point x ∈ X there exitsts a chain in X converging to x and synchronous
with ξ.
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3. X is said to be π-nested ([1]) at a point x ∈ X if there exists a nest in
X converging to x.

4. X is called nested ([1]) if for every point x ∈ X if there exists a nest
in X which is a base for X at x.

5. X is called κ-Fréchet-Urysohn ([12]) if for every open subset U of X
and every x ∈ U there exists a sequence {xn} of points of U converging
to x.

Remark 2. 1. Every bisequential space is biradial. However, there
exists a biradial space which is not a bisequential space ([1]).

2. Every bisequential space is κ-Fréchet-Urysohn. However, there exists
a κ-Fréchet-Urysohn space which is not a bisequential space ([12]).

Remark 3 ([1]). Every nested space is biradial.

Lemma 1 ([1]). Every biradial regular space is π-nested at every point.

Lemma 2 ([5]). A topological space G is rectifiable if and only if there
are two continuous mappings p : G×G → G, q : G×G → G such that for
any x ∈ G, y ∈ G, and some e ∈ G the next identities hold.

p
(
x, q(x, y)

)
= q
(
x, p(x, y)

)
= y and q(x, x) = e.

Remark 4 ([7]). Let G be a rectifiable space and x ∈ G, we have

p(x, e) = p
(
x, q(x, x)

)
= x.

Moreover, we sometimes write xy instead of p(x, y) for any x, y ∈ G and
AB instead of p(A,B) for any A, B ⊂ G.

Lemma 3 ([8]). Let G be a rectifiable space. Fixed a point x ∈ G, then
fx, gx : G → G defined with fx(y) = p(x, y) and gx(y) = q(x, y), for each
y ∈ G, are homeomorphism, respectively.

Definition 7 ([8]). Let A be a subset of a rectifiable space G. Then A is
called a rectifiable subspace of G if we have p(A,A) ⊂ A and q(A,A) ⊂ A.

Lemma 4 ([6]). If A is dense in X, then U = A ∩ U for every U open
in X.

Lemma 5 ([7]). If G is a rectifiable space, then G is regular.

Lemma 6 ([7]). Let X be a rectifiable, first-countable T0 space. Then X
is metrizable.
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2. Main results

Lemma 7. Let G be a rectifiable space, A ⊂ G and U be an open subset
in G. Then, p(A,U) and q(A,U) are open subsets in G.

Proof. Let x ∈ A, it follows from Lemma 3 that fx, gx are homeomor-
phism. This implies that they are open maps. Therefore, fx(U) = p(x, U)
and gx(U) = q(x, U) are open subsets in G. Moreover, since

p(A,U) =
⋃
x∈A

p(x, U);

q(A,U) =
⋃
x∈A

q(x, U),

we have p(A,U) and q(A,U) are open subsets in G. �

Lemma 8. Let G be a rectifiable space and x ∈ G. Then, the following
statements hold.

1. If U is an open neighborhood of x, then there exists an open neighbor-
hood V of e in G such that xV ⊂ U ;

2. If U is an open neighborhood of e in G, then xU is an open neighbor-
hood of x, and there exists an open neighborhood V of e in G such that
q(xV, x) ⊂ U .

Proof. (1) By Lemma 2 and Remark 4, p(x, e) = x and p is contin-
uous. Moreover, since U is an open neighborhood of x, there exist an
open neighborhood W of x and an open neighborhood V of e such that
xV = p(x, V ) ⊂ p(W,V ) ⊂ U .

(2) Since U is an open neighborhood of e, xU is an open neighborhood
of x by Lemma 7. On the other hand, by Lemma 2, we have q(x, x) = e and
q is continuous. Thus, there exist two open neighborhoods V1 and V2 of x
such that q(V1, V2) ⊂ U . By (1), there exists an open neighborhood V of e
such that x ∈ xV ⊂ V1 ∩ V2. Therefore, q(xV, x) ⊂ U . �

Lemma 9. Let K be a compact subset and F be a closed subset of
a rectifiable space G such that K ∩ F = ∅. Then, there exists an open
neighborhood V of e in G such that KV ∩ F = ∅.

Proof. Since K ∩ F = ∅ and F is closed, it implies that for each x ∈ K,
there exists an open neighborhood Ux of x such that

Ux ∩ F = ∅.

By Lemma 8, there exists an open neighborhood Vx of e such that xVx ⊂
Ux, and xVx is an open neighborhood of x. It follows from Lemma 2 and
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Remark 4 that p(x, e) = x and p is continuous. Thus, there exist an open
neighborhood Wx of x and an open neighborhood Ue(x) of e such that
p
(
Wx, Ue(x)

)
⊂ xVx. Since Wx is an open neighborhood of x, it follows

from Lemma 8(1) that there exists an open neighborhood Ve(x) of e such
that xVe(x) ⊂Wx. Thus,

p
(
xVe(x), Ue(x)

)
⊂ p
(
Wx, Ue(x)

)
⊂ xVx.

It follows from Lemma 8(2) that x
(
Ue(x)∩ Ve(x)

)
is an open neighborhood

of x for all x ∈ K. On the other hand, since
{
x
(
Ue(x) ∩ Ve(x)

)
: x ∈ K

}
is

an open cover of K compact, there exists a finite subset L ⊂ K such that

K ⊂
⋃
x∈L

x
(
Ue(x) ∩ Ve(x)

)
.

Now, if we put V =
⋂
x∈L

(
Ue(x) ∩ Ve(x)

)
, then V is an open neighborhood

of e. Furthermore, we have KV ∩ F = ∅. In fact, let y ∈ K. Then, there
exists x ∈ L such that y ∈ x

(
Ue(x) ∩ Ve(x)

)
. Thus,

yV ⊂ p
(
x
(
Ue(x) ∩ Ve(x)

)
,
(
Ue(x) ∩ Ve(x)

))
⊂ xVx ⊂ G \ F.

Therefore, yV ∩ F = ∅ for every y ∈ K, it implies that KV ∩ F = ∅. �

Theorem 1. Let G be a rectifiable space and F be a non-empty compact
Gδ-set in G. Then, there exists a Gδ-set P in G such that e ∈ P and
FP ⊂ F .

Proof. Let {Un : n ∈ N} be a sequence consisting of open subsets of G,
and F =

⋂
n∈N

Un. Then, G \ Un closed in G and F ∩ (G \ Un) = ∅ for every

n ∈ N. Moreover, since F is a non-empty compact in G, by Lemma 9, for
each n ∈ N, there exists an open neighborhood Vn of e such that

FVn ∩ (G \ Un) = ∅.

This implies that FVn ⊂ Un for every n ∈ N. Now, if we put P =
⋂
n∈N

Vn,

then P is a Gδ-set in G and e ∈ P . Furthermore, we have

FP = p
(
F,
⋂
n∈N

Vn
)
⊂
⋂
n∈N

p(F, Vn) ⊂
⋂
n∈N

Un = F.

�

By Remark 1 and Theorem 1, we obtained the following corollary.
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Corollary 1 ([2], Proposition 3.1.19). Let G be a topological group and
F be a non-empty compact Gδ-set in G. Then, there exists a Gδ-set P in G
such that e ∈ P and FP ⊂ F .

Theorem 2. Let H be a dense rectifiable subspace of a rectifiable space
G. If H is a P -space, then G is a P -space.

Proof. Because every rectifiable space is homogenous, we only need to
prove that each Gδ-set in G which contains e in G is open. Let {Un : n ∈ N}
be a sequence consisting of open neighborhoods of e in G, and U =

⋂
n∈N

Un.

Now, we only have to prove that U open in G. In fact, let x ∈ U , so x ∈ Un
for every n ∈ N. Since U1 open in G, it follows from Lemma 8(1) that there
exists an open neighborhood V1 of e in G such that xV1 ⊂ U1. It follows
from Lemma 5 that there exists an open neighborhood W1 of e in G such
that W1 ⊂ V1. On the other hand, since U2 open in G, it follows from
Lemma 8(1) that there exists an neighborhood open W2 of e in G such that
xW2 ⊂ U2. Furthermore, because W1 ∩W2 is an open neighborhood of e
in G, it follows from Lemma 5 that there exists an open neighborhood V2
of e in G such that V2 ⊂ W1 ∩W2. Continue the process, we can find a
sequence {Vn : n ∈ N} consisting of open neighborhoods of e in G such that
Vn+1 ⊂ Vn and xVn ⊂ Un for every n ∈ N. Put V =

⋂
n∈N

Vn, it implies that

V closed in G. Since H is a P -space, we have

V ∩H =
⋂
n∈N

(Vn ∩H)

open in H. Hence, there exists W open in G such that V ∩ H = W ∩ H.
Because H is dense in G, by Lemma 4, we have

W = W ∩H = V ∩H ⊂ V = V.

Then, we have

p(x, V ) = p
(
x,
⋂
n∈N

Vn

)
⊂
⋂
n∈N

p(x, Vn) =
⋂
n∈N

xVn ⊂
⋂
n∈N

Un = U.

Lastly, since H is a rectifiable subspace of G, it follows from Lemma 2 that
for every y ∈ H, we have

e = q(y, y) ∈ q(H,H) ⊂ H.

Thus, e ∈ V ∩H ⊂W . Hence, by Remark 4, we get

x = p(x, e) ∈ p(x,W ) ⊂ p(x,W ) ⊂ p(x, V ) ⊂ U.
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Since p(x,W ) is an open neighborhood of x in G by Lemma 8(2), it implies
that U open in G. �

By Remark 1 and Theorem 2, we obtained the following corollary.

Corollary 2 ([2], Lemma 4.4.1). Let H be a dense subgroup of a topo-
logical group G. If H is a P -space, then G is a P -space.

Lemma 10. If a rectifiable space G is π-nested at some point a ∈ G,
then the space G is nested.

Proof. By homogeneity of the space G we can assume that a is the right
unit element e of G. Then, since G is π-nested at e, there exists a nest ξ in
G converging to e. Now, if we put

η = {q(U,U) : U ∈ ξ},

then η is a nest which is a base for G at e. In fact,
(1) η is a nest in G. We prove (a), (b) and (c) below.
(a) η is a prefilter in G. Indeed, for every A ∈ η and B ∈ η, there exist

U ∈ ξ and V ∈ ξ such that A = q(U,U) and B = q(V, V ). Then,

A ∩B = q(U,U) ∩ q(V, V ).

Moreover, since ξ is a prefilter in G, there exists W ∈ ξ such that W ⊂ U∩V .
It implies that

q(W,W ) ⊂ q(U ∩ V,U ∩ V ) ⊂ q(U,U) ∩ q(V, V ) = A ∩B.

If we put C = q(W,W ), then C ⊂ A ∩ B and C ∈ η. Therefore, η is a
prefilter in G.

(b) For every A ∈ η and B ∈ η, we have A ⊂ B or B ⊂ A. Indeed, since
A ∈ η and B ∈ η, there exist U ∈ ξ and V ∈ ξ such that A = q(U,U) and
B = q(V, V ). Furthermore, because ξ is a chain in G, we have U ⊂ V or
V ⊂ U . This implies that A ⊂ B or B ⊂ A.

(c) For every A ∈ η, A open in G. Indeed, since A ∈ η, there exists U ∈ ξ
such that A = q(U,U). Moreover, because ξ is a nest in G, U open in G. It
follows from Lemma 7 that A = q(U,U) open in G.

(2) η is a base for G at e. Indeed, let W be an open neighborhood
of e. Then, since q(e, e) = e and q is continuous, there exist two open
neighborhoods U1 and U2 of e such that e ∈ q(U1, U2) ⊂W . Now, if we put
U = U1 ∩ U2, then e ∈ q(U,U) ⊂ W and U is an open neighborhood of e.
Moreover, since ξ converges to e, there exists V ∈ ξ such that V ⊂ U . This
implies that q(V, V ) ⊂ q(U,U). On the other hand, for every x ∈ V , we
have

e = q(x, x) ∈ q(V, V ) ⊂ q(U,U) ⊂W.
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Next, if we put A = q(V, V ) then A ∈ η and e ∈ A ⊂ W . Therefore, η is a
base for G at e.

Hence, η is a nest which is a base forG at e. Lastly, sinceG is homogenous
it follows that G is nested. �

Theorem 3. A κ-Fréchet-Urysohn, biradial rectifiable space G is metriz-
able.

Proof. Because G is a biradial rectifiable space, we have G is nested by
Lemma 1, Lemmas 5 and 10. Let e be the right unit element of G. Then,
there is a nest in G which is a base at e.

Case 1: e is isolated. It implies that {e} open in G. Hence, G is
first-countable because G is homogenous. It follows from Lemma 6 that
G is metrizable.

Case 2: e is not isolated. Then, e ∈ G \ {e} and G\{e} open in G. Since
G is κ-Fréchet-Urysohn, there is a sequence {xn}n∈N ⊂ G \ {e} such that
xn → e. Let {Vα : α ∈ Λ} is a nest in G which is a base at e. If we put
xn1 = x1 then e ∈ G \ {xn1} and G \ {xn1} open in G. Since G is regular by
Lemma 5, there is α1 ∈ Λ such that

e ∈ Vα1 ⊂ Vα1 ⊂ G \ {xn1}.

Because {xn}n∈N converges to e and Vα1 is an open neighborhood of e, there
is n2 > n1 such that

xn2 ∈ Vα1 and e ∈ G \ {xi : i ≤ n2}.

Moreover, since G is regular and G \ {xi : i ≤ n2} open in G, there exists
α2 ∈ Λ such that

e ∈ Vα2 ⊂ Vα2 ⊂ G \ {xi : i ≤ n2}.

By induction, we have for every k ∈ N, there exist αk ∈ Λ and nk ∈ N such
that

e ∈ Vαk
⊂ Vαk

⊂ G \ {xi : i ≤ nk}.

Next, we show that {Vαk
: k ∈ N} is a base at e. Indeed, let W be an

open neighborhood of e. Then, since {Vα : α ∈ Λ} is a base at e, there exists
β ∈ Λ such that Vβ ⊂W and there exists m ∈ N such that xm ∈ Vβ. Choose
i ∈ N such that ni > m, then xm 6∈ Vαi . Moreover, since {Vα : α ∈ Λ} is a
chain and Vβ \ Vαi 6= ∅, then Vαi ⊂ Vβ ⊂W . Hence, {Vαk

: k ∈ N} is a base
at e. It follows from G is homogenous that G is first-countable. By Lemma
6, G is metrizable. �

By Remark 1 and Theorem 3, we obtained the following corollary.
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Corollary 3 ([12], Theorem 3.4). A κ-Fréchet-Urysohn, biradial topo-
logical group G is metrizable.

By Remark 2 and Theorem 3, we obtained the following corollary.

Corollary 4 ([9], Theorem 3.3). Every bisequential rectifiable space G
is metrizable.

Theorem 4. Every first-countable cosmic rectifiable space is second-coun-
table.

Proof. Let G be a first-countable cosmic rectifiable space. Then, it fol-
lows from Lemma 6 that G is metrizable. Moreover, because G is a cosmic
space, we have G is separable. On the other hand, since a separable metriz-
able space is second-countable, it implies that G is second-countable. �
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