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1. Introduction and preliminaries

Banach contraction principle [2] is one of the most cited theorem in non-
linear analysis. There are huge number of generalizations of mentioned the-
orem in different spaces which represent the generalization of metric space
see ([1], [7], [11]-[14], [18], [19]).

Czerwik [4] introduced the notion of b—metric space, as a generalization
of metric space in which the triangular inequality has been replaced by
weaker one.

Definition 1. Let X be a non-empty set, and the mapping d : X x X —
[0,00) satisfies:

(b1) d(z,y) =0 if and only if x =y for all x,y € X,

(b2) d(x,y) = d(y,x) for all z,y € X,

(b3) there exists a real number s > 1 such that d(x,y) < s(d(x, z)+d(y, z))
forall z,y,z € X.

Then d is called a b—metric on X and (X, d) is called a b—metric space
with coefficient s > 1.

Obviously, each metric space is a b—metric space (for s = 1). However,
Czerwik [4] has shown that a b—metric on X need not be a metric on X.

In the same paper Czerwik proved a generalization of Banach contraction
principle in b—metric space.
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As the focus of this paper is b—fuzzy metric spaces, first we list definitions
related to fuzzy metric spaces, as well as b—fuzzy metric spaces.

The concept of fuzzy sets was introduced initially by Zadeh [20]. Using
the results of Menger and Zadeh ([10, 20]), Kramosil and Michalek ([8])
introduced the notion of fuzzy metric space. Later, George and Veermani
([6]) modified their definition in way to associate each fuzzy metric to a
Hausdorff topology.

Definition 2. A binary operation x : [0,1] x[0,1] — [0, 1] is a continuous
t-norm if it satisfies the following conditions:

1. * is associative and commutative,

2. x is continuous,

3. ax1l=a for all a € 0,1],

4. axb < cxd whenever a < c and b < d, for each a,b,c,d € [0, 1].

Two typical examples of continuous t-norm are a xb =a-b and a x b =
min(a, b).

Definition 3. A 3-tuple (X, M, *) is called a fuzzy metric space if X is
an arbitrary (non-empty) set, x is a continuous t-norm and M is a fuzzy set
on X2 x (0,00), satisfying the following conditions for each x,y,z € X and

M('CU7 y7 t) > 0?
2. M(x,y,t) =1 if and only if x =y,
3. M(z,y,t) = M(y, z,1),
4. M(z,y,t)« M(y,z,s) < M(z,z,t+s),
5. M(x,y,.): (0,00) = [0,1] is continuous.

Definition 4. A 3-tuple (X, M, *) is called a b—fuzzy metric space if X
is an arbitrary (non-empty) set, x is a continuous t-norm and M is a fuzzy
set on X2 x (0,00), satisfying the following conditions for each x,y,z € X,
t,s >0 and b > 1 be a given real number,

1. M(z,y,t) >0,

M(x,y,t) =1 if and only if x =y,

(@, y,t) = M(y, z,1),

(z,y,5) * M(y,2,3) < M(z,2,t+s),
(z,y,.) : (0,00) = [0,1] is continuous.

':'z':'

It should be noted that, the class of b—fuzzy metric spaces is effectively
larger than that of fuzzy metric spaces, since a b—fuzzy metric is a fuzzy
metric when b = 1.

We present an example shows that a b—fuzzy metric on X need not be a
fuzzy metric on X.
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o—y|P
Example 1. Let M(x,y,t) = e ozl , where p > 1 is a real number.
We show that M is a b—fuzzy metric with b = 2P,
Obviously conditions (1), (2), (3) and (5) of Definition 4 are satisfied.

If 1 < p < oo, then the convexity of the function f(z) = 2P (z > 0)

implies
P
<a—2i-0> Sﬁ(ap-l-cp),

and hence, (a + ¢)P < 2P~(a? + ¢P) holds. Therefore,

’x_y|p < 2p71 |:C_Z|p +2p71’2_y|p
t+s t+s t+s
cogale =2 e P
- t S
N N e
t/2r—1  g/2r—1
Thus for each z,y, z € X we obtain
—|lz—y|P t S
M(z,y,t+s) = e ZM(-TV%F)*M(Z,Z/,W),

where a * b = a - b. So condition (4) of Definition 4 is hold and M is a b—
fuzzy metric.
For p =2 and s =t we have
—(z—y)?
M(x,y,2t) = e 7

—(z—ztz—y)?
= e 2t

—2((z=2)%+(z=»)?)
2t

—(@=2)? —(y=2)’
(& t - e t

= «(M(z,2,t), M(z,y,t)),

where *(a,b) = a-b. For s # t, and p > 2 (X, M, %) is not a fuzzy metric
space.
—d(=z,y)
Example 2. Let M(z,y,t) = e ¢ = or M(z,y,t) = m, where d
is a b-metric on X and a*c = a- ¢ for all a,c € [0,1]. Then it is easy to
show that M is a b—fuzzy metric.

Obviously conditions (1), (2), (3) and (5) of Definition 4 are satisfied.
For each z,y, 2z € X we obtain
—d(z,y)
M(x,y,t+s) = e t+s

_pd@2)+dzy)
e t+s
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d(z,z) d(z,y)
= efb t+s . efb t+s
—d(z,2) —d(2,y)
Z e t/b .e s/b
t S
= M(x,z, 5) * M(Zayv B)

So condition (4) of Definition 4 is hold and M is a b— fuzzy metric. Similarly,
it is easy to see that M(x,y,t) = m is a b— fuzzy metric.

Before stating and proving our results, we present some definition and
proposition in b—metric space.

Definition 5. Let f : R — R be a function. Then f is called b—nondecreasing,
if © > by implies f(x) > f(y) for each z,y € R.

Lemma 1 ([15]). Let (X, M, *) be a b—fuzzy metric space. Then M (z,y,t)
is b—nondecreasing with respect to t, for all x,y in X. Also,

M(x,y,b"t) > M(z,y,t), neN.

Let (X, M,*) be a b—fuzzy metric space. For ¢ > 0, the open ball
B(x,r,t) with center x € X and radius 0 < r < 1 is defined by

B(a,rt)={y € X : M(z,y,t) >1—r}.

We recall the notions of convergence and completeness in a b—fuzzy met-
ric space. Let (X, M, *) be a b—fuzzy metric space. Let 7 be the set of all
A C X with x € A if and only if there exists ¢ > 0 and 0 < r < 1 such that
B(x,r,t) C A. Then 7 is a topology on X (induced by the b—fuzzy metric
M). A sequence {z,} in X converges to x if and only if M (zp,x,t) — 1
as n — oo, for each t > 0. It is called a Cauchy sequence if for each
0 <e<1andt >0, there exists ng € N such that M (zy,, zp,,t) > 1 — ¢ for
each n,m > ny. The b—fuzzy metric space (X, M, ) is said to be complete
if every Cauchy sequence is convergent. A subset A of X is said to be
F-bounded if there exists ¢ > 0 and 0 < r < 1 such that M(z,y,t) >1—r
for all z,y € A.

Lemma 2 ([15]). In a b—fuzzy metric space (X, M,x) the following
assertions hold:

(1) If sequence {x,} in X converges to x, then x is unique,

(13) If sequence {x,} in X is converges to x, then sequence {z,} is a
Cauchy sequence.

In b—fuzzy metric space we have the following proposition.
Proposition 1 ([16], Prop. 1.10). Let (X, M, %) be a b—fuzzy metric

space and suppose that {x,} is b-convergent to x then we have

t
M(z,y, ;) <limsup M(z,,y,t) < M(z,y,bt),

b) n—00
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t
M(x,y, 5) <liminf M(zy,y,t) < M(z,y,bt).

n—oo

Remark 1. In general, a b—fuzzy metric is not continuous.

Definition 6 ([3]). An element (z,y) € X x X is called a coupled fized
point of a mapping F: X x X — X if F(x,y) =x and F(y,z) =y.

Definition 7 ([9]). An element (x,y) € X x X is called a coupled coinci-
dence point of the mappings F : X x X — X and g: X — X if F(z,y) = gz
and F(y,r) = gy.

Definition 8 ([9]). Let X be a nonempty set. Then we say that the
mappings F: X x X — X and g : X — X are commutative if gF(z,y) =

F(gz,gy).

Theorem 1 ([17]). Let (X, M, ) be a complete b-fuzzy metric space. Let
F:XxX—>Xandg: X — X be two functions such that

(1)  M(F(z,y),F(u,v),t) > ¢(min{ M (gz, gu, b*t), M (gy, gv,b*t)}),

for all x,y,u,v € X andt > 0. Assume that F' and g satisfy the following
conditions:

1. F(X xX) Cg(X),

2. g(X) is complete, and

3. g is continuous and commutes with F.

If € ®, then there is a unique x in X such that gx = F(z,x) = x.

2. The main results

Let ® denote the class of all functions ¢ : [0,1] — [0,1] such that ¢ is
increasing, continuous, ¢(t) >t for all ¢ € (0,1).

Note that ¢(0) =0 and ¢(1) = 1, then ¢(t) >t for all t € [0, 1].

We start our work by proving the following crucial lemma.

Lemma 3. Let (X, M,x*) be a b-fuzzy metric space with b > 1 and let
F:XxX—Xandg: X — X be two mappings such that

2) M(F(z,y),F(u,v),t) = p(min{M(gz, gu,t), M(gy, gv,1)}),

for some ¢ € ® and for all z,y,u,v € X and t > 0. Assume that (z,y) is
a coupled coincidence point of the mappings F and g. Then F(z,y) = gx =

gy = F(y,z).
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Proof. Since (z,y) is a coupled coincidence point of the mappings F'
and g, we have gx = F(z,y) and gy = F(y,x). Assume gz # gy. Then by
(2), we get

M(gz, gy,t) = M(F(z,y), F(y,z),1)
> p(min{M (gz, gy, t), M(gy, g, t)})
= ¢(M(gz,gy,1))
> M(gz, gy,t),

which is a contradiction. So gx = gy, and hence F(z,y) = gxr = gy =
F(y,x). [

The following is the main result of this section.

Theorem 2. Let (X, M,*) be a complete b-fuzzy metric space. Let F :
XxX—Xandg: X — X be two functions such that

(3) M(F(z,y),F(u,v),t) > ¢(min{M gz, gu,b’t), M(gy, gv,b’t),
M(gz, F(z,y),b*t), M (gu, F(u,v), b*t),
M(gy, F(y,x),b°t), M(gv, F(v,u),b*t)})

for all z,y,u,v € X andt > 0. Assume that F and g satisfy the following
conditions:

(1) F(X x X) C g(X),

(17) g(X) is complete, and

(7i1) g is continuous and commutes with F.

If ¢ € ®, then there is a unique x in X such that gx = F(z,x) = x.

Proof. Let xp,yo € X. Since FI(X x X) C g(X), we can choose x1,y; €
X such that gr1 = F(xo,y0) and gy1 = F(yo,z0). Again since F(X x
X) C g(X), we can choose x3,y2 € X such that gzo = F(x1,y1) and
gy2 = F(y1,z1). Continuing this process, we can construct two sequences
(zp,) and (yn) in X such that gx,11 = F(xn,yn) and gynt1 = F(Yn, Tn).
For n € NU {0}, by (3) we have

M(g9zn—1,92n,t) = M(F(2n-2,Yn—2), F(Tn-1,Yn-1),t)
> p(min{ M (gn—2, gn—1,b°t), M(gyn—2, gyn—1,b°t),
M(gxn—2,9Tn—1, b2t), M(gxn_1, gan, b*t),
M (gYn—2, 9Yn—1,b°t), M(gyn—1, gyn, bt), }).

Similarly by (3) we have

M(gyn—hgymt) = M(F(yn—27$n—2)7F(yn—l7xn—l)7t)
Z ¢(min{M(gyn—27 9Yn—1, b2t>7 M(g.fn_Q, gTln—1, b2t)7
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M (gYn—2, 9Yn—1,b°t), M(gyn—1, gyn, b*t),
M(g$n72, gTn—1, th)a M(gmnfla 9Tn, b2t)a })

Hence, we have

an(t)

min{ M (g2n—1,9%n,t), M(gYyn—1, gyn, 1)}

P(min{ M (gzy—2, gTn—1,b%t), M(gyn—2, gyn—1,b*t),
M (gn—1, 92, b°t), M(gyn—1, gyn, b°t)})

> ¢(min{M (gzn—2, 9Tn—1,b°t), M(gyn—2, gYn—1,b°t),
min{M(gxn—la 9Tn, b2t)7 M(gyn—la 9Yn, bZt)}})'

Y

If min = min{M (g1, g2n, b*t), M(gYn_1, gyn,b*t)} and using Lemma 1
we have

min{ M (921, 9%n,t), M (gyn—1, 9yn, )}
> G(min{ M (g1, gTn, b*t), M (gyn—1, gyn, b°t)})
> min{ M (gn—1, gn, b*t), M (gyn—1, gyn, b°t)
> min{M (9&n—1, 9Tn, t), M (gYn—1, gyn, t).

So, we get contraction, and therefore we have

an(t) > gf)(min{M(gmn_g, 9Tn—1, b2t>7 M(gyn—Q, 9Yn—1, bzt)})

Now, we have
an(t) > ¢(an—1(b*t)) > an_1(b*t) > an_1(t).

Thus a,(t) is increasing sequence in [0, 1] for every ¢ > 0. Therefore, tends
to a limit a(t) < 1. We claim that a(t) = 1. If a(¢) < 1 on making n — oo in
the above inequality we get a(t) > ¢(a(b?t)) > a(b*t) > a(t), a contradiction.
Hence a(t) =1, i.e.,

lim min{M (gzn_1, 9Tn,t), M(gYn—1,9yn,t)} = 1,

n—o0

respectively

Jim M(gan, goni1,t) =1, lim M(gyn, gyns1,t) = 1.
Now, we prove that (gz,) and (gy,) are Cauchy sequence in g(X) for
n € N.
First, we prove that for every e € (0, 1), there exist two numbers n,m € N
such that

M(9xn, gTm,t) A M(gyn, gym,t) > 1 — ¢,
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where

M (g2, gm,t) A M(gyn, gym,t) = min{ M (gn, gm, t), M (gyn, gym, 1)}
Suppose that this is not true. Then there is an € € (0,1) such that for each

integer k, there exist integers m(k) and n(k) with m(k) > n(k) > k such
that

(4) di(t) = M(9%Tn(k), 9Zm(k)> t) N M(GYn(k), 9Ym(k)s t)
<1l-—¢ for k=1,2,---.

We may assume that

(5) M(g:En(k)’ 9Tm(k)—1» t) A M(gyn(k)a 9Ym(k)—1» t) >1—ck¢,

by choosing m(k) be the smallest number exceeding n(k) for which (4) holds.
Using (4), and the fact that axb > (a A ¢) % (b A d) we have

1—€ > di(t)

> [M(9%n(k)s 9mk) -1 %) * M(gZm(k) 15 9Tm(k)» %)]

A [M(9Yn(ky 9Ymk)-1, 2ib) * M(gYm(k)—1> 9Ym(k)> 2%)]

= [M(g@nky, 9Tm(k) -1, %) A M (gYn (k) GYm(k) 1 %)]

* [M(9Zm(k)—1> 9Tm(k)> 2%) A M (GYum(k)—1> (k) 2%)]

A [M (9 ky, 9T m (k)15 %) A M (9Yn(k)s 9Yrm(k)—1- %)]

* [M(9Zm(r)-15 9Tm(k); 2%) A M(9Ym(k)-1> 9Ym(k)» 2%)]

> [M(g2m()-1; 9m(r), %) A M(9Ym(k)-1> 9Ym (k) %)] * ak(%)v

Thus, as kK — oo in the above inequality we have
1—e> lim di(t) > (1—¢€)* lim ap(=5) =1—¢
k—o0 k

that is

for every t > 0.
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On the other hand, we have

di(t)

From

t t
[M(g'xn(k)v 9Tn(k)+1, %) *® M(g'xn(k)—‘rla 9Tm(k)+1> %)

t
3]

t t
[M(gyn(k)7 9Yn(k)+1, 7) * M(gyn(k)+1v 9Ym(k)+1> 7)

3b 3

t

)]
t

3b
t
(M (9Zr(k)> GTn(k)+15 %) N M(GYn (k> 9Yn(k)+15 %)]

M(9Z (k)15 9Tm(k)

M (gYm(k)+15 9Ym(k)»

t t
(M (9Zr(k)+1> ITm(k)+1> %) A M(gYn (k)15 9Ym(k)+15 %)]

t
) A M(gym(k’)—i—b GYm(k)s 3b>]

t
3]

M
[M(9Zm(k) 415 9Zm(k)s 35

t
[M(9Zn(k), 9Znw)+15 35) A M (9Yn(k), 9Yn(k)+15

t t
[M(g@n(k)+15 9%mk)+1> 35) A M(GYn()+1 9Ymik)+15 3p)]

t t
35) N M (9Ymw) 415 9Ym(r)s 37)]
t

t
[M(gn(k), 9%n(k)+15 55) A M(9Yney 9Yn(iy+1, 35)]

[M (9% (k) 1) ITm(k)

t t
(M (9Zr(k)+1> ITm(k)+1> %) A M(gYn (k)15 9Ym(k)+15 %)]

t
3[)) A M(gym(k)+17gym(k)a 3b>]

(M (9T (k)15 9Tm(k)
t t
ak(%) * [M(gZr(k)+1> ITm(k)+1> %)
t t
M(gyn(k)+17 9Ym(k)+1> %)] * ak(%)

i) * min {M(F( n(k)> Yn(k)): F(xm(k)’ym(k)%:fb)v} s a
T

a
kl M (F (Yn()s Tngk))s F W) Tm))s 35)

t
M (9% (k) 1> ITm(k)+15 %)

t

. tb tb
> ¢(m1n{M(g$n(k) 1y 9T m(k)> g)v M(gyn(k) 1y 9Ym(k)s 7)1

3
tb tb
M(gxn(k) y 9Tn(k)+1> 3)7 M(gxm(k) 1y 9T m(k)+15 g)v

tb tb

=) M(9Ym)s 9Ym(k)+15 5)}),

M (gYn(k)> 9Yn(k)+15 3

35
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and
¢
M (gYn(k)+15 9Ym(k)+1> %)

t
) %)
. tb tb
2 P(min{ M(gYn(k), 9Ym(k) 5 )> M (9@n(k) 9Tmr)s 3

tb tb
M(gYn(k)> 9Yn(k)+1: 3 )s M(GYmky: Ymky+1 35
th

tb
M (gn(k) 9%n(k) 1 3 ) M(GZm(k)s 9Zmk) 11, 3)3)

= M(F (Yn(k) Tn(k))s F Ym(k), Tmk))

),

we have
. t
min{ M (E(Znk), Yn(k)) E(@m(r), Ym(r))> 3p),

t
) tb tb
> ¢(mln{M(gxn(k)a 9Tm(k)s g): M(gyn(k)’ 9Ym(k)s g)v

tb tb
M(.gxn(k) 1 9Tn(k)+1> g)v M(gxm(k)a 9Tm(k)+1> g)a
tb tb

M (gYn (k) 9Yn(k)+15 5), M (gYm(k)s 9Ym(k)+1> g)})

tb tb
7 5)7 M (gYn (k) 9Ym(k) §)}’

. tb tb
min{ M (9Zp k), 9Zn(k)+15 3)7 M(GZrm(k)> GTm(k)+15 5)},

. tb tb
min{ M (9Yn(r)» 9Yn(k)+15 3 ) M(9Ym(k) 9Ymry+15 3 )3})
. tb tb tb
= d(min{dy(3), ar(5), ar(3)})
tb

= p(min{ar(5), a())).

> ¢(min{min{ M (g2, (1), 9Tm (k)

Therefore,

tb tb tb tb

dr(t) > ak(g) * ¢(min{dk(§), ak(g)}) * ag( 3 )-

Thus, as k — oo in the above inequality we have
l—e>1xp(l—e)x1=¢(1l—¢) >1—c¢

which is a contradiction.
Thus (gx,) and (gy,) are Cauchy in g(X). Since g(X) is complete, we
get (gzy) and (gy,) are convergent to some x € X and y € X respectively.
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Since g is continuous, we have (ggx,) is convergent to gz and (ggy,) is
convergent to gy. Also, since g and F' are commute, we have

99Tn+1 = 9(F(Tn,yn)) = F(9Zn, gyn),
and

99Yn+1 = 9(F(Yn>n)) = F(gyn, gn).
Thus,

min{ M (99zn+1, F(,y),t), M(99yn+1, F(y, ), 1)}
= min{ M (F(g2n, gyn), F'(z,y),t), M (F(9Yyn, gzn), F'(y, ), 1)}
> ¢(min{ M (ggan, gz,b’t), M (ggyn, gy, b’t),
M(ggzn, g9tni1,b°t), M (gz, F(z,y),b°t),
M (9gyn, 99yn+1,b°t), M (gy, F(y, x),b°t)}),

Letting n — oo and using the Proposition 1 we get that

min{M (g, F(z,y),bt), M(gy, F(y, x), bt)
> limsup min{M (F(g9zn, gyn), F(z,y),t),

n—oo

M(F(gyn, gxn)a F({L‘, y)v t)}
> ¢(min{M (gz, F(z,y),bt), M(gy, F(y,z),bt)}).

This is possible only if gz = F(z,y) and gy = F(y, x).
Hence, by Lemma 1, we have

M(F(z,y), F(y,x),b°t) = M(gz, gy, b°t)

> M(gz,gy,t) = M(F(z,y), F(y,z),1)
M gz, gy, b°t), M (gy, g, b*t), M (g, F(x,y),b°t),
> ¢(min ¢ M(gy, F(y,x),b%t), M(gy, F(y,z),b°t), )

Mgz, F(z,y), 1%
= ¢(min{ M (gz, gy, b°t), M (gy, gz, b°t)}).
So, by Lemma 3 we have gz = F(z,y) = gy = F(y,x).
Thus, using Proposition 1 we have

M(.T, gz, bt) > lim SUpM(gxn_H, gz, t)

n—o0

= thUpM(F(l‘nayn)aF(xay)at)

n—oo

> limsup ¢(min{ M (gzn, gz, b*t), M (gyn, gy, b°t),

n—oo
M(gxnv 9Tn+1, b2t)7 M(ng qr, bzt)v
M(gyn, gyn+1,0%t), M (gy, gy, b*t)})
¢(min{M (x, gz, bt), M(y, gy,bt)}).

v
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Similarly, we may show that
M(y, gy, bt) > ¢(min{M (z, gz, bt), M (y, gy, bt)}).
Thus

min{M (z, gz, bt), M (y, gy, bt)}

> ¢(min{M (z, gz, bt), M(y, gy,bt)})
> min{ M (z, gz, bt), M (y, gy, bt)}.

The last inequality happened only if M(z,gx,t) = 1 and M(y, gy,t) = 1.
Hence x = gx and y = gy. Thus we get

gr = F(z,z) = x.
To prove the uniqueness, let z € X with z # z such that
z=gz=F(z,2).
Then
M(z,z,t) = M(F(z,z),F(z,z),t)
P(min{ M (gz, gz, b°t), M (gz, gz, b*t), M (gx, gz, b*t),

M(gz, gz, b%t), M (g, gz, b*t), M(gz, gz, b°t)})

= ¢(M(g,g2,b°))
> Mgz, gz, b*t) = M(x, z, b%t)
> M(x,z,t).

v

We get M (x,z,t) > M(x, z,t), which is a contradiction. Thus F' and g have
a unique common fixed point. |

Remark 2. Let (z,y) and (u, v) be coupled coincidence point of mapping
F and g. Then we get Theorem 1. That is the Theorem 2 is generalization
of Theorem 1.

Corollary 1. Let (X, M,*) be a complete b-fuzzy metric space. Let
F: X xX — X be function such that

(6)  M(F(x,y), F(u,v),t) > ¢(min{M (z,u,b*t), M(y,v,b*t),
M (x, F(x,y),b%t), M (u, F(u,v),b*t),
M(y, F(y,),b%t), M (v, F(v,u),b*t)})

for all x,y,u,v € X andt > 0, and ¢ € ®. Then there is a unique x in X
such that F(x,z) = x.
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Proof. Let g(z) = x. Then all conditions of previous theorem are
satisfied. [

Corollary 2. Let (X, M,x) be a complete fuzzy metric space. Let F :
XXX — X and g: X = X be two functions such that

(1) M(F(z,y), F(u,v),t) > ¢(min{M (gz, gu,t), M (gy, gv, 1),
M(g:z:,F(x,y),t),M(gu,F(u,v),b2t),
M(gy, F(y,x),0°t), M(gu, F(v,u),b°t)})

for all z,y,u,v € X and t > 0. Assume that F' and g satisfy the following
conditions:

1. F(X x X) Cg(X),

2. g(X) is complete, and

3. g is continuous and commutes with F'.

If ¢ € ®, then there is a unique x in X such that gx = F(x,x) = x.

Proof. Let b = 1. Then all conditions of previous theorem are satis-
fied. |

Example 3. Let X = [0,1] and a*c = a- ¢ for all a,c € [0,1] and let
M be the b—fuzzy set on X x X x (0,+00) defined as follows:

—(z—y)?

M(x? y7 t) =e€ t Y

for all t € RT. Then (X, M, ) is a b—fuzzy metric space for b = 2. Define

g(z) =9, F(z,y) = ;2;326:;% and ¢(t) = V/t, , for t > 0. It is evident that F'(X x

X) C g(X), g is continuous, g(X) = [0, §] is complete and g commutes with
F.
Since,

2r+y  2u-+wv 20 —2u Yy —vw
( - )2 = ( )?

+
32v2 322 32v2 322
2 12x 2u,y, 1y wvy
- 32[4( 4 4) 4(4 4H
1 2 weo Yy v
< [z = J_ 2
2 T Uy Y Vg
< = ad— Z_ 2
1 T Uy Y V.o
hence it follows that
7(2zjy72u\73)2 7(21—\%u+ y*\/’lL)Q
32V2 32vV2 32v2 32v2
M(F(SU,y),F(U,’U),t):G t =€ t
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G-+ G- —max{(§ )% (§-$%)
8t > e 8t

e
\/ — max{(&— 7I)Q(zf )2y

,(I,U)Q 7<y7v)2
:\/min{e ixt ,€ it }
= /min{M (gz, gu, 4t), M (gy. gv, 4t)}
. \/min {M(gx,gqu,M(gy,gv,4t>,M<gz,F(w,y>,4t>, }

Y

M(gu, F(u,v),4t), M (gy, F(y,x),4t), M(gv, F(v,u), 4t)

for all z,y,u,v in X. Thus all the conditions of Theorem 2 are satisfied and
0 is a unique point in X such that g0 = F(0,0) = 0.
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