T. Došenović, Z. Hassanzadeh and S. Sedghi

COUPLED FIXED POINT THEOREM IN b-FUZZY METRIC SPACES

Abstract

The aim of this paper is to prove a coupled coincidence fixed point theorem in complete b-fuzzy metric space using the concept of mixed monotone mappings, which represents a generalization of some recent results. KEY words: b-fuzzy metric space, coupled common fixed point theorem, t-norm, Cauchy sequence. AMS Mathematics Subject Classification: 47H10, 54H25.

1. Introduction and preliminaries

Banach contraction principle [2] is one of the most cited theorem in nonlinear analysis. There are huge number of generalizations of mentioned theorem in different spaces which represent the generalization of metric space see ([1], [7], [11]-[14], [18], [19]).

Czerwik [4] introduced the notion of b-metric space, as a generalization of metric space in which the triangular inequality has been replaced by weaker one.

Definition 1. Let X be a non-empty set, and the mapping $d: X \times X \rightarrow$ $[0, \infty)$ satisfies:
(b1) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$,
(b2) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(b3) there exists a real number $s \geq 1$ such that $d(x, y) \leq s(d(x, z)+d(y, z))$ for all $x, y, z \in X$.

Then d is called $a b$-metric on X and (X, d) is called a b-metric space with coefficient $s \geq 1$.

Obviously, each metric space is a b-metric space (for $s=1$). However, Czerwik [4] has shown that a b-metric on X need not be a metric on X.

In the same paper Czerwik proved a generalization of Banach contraction principle in b-metric space.

As the focus of this paper is b-fuzzy metric spaces, first we list definitions related to fuzzy metric spaces, as well as b-fuzzy metric spaces.

The concept of fuzzy sets was introduced initially by Zadeh [20]. Using the results of Menger and Zadeh ([10, 20]), Kramosil and Michalek ([8]) introduced the notion of fuzzy metric space. Later, George and Veermani ([6]) modified their definition in way to associate each fuzzy metric to a Hausdorff topology.

Definition 2. A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-norm if it satisfies the following conditions:

1. * is associative and commutative,
2. * is continuous,
3. $a * 1=a$ for all $a \in[0,1]$,
4. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, for each $a, b, c, d \in[0,1]$.

Two typical examples of continuous t-norm are $a * b=a \cdot b$ and $a * b=$ $\min (a, b)$.

Definition 3. A 3-tuple $(X, M, *)$ is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and $t, s>0$,

1. $M(x, y, t)>0$,
2. $M(x, y, t)=1$ if and only if $x=y$,
3. $M(x, y, t)=M(y, x, t)$,
4. $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$,
5. $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.

Definition 4. A 3-tuple $(X, M, *)$ is called a b-fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$, satisfying the following conditions for each $x, y, z \in X$, $t, s>0$ and $b \geq 1$ be a given real number,

1. $M(x, y, t)>0$,
2. $M(x, y, t)=1$ if and only if $x=y$,
3. $M(x, y, t)=M(y, x, t)$,
4. $M\left(x, y, \frac{t}{b}\right) * M\left(y, z, \frac{s}{b}\right) \leq M(x, z, t+s)$,
5. $M(x, y,):.(0, \infty) \rightarrow[0,1]$ is continuous.

It should be noted that, the class of b-fuzzy metric spaces is effectively larger than that of fuzzy metric spaces, since a b-fuzzy metric is a fuzzy metric when $b=1$.

We present an example shows that a b-fuzzy metric on X need not be a fuzzy metric on X.

Example 1. Let $M(x, y, t)=e^{\frac{-|x-y|^{p}}{t}}$, where $p>1$ is a real number. We show that M is a b-fuzzy metric with $b=2^{p-1}$.

Obviously conditions (1), (2), (3) and (5) of Definition 4 are satisfied.
If $1<p<\infty$, then the convexity of the function $f(x)=x^{p}(x>0)$ implies

$$
\left(\frac{a+c}{2}\right)^{p} \leq \frac{1}{2}\left(a^{p}+c^{p}\right)
$$

and hence, $(a+c)^{p} \leq 2^{p-1}\left(a^{p}+c^{p}\right)$ holds. Therefore,

$$
\begin{aligned}
\frac{|x-y|^{p}}{t+s} & \leq 2^{p-1} \frac{|x-z|^{p}}{t+s}+2^{p-1} \frac{|z-y|^{p}}{t+s} \\
& \leq 2^{p-1} \frac{|x-z|^{p}}{t}+2^{p-1} \frac{|z-y|^{p}}{s} \\
& =\frac{|x-z|^{p}}{t / 2^{p-1}}+\frac{|z-y|^{p}}{s / 2^{p-1}}
\end{aligned}
$$

Thus for each $x, y, z \in X$ we obtain

$$
M(x, y, t+s)=e^{\frac{-|x-y|^{p}}{t+s}} \geq M\left(x, z, \frac{t}{2^{p-1}}\right) * M\left(z, y, \frac{s}{2^{p-1}}\right)
$$

where $a * b=a \cdot b$. So condition (4) of Definition 4 is hold and M is a $b-$ fuzzy metric.

For $p=2$ and $s=t$ we have

$$
\begin{aligned}
M(x, y, 2 t) & =e^{\frac{-(x-y)^{2}}{2 t}} \\
& =e^{\frac{-(x-z+z-y)^{2}}{2 t}} \\
& \geq e^{\frac{-2\left((x-z)^{2}+(z-y)^{2}\right)}{2 t}} \\
& =e^{\frac{-(x-z)^{2}}{t}} \cdot e^{\frac{-(y-z)^{2}}{t}} \\
& =*(M(x, z, t), M(z, y, t))
\end{aligned}
$$

where $*(a, b)=a \cdot b$. For $s \neq t$, and $p \geq 2(X, M, *)$ is not a fuzzy metric space.

Example 2. Let $M(x, y, t)=e^{\frac{-d(x, y)}{t}}$ or $M(x, y, t)=\frac{t}{t+d(x, y)}$, where d is a b-metric on X and $a * c=a \cdot c$ for all $a, c \in[0,1]$. Then it is easy to show that M is a b-fuzzy metric.

Obviously conditions (1), (2), (3) and (5) of Definition 4 are satisfied. For each $x, y, z \in X$ we obtain

$$
\begin{aligned}
M(x, y, t+s) & =e^{\frac{-d(x, y)}{t+s}} \\
& \geq e^{-b \frac{d(x, z)+d(z, y)}{t+s}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-b \frac{d(x, z)}{t+s}} \cdot e^{-b \frac{d(z, y)}{t+s}} \\
& \geq e^{\frac{-d(x, z)}{t / b}} \cdot e^{\frac{-d(z, z)}{s / b}} \\
& =M\left(x, z, \frac{t}{b}\right) * M\left(z, y, \frac{s}{b}\right) .
\end{aligned}
$$

So condition (4) of Definition 4 is hold and M is a b - fuzzy metric. Similarly, it is easy to see that $M(x, y, t)=\frac{t}{t+d(x, y)}$ is a b - fuzzy metric.

Before stating and proving our results, we present some definition and proposition in b-metric space.

Definition 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then f is called b-nondecreasing, if $x>$ by implies $f(x) \geq f(y)$ for each $x, y \in \mathbb{R}$.

Lemma 1 ([15]). Let $(X, M, *)$ be a $b-$ fuzzy metric space. Then $M(x, y, t)$ is b-nondecreasing with respect to t, for all x, y in X. Also,

$$
M\left(x, y, b^{n} t\right) \geq M(x, y, t), \quad n \in \mathbb{N}
$$

Let $(X, M, *)$ be a b-fuzzy metric space. For $t>0$, the open ball $B(x, r, t)$ with center $x \in X$ and radius $0<r<1$ is defined by

$$
B(x, r, t)=\{y \in X: M(x, y, t)>1-r\} .
$$

We recall the notions of convergence and completeness in a b-fuzzy metric space. Let $(X, M, *)$ be a b-fuzzy metric space. Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exists $t>0$ and $0<r<1$ such that $B(x, r, t) \subset A$. Then τ is a topology on X (induced by the b-fuzzy metric $M)$. A sequence $\left\{x_{n}\right\}$ in X converges to x if and only if $M\left(x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$, for each $t>0$. It is called a Cauchy sequence if for each $0<\varepsilon<1$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that $M\left(x_{n}, x_{m}, t\right)>1-\varepsilon$ for each $n, m \geq n_{0}$. The b-fuzzy metric space $(X, M, *)$ is said to be complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists $t>0$ and $0<r<1$ such that $M(x, y, t)>1-r$ for all $x, y \in A$.

Lemma 2 ([15]). In a b-fuzzy metric space $(X, M, *)$ the following assertions hold:
(i) If sequence $\left\{x_{n}\right\}$ in X converges to x, then x is unique,
(ii) If sequence $\left\{x_{n}\right\}$ in X is converges to x, then sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

In b-fuzzy metric space we have the following proposition.
Proposition 1 ([16], Prop. 1.10). Let $(X, M, *)$ be a b-fuzzy metric space and suppose that $\left\{x_{n}\right\}$ is b-convergent to x then we have

$$
M\left(x, y, \frac{t}{b}\right) \leq \limsup _{n \rightarrow \infty} M\left(x_{n}, y, t\right) \leq M(x, y, b t)
$$

$$
M\left(x, y, \frac{t}{b}\right) \leq \liminf _{n \rightarrow \infty} M\left(x_{n}, y, t\right) \leq M(x, y, b t)
$$

Remark 1. In general, a b-fuzzy metric is not continuous.
Definition 6 ([3]). An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 7 ([9]). An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g x$ and $F(y, x)=g y$.

Definition 8 ([9]). Let X be a nonempty set. Then we say that the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are commutative if $g F(x, y)=$ $F(g x, g y)$.

Theorem 1 ([17]). Let $(X, M, *)$ be a complete b-fuzzy metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two functions such that

$$
\begin{equation*}
M(F(x, y), F(u, v), t) \geq \phi\left(\min \left\{M\left(g x, g u, b^{2} t\right), M\left(g y, g v, b^{2} t\right)\right\}\right) \tag{1}
\end{equation*}
$$

for all $x, y, u, v \in X$ and $t>0$. Assume that F and g satisfy the following conditions:

1. $F(X \times X) \subseteq g(X)$,
2. $g(X)$ is complete, and
3. g is continuous and commutes with F.

If $\phi \in \Phi$, then there is a unique x in X such that $g x=F(x, x)=x$.

2. The main results

Let Φ denote the class of all functions $\phi:[0,1] \rightarrow[0,1]$ such that ϕ is increasing, continuous, $\phi(t)>t$ for all $t \in(0,1)$.

Note that $\phi(0)=0$ and $\phi(1)=1$, then $\phi(t) \geq t$ for all $t \in[0,1]$.
We start our work by proving the following crucial lemma.
Lemma 3. Let $(X, M, *)$ be a b-fuzzy metric space with $b \geq 1$ and let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
\begin{equation*}
M(F(x, y), F(u, v), t) \geq \phi(\min \{M(g x, g u, t), M(g y, g v, t)\}) \tag{2}
\end{equation*}
$$

for some $\phi \in \Phi$ and for all $x, y, u, v \in X$ and $t>0$. Assume that (x, y) is a coupled coincidence point of the mappings F and g. Then $F(x, y)=g x=$ $g y=F(y, x)$.

Proof. Since (x, y) is a coupled coincidence point of the mappings F and g, we have $g x=F(x, y)$ and $g y=F(y, x)$. Assume $g x \neq g y$. Then by (2), we get

$$
\begin{aligned}
M(g x, g y, t) & =M(F(x, y), F(y, x), t) \\
& \geq \phi(\min \{M(g x, g y, t), M(g y, g x, t)\}) \\
& =\phi(M(g x, g y, t)) \\
& >M(g x, g y, t)
\end{aligned}
$$

which is a contradiction. So $g x=g y$, and hence $F(x, y)=g x=g y=$ $F(y, x)$.

The following is the main result of this section.
Theorem 2. Let $(X, M, *)$ be a complete b-fuzzy metric space. Let F : $X \times X \rightarrow X$ and $g: X \rightarrow X$ be two functions such that
(3) $M(F(x, y), F(u, v), t) \geq \phi\left(\min \left\{M\left(g x, g u, b^{2} t\right), M\left(g y, g v, b^{2} t\right)\right.\right.$,

$$
M\left(g x, F(x, y), b^{2} t\right), M\left(g u, F(u, v), b^{2} t\right)
$$

$$
\left.\left.M\left(g y, F(y, x), b^{2} t\right), M\left(g v, F(v, u), b^{2} t\right)\right\}\right)
$$

for all $x, y, u, v \in X$ and $t>0$. Assume that F and g satisfy the following conditions:
(i) $F(X \times X) \subseteq g(X)$,
(ii) $g(X)$ is complete, and
(iii) g is continuous and commutes with F.

If $\phi \in \Phi$, then there is a unique x in X such that $g x=F(x, x)=x$.
Proof. Let $x_{0}, y_{0} \in X$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in$ X such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Again since $F(X \times$ $X) \subseteq g(X)$, we can choose $x_{2}, y_{2} \in X$ such that $g x_{2}=F\left(x_{1}, y_{1}\right)$ and $g y_{2}=F\left(y_{1}, x_{1}\right)$. Continuing this process, we can construct two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$. For $n \in \mathbb{N} \cup\{\mathbf{0}\}$, by (3) we have

$$
\begin{aligned}
& M\left(g x_{n-1}, g x_{n}, t\right)= M\left(F\left(x_{n-2}, y_{n-2}\right), F\left(x_{n-1}, y_{n-1}\right), t\right) \\
& \geq \phi\left(\operatorname { m i n } \left\{M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right),\right.\right. \\
& M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g x_{n-1}, g x_{n}, b^{2} t\right), \\
&\left.\left.M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right),\right\}\right) .
\end{aligned}
$$

Similarly by (3) we have

$$
\begin{aligned}
M\left(g y_{n-1}, g y_{n}, t\right) & =M\left(F\left(y_{n-2}, x_{n-2}\right), F\left(y_{n-1}, x_{n-1}\right), t\right) \\
& \geq \phi\left(\operatorname { m i n } \left\{M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right), M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right),\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right) \\
& \left.\left.M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g x_{n-1}, g x_{n}, b^{2} t\right),\right\}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
a_{n}(t)= & \min \left\{M\left(g x_{n-1}, g x_{n}, t\right), M\left(g y_{n-1}, g y_{n}, t\right)\right\} \\
\geq & \phi\left(\operatorname { m i n } \left\{M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right)\right.\right. \\
& \left.\left.M\left(g x_{n-1}, g x_{n}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right)\right\}\right) \\
\geq & \phi\left(\operatorname { m i n } \left\{M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right)\right.\right. \\
& \left.\left.\min \left\{M\left(g x_{n-1}, g x_{n}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right)\right\}\right\}\right)
\end{aligned}
$$

If min $=\min \left\{M\left(g x_{n-1}, g x_{n}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right)\right\}$ and using Lemma 1 we have

$$
\begin{aligned}
& \min \{M\left.\left(g x_{n-1}, g x_{n}, t\right), M\left(g y_{n-1}, g y_{n}, t\right)\right\} \\
& \geq \phi\left(\min \left\{M\left(g x_{n-1}, g x_{n}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right)\right\}\right) \\
& \quad>\min \left\{M\left(g x_{n-1}, g x_{n}, b^{2} t\right), M\left(g y_{n-1}, g y_{n}, b^{2} t\right)\right. \\
& \quad \geq \min \left\{M\left(g x_{n-1}, g x_{n}, t\right), M\left(g y_{n-1}, g y_{n}, t\right)\right.
\end{aligned}
$$

So, we get contraction, and therefore we have

$$
a_{n}(t) \geq \phi\left(\min \left\{M\left(g x_{n-2}, g x_{n-1}, b^{2} t\right), M\left(g y_{n-2}, g y_{n-1}, b^{2} t\right)\right\}\right)
$$

Now, we have

$$
a_{n}(t) \geq \phi\left(a_{n-1}\left(b^{2} t\right)\right)>a_{n-1}\left(b^{2} t\right) \geq a_{n-1}(t)
$$

Thus $a_{n}(t)$ is increasing sequence in $[0,1]$ for every $t>0$. Therefore, tends to a limit $a(t) \leq 1$. We claim that $a(t)=1$. If $a(t)<1$ on making $n \rightarrow \infty$ in the above inequality we get $a(t) \geq \phi\left(a\left(b^{2} t\right)\right)>a\left(b^{2} t\right) \geq a(t)$, a contradiction. Hence $a(t)=1$, i.e.,

$$
\lim _{n \rightarrow \infty} \min \left\{M\left(g x_{n-1}, g x_{n}, t\right), M\left(g y_{n-1}, g y_{n}, t\right)\right\}=1
$$

respectively

$$
\lim _{n \rightarrow \infty} M\left(g x_{n}, g x_{n+1}, t\right)=1, \quad \lim _{n \rightarrow \infty} M\left(g y_{n}, g y_{n+1}, t\right)=1
$$

Now, we prove that $\left(g x_{n}\right)$ and $\left(g y_{n}\right)$ are Cauchy sequence in $g(X)$ for $n \in \mathbb{N}$.

First, we prove that for every $\epsilon \in(0,1)$, there exist two numbers $n, m \in \mathbb{N}$ such that

$$
M\left(g x_{n}, g x_{m}, t\right) \wedge M\left(g y_{n}, g y_{m}, t\right)>1-\epsilon
$$

where

$$
M\left(g x_{n}, g x_{m}, t\right) \wedge M\left(g y_{n}, g y_{m}, t\right)=\min \left\{M\left(g x_{n}, g x_{m}, t\right), M\left(g y_{n}, g y_{m}, t\right)\right\}
$$

Suppose that this is not true. Then there is an $\epsilon \in(0,1)$ such that for each integer k, there exist integers $m(k)$ and $n(k)$ with $m(k)>n(k) \geq k$ such that

$$
\begin{align*}
d_{k}(t) & =M\left(g x_{n(k)}, g x_{m(k)}, t\right) \wedge M\left(g y_{n(k)}, g y_{m(k)}, t\right) \tag{4}\\
& \leq 1-\epsilon \quad \text { for } k=1,2, \cdots .
\end{align*}
$$

We may assume that

$$
\begin{equation*}
M\left(g x_{n(k)}, g x_{m(k)-1}, t\right) \wedge M\left(g y_{n(k)}, g y_{m(k)-1}, t\right)>1-\epsilon \tag{5}
\end{equation*}
$$

by choosing $m(k)$ be the smallest number exceeding $n(k)$ for which (4) holds. Using (4), and the fact that $a * b \geq(a \wedge c) *(b \wedge d)$ we have

$$
\begin{aligned}
1-\epsilon & \geq d_{k}(t) \\
& \geq\left[M\left(g x_{n(k)}, g x_{m(k)-1}, \frac{t}{2 b}\right) * M\left(g x_{m(k)-1}, g x_{m(k)}, \frac{t}{2 b}\right)\right] \\
& \wedge\left[M\left(g y_{n(k)}, g y_{m(k)-1}, \frac{t}{2 b}\right) * M\left(g y_{m(k)-1}, g y_{m(k)}, \frac{t}{2 b}\right)\right] \\
& \geq\left[M\left(g x_{n(k)}, g x_{m(k)-1}, \frac{t}{2 b}\right) \wedge M\left(g y_{n(k)}, g y_{m(k)-1}, \frac{t}{2 b}\right)\right] \\
& *\left[M\left(g x_{m(k)-1}, g x_{m(k)}, \frac{t}{2 b}\right) \wedge M\left(g y_{m(k)-1}, g y_{m(k)}, \frac{t}{2 b}\right)\right] \\
& \wedge\left[M\left(g x_{n(k)}, g x_{m(k)-1}, \frac{t}{2 b}\right) \wedge M\left(g y_{n(k)}, g y_{m(k)-1}, \frac{t}{2 b}\right)\right] \\
& *\left[M\left(g x_{m(k)-1}, g x_{m(k)}, \frac{t}{2 b}\right) \wedge M\left(g y_{m(k)-1}, g y_{m(k)}, \frac{t}{2 b}\right)\right] \\
& \geq\left[M\left(g x_{m(k)-1}, g x_{m(k)}, \frac{t}{2 b}\right) \wedge M\left(g y_{m(k)-1}, g y_{m(k)}, \frac{t}{2 b}\right)\right] * a_{k}\left(\frac{t}{2 b}\right),
\end{aligned}
$$

Thus, as $k \rightarrow \infty$ in the above inequality we have

$$
1-\epsilon \geq \lim _{k \rightarrow \infty} d_{k}(t) \geq(1-\epsilon) * \lim _{k \rightarrow \infty} a_{k}\left(\frac{t}{2 b}\right)=1-\epsilon
$$

that is

$$
\lim _{k \rightarrow \infty} d_{k}(t)=1-\epsilon
$$

for every $t>0$.

On the other hand, we have

$$
\begin{aligned}
d_{k}(t) & \geq\left[M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t}{3 b}\right) * M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right)\right. \\
& \left.* M\left(g x_{m(k)+1}, g x_{m(k)}, \frac{t}{3 b}\right)\right] \\
& \wedge\left[M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t}{3 b}\right) * M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right)\right. \\
& \left.* \quad M\left(g y_{m(k)+1}, g y_{m(k)}, \frac{t}{3 b}\right)\right] \\
& \geq\left[M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{m(k)+1}, g x_{m(k)}, \frac{t}{3 b}\right) \wedge M\left(g y_{m(k)+1}, g y_{m(k)}, \frac{t}{3 b}\right)\right] \\
& \wedge\left[M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{m(k)+1}, g x_{m(k)}, \frac{t}{3 b}\right) \wedge M\left(g y_{m(k)+1}, g y_{m(k)}, \frac{t}{3 b}\right)\right] \\
& =\left[M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right) \wedge M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right)\right] \\
& *\left[M\left(g x_{m(k)+1}, g x_{m(k)}, \frac{t}{3 b}\right) \wedge M\left(g y_{m(k)+1}, g y_{m(k)}, \frac{t}{3 b}\right)\right] \\
& \geq a_{k}\left(\frac{t}{3 b}\right) *\left[M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right)\right. \\
& \left.\wedge M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right)\right] * a_{k}\left(\frac{t}{3 b}\right) \\
& =a_{k}\left(\frac{t}{3 b}\right) * \min \left\{M\left(F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{m(k)}, y_{m(k)}\right), \frac{t}{3 b}\right),\right\} * a_{k}\left(\frac{t}{3 b}\right)
\end{aligned}
$$

From

$$
\begin{aligned}
& M\left(g x_{n(k)+1}, g x_{m(k)+1}, \frac{t}{3 b}\right) \\
& =M\left(F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{m(k)}, y_{m(k)}\right), \frac{t}{3 b}\right) \\
& \geq \phi\left(\operatorname { m i n } \left\{M\left(g x_{n(k)}, g x_{m(k)}, \frac{t b}{3}\right), M\left(g y_{n(k)}, g y_{m(k)}, \frac{t b}{3}\right),\right.\right. \\
& M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t b}{3}\right), M\left(g x_{m(k)}, g x_{m(k)+1}, \frac{t b}{3}\right), \\
& \left.\left.M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t b}{3}\right), M\left(g y_{m(k)}, g y_{m(k)+1}, \frac{t b}{3}\right)\right\}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& M\left(g y_{n(k)+1}, g y_{m(k)+1}, \frac{t}{3 b}\right) \\
& =M\left(F\left(y_{n(k)}, x_{n(k)}\right), F\left(y_{m(k)}, x_{m(k)}\right), \frac{t}{3 b}\right) \\
& \geq \phi\left(\operatorname { m i n } \left\{M\left(g y_{n(k)}, g y_{m(k)}, \frac{t b}{3}\right), M\left(g x_{n(k)}, g x_{m(k)}, \frac{t b}{3}\right),\right.\right. \\
& M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t b}{3}\right), M\left(g y_{m(k)}, g y_{m(k)+1}, \frac{t b}{3}\right), \\
& \left.\left.M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t b}{3}\right), M\left(g x_{m(k)}, g x_{m(k)+1}, \frac{t b}{3}\right)\right\}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
\min \{M(& \left.F\left(x_{n(k)}, y_{n(k)}\right), F\left(x_{m(k)}, y_{m(k)}\right), \frac{t}{3 b}\right) \\
& \left.M\left(F\left(y_{n(k)}, x_{n(k)}\right), F\left(y_{m(k)}, x_{m(k)}\right), \frac{t}{3 b}\right)\right\} \\
\geq & \phi\left(\operatorname { m i n } \left\{M\left(g x_{n(k)}, g x_{m(k)}, \frac{t b}{3}\right), M\left(g y_{n(k)}, g y_{m(k)}, \frac{t b}{3}\right)\right.\right. \\
& M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t b}{3}\right), M\left(g x_{m(k)}, g x_{m(k)+1}, \frac{t b}{3}\right) \\
& \left.\left.M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t b}{3}\right), M\left(g y_{m(k)}, g y_{m(k)+1}, \frac{t b}{3}\right)\right\}\right) \\
\geq & \phi\left(\operatorname { m i n } \left\{\min \left\{M\left(g x_{n(k)}, g x_{m(k)}, \frac{t b}{3}\right), M\left(g y_{n(k)}, g y_{m(k)}, \frac{t b}{3}\right)\right\},\right.\right. \\
& \min \left\{M\left(g x_{n(k)}, g x_{n(k)+1}, \frac{t b}{3}\right), M\left(g x_{m(k)}, g x_{m(k)+1}, \frac{t b}{3}\right)\right\} \\
& \left.\left.\min \left\{M\left(g y_{n(k)}, g y_{n(k)+1}, \frac{t b}{3}\right), M\left(g y_{m(k)}, g y_{m(k)+1}, \frac{t b}{3}\right)\right\}\right\}\right) \\
= & \phi\left(\min \left\{d_{k}\left(\frac{t b}{3}\right), a_{k}\left(\frac{t b}{3}\right), a_{k}\left(\frac{t b}{3}\right)\right\}\right) \\
= & \phi\left(\min \left\{d_{k}\left(\frac{t b}{3}\right), a_{k}\left(\frac{t b}{3}\right)\right\}\right) .
\end{aligned}
$$

Therefore,

$$
d_{k}(t) \geq a_{k}\left(\frac{t b}{3}\right) * \phi\left(\min \left\{d_{k}\left(\frac{t b}{3}\right), a_{k}\left(\frac{t b}{3}\right)\right\}\right) * a_{k}\left(\frac{t b}{3}\right) .
$$

Thus, as $k \rightarrow \infty$ in the above inequality we have

$$
1-\epsilon \geq 1 * \phi(1-\epsilon) * 1=\phi(1-\epsilon)>1-\epsilon
$$

which is a contradiction.
Thus $\left(g x_{n}\right)$ and $\left(g y_{n}\right)$ are Cauchy in $g(X)$. Since $g(X)$ is complete, we get $\left(g x_{n}\right)$ and $\left(g y_{n}\right)$ are convergent to some $x \in X$ and $y \in X$ respectively.

Since g is continuous, we have $\left(g g x_{n}\right)$ is convergent to $g x$ and $\left(g g y_{n}\right)$ is convergent to $g y$. Also, since g and F are commute, we have

$$
g g x_{n+1}=g\left(F\left(x_{n}, y_{n}\right)\right)=F\left(g x_{n}, g y_{n}\right),
$$

and

$$
g g y_{n+1}=g\left(F\left(y_{n}, x_{n}\right)\right)=F\left(g y_{n}, g x_{n}\right) .
$$

Thus,

$$
\begin{aligned}
\min \{ & \left.M\left(g g x_{n+1}, F(x, y), t\right), M\left(g g y_{n+1}, F(y, x), t\right)\right\} \\
= & \min \left\{M\left(F\left(g x_{n}, g y_{n}\right), F(x, y), t\right), M\left(F\left(g y_{n}, g x_{n}\right), F(y, x), t\right)\right\} \\
\geq & \phi\left(\operatorname { m i n } \left\{M\left(g g x_{n}, g x, b^{2} t\right), M\left(g g y_{n}, g y, b^{2} t\right),\right.\right. \\
& M\left(g g x_{n}, g g x_{n+1}, b^{2} t\right), M\left(g x, F(x, y), b^{2} t\right), \\
& \left.\left.M\left(g g y_{n}, g g y_{n+1}, b^{2} t\right), M\left(g y, F(y, x), b^{2} t\right)\right\}\right),
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the Proposition 1 we get that

$$
\begin{aligned}
\min \{ & M(g x, F(x, y), b t), M(g y, F(y, x), b t) \\
& \geq \\
\quad & \limsup _{n \rightarrow \infty} \min \left\{M\left(F\left(g x_{n}, g y_{n}\right), F(x, y), t\right),\right. \\
& \left.M\left(F\left(g y_{n}, g x_{n}\right), F(x, y), t\right)\right\} \\
\geq & \phi(\min \{M(g x, F(x, y), b t), M(g y, F(y, x), b t)\}) .
\end{aligned}
$$

This is possible only if $g x=F(x, y)$ and $g y=F(y, x)$.
Hence, by Lemma 1, we have

$$
\begin{aligned}
& M\left(F(x, y), F(y, x), b^{2} t\right)=M\left(g x, g y, b^{2} t\right) \\
& \quad \geq M(g x, g y, t)=M(F(x, y), F(y, x), t) \\
& \quad \geq \phi\left(\min \left\{\begin{array}{l}
M\left(g x, g y, b^{2} t\right), M\left(g y, g x, b^{2} t\right), M\left(g x, F(x, y), b^{2} t\right), \\
M\left(g y, F(y, x), b^{2} t\right), M\left(g y, F(y, x), b^{2} t\right), \\
M\left(g x, F(x, y), b^{2} t\right)
\end{array}\right\}\right) \\
& \quad=\phi\left(\min \left\{M\left(g x, g y, b^{2} t\right), M\left(g y, g x, b^{2} t\right)\right\}\right) .
\end{aligned}
$$

So, by Lemma 3 we have $g x=F(x, y)=g y=F(y, x)$.
Thus, using Proposition 1 we have

$$
\begin{aligned}
M(x, g x, b t) \geq & \limsup _{n \rightarrow \infty} M\left(g x_{n+1}, g x, t\right) \\
= & \limsup _{n \rightarrow \infty} M\left(F\left(x_{n}, y_{n}\right), F(x, y), t\right) \\
\geq & \limsup _{n \rightarrow \infty} \phi\left(\operatorname { m i n } \left\{M\left(g x_{n}, g x, b^{2} t\right), M\left(g y_{n}, g y, b^{2} t\right),\right.\right. \\
& M\left(g x_{n}, g x_{n+1}, b^{2} t\right), M\left(g x, g x, b^{2} t\right), \\
& \left.\left.M\left(g y_{n}, g y_{n+1}, b^{2} t\right), M\left(g y, g y, b^{2} t\right)\right\}\right) \\
\geq & \phi(\min \{M(x, g x, b t), M(y, g y, b t)\}) .
\end{aligned}
$$

Similarly, we may show that

$$
M(y, g y, b t) \geq \phi(\min \{M(x, g x, b t), M(y, g y, b t)\})
$$

Thus

$$
\begin{aligned}
\min \{ & M(x, g x, b t), M(y, g y, b t)\} \\
& \geq \phi(\min \{M(x, g x, b t), M(y, g y, b t)\}) \\
& >\min \{M(x, g x, b t), M(y, g y, b t)\}
\end{aligned}
$$

The last inequality happened only if $M(x, g x, t)=1$ and $M(y, g y, t)=1$. Hence $x=g x$ and $y=g y$. Thus we get

$$
g x=F(x, x)=x .
$$

To prove the uniqueness, let $z \in X$ with $z \neq x$ such that

$$
z=g z=F(z, z)
$$

Then

$$
\begin{aligned}
M(x, z, t)= & M(F(x, x), F(z, z), t) \\
\geq & \phi\left(\operatorname { m i n } \left\{M\left(g x, g z, b^{2} t\right), M\left(g x, g z, b^{2} t\right), M\left(g x, g x, b^{2} t\right)\right.\right. \\
& \left.\left.M\left(g z, g z, b^{2} t\right), M\left(g x, g x, b^{2} t\right), M\left(g z, g z, b^{2} t\right)\right\}\right) \\
= & \phi\left(M\left(g x, g z, b^{2} t\right)\right) \\
> & M\left(g x, g z, b^{2} t\right)=M\left(x, z, b^{2} t\right) \\
\geq & M(x, z, t)
\end{aligned}
$$

We get $M(x, z, t)>M(x, z, t)$, which is a contradiction. Thus F and g have a unique common fixed point.

Remark 2. Let (x, y) and (u, v) be coupled coincidence point of mapping F and g. Then we get Theorem 1. That is the Theorem 2 is generalization of Theorem 1.

Corollary 1. Let $(X, M, *)$ be a complete b-fuzzy metric space. Let $F: X \times X \rightarrow X$ be function such that

$$
\begin{align*}
M(F(x, y), F(u, v), t) \geq & \phi\left(\operatorname { m i n } \left\{M\left(x, u, b^{2} t\right), M\left(y, v, b^{2} t\right),\right.\right. \tag{6}\\
& M\left(x, F(x, y), b^{2} t\right), M\left(u, F(u, v), b^{2} t\right) \\
& \left.\left.M\left(y, F(y, x), b^{2} t\right), M\left(v, F(v, u), b^{2} t\right)\right\}\right)
\end{align*}
$$

for all $x, y, u, v \in X$ and $t>0$, and $\phi \in \Phi$. Then there is a unique x in X such that $F(x, x)=x$.

Proof. Let $g(x)=x$. Then all conditions of previous theorem are satisfied.

Corollary 2. Let $(X, M, *)$ be a complete fuzzy metric space. Let F : $X \times X \rightarrow X$ and $g: X \rightarrow X$ be two functions such that
(7) $M(F(x, y), F(u, v), t) \geq \phi(\min \{M(g x, g u, t), M(g y, g v, t)$,

$$
M(g x, F(x, y), t), M\left(g u, F(u, v), b^{2} t\right)
$$

$$
\left.\left.M\left(g y, F(y, x), b^{2} t\right), M\left(g v, F(v, u), b^{2} t\right)\right\}\right)
$$

for all $x, y, u, v \in X$ and $t>0$. Assume that F and g satisfy the following conditions:

1. $F(X \times X) \subseteq g(X)$,
2. $g(X)$ is complete, and
3. g is continuous and commutes with F.

If $\phi \in \Phi$, then there is a unique x in X such that $g x=F(x, x)=x$.
Proof. Let $b=1$. Then all conditions of previous theorem are satisfied.

Example 3. Let $X=[0,1]$ and $a * c=a \cdot c$ for all $a, c \in[0,1]$ and let M be the b-fuzzy set on $X \times X \times(0,+\infty)$ defined as follows:

$$
M(x, y, t)=e^{\frac{-(x-y)^{2}}{t}}
$$

for all $t \in \mathbb{R}^{+}$. Then $(X, M, *)$ is a b-fuzzy metric space for $b=2$. Define $g(x)=\frac{x}{4}, F(x, y)=\frac{2 x+y}{32 \sqrt{2}}$ and $\phi(t)=\sqrt{t}$, , for $t>0$. It is evident that $F(X \times$ $X) \subseteq g(X), g$ is continuous, $g(X)=\left[0, \frac{x}{4}\right]$ is complete and g commutes with F.

Since,

$$
\begin{aligned}
\left(\frac{2 x+y}{32 \sqrt{2}}-\frac{2 u+v}{32 \sqrt{2}}\right)^{2} & =\left(\frac{2 x-2 u}{32 \sqrt{2}}+\frac{y-v}{32 \sqrt{2}}\right)^{2} \\
& \leq \frac{2}{32}\left[\frac{1}{4}\left(\frac{2 x}{4}-\frac{2 u}{4}\right)^{2}+\frac{1}{4}\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right] \\
& \leq \frac{1}{16}\left[\left(\frac{x}{4}-\frac{u}{4}\right)^{2}+\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right] \\
& \leq \frac{2}{16} \max \left\{\left(\frac{x}{4}-\frac{u}{4}\right)^{2},\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right\} \\
& =\frac{1}{8} \max \left\{\left(\frac{x}{4}-\frac{u}{4}\right)^{2},\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right\}
\end{aligned}
$$

hence it follows that

$$
M(F(x, y), F(u, v), t)=e^{\frac{-\left(\frac{2 x+y}{32 \sqrt{2}}-\frac{2 u+v}{32 \sqrt{2}}\right)^{2}}{t}}=e^{\frac{-\left(\frac{2 x-2 u}{32 \sqrt{2}}+\frac{y-v}{32 \sqrt{2}}\right)^{2}}{t}}
$$

$$
\begin{aligned}
& \geq e^{\frac{-\left[\left(\frac{x}{4}-\frac{u}{4}\right)^{2}+\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right]}{8 t}} \geq e^{\frac{-\max \left\{\left(\frac{x}{4}-\frac{u}{8}\right)^{2},\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right\}}{8 t}} \\
& =\sqrt{e^{\frac{-\max \left\{\left(\frac{x}{4}-\frac{u}{4}\right)^{2},\left(\frac{y}{4}-\frac{v}{4}\right)^{2}\right\}}{4 t}}} \\
& =\sqrt{\min \left\{e^{\frac{-\left(\frac{x}{4}-\frac{u}{4}\right)^{2}}{4 t}}, e^{\frac{-\left(\frac{y}{4}-\frac{v}{4}\right)^{2}}{4 t}}\right\}} \\
& =\sqrt{\min \{M(g x, g u, 4 t), M(g y, g v, 4 t)\}} \\
& \geq \sqrt{\min \left\{\begin{array}{l}
M(g x, g u, 4 t), M(g y, g v, 4 t), M(g x, F(x, y), 4 t), \\
M(g u, F(u, v), 4 t), M(g y, F(y, x), 4 t), M(g v, F(v, u), 4 t)\}
\end{array}\right.}
\end{aligned}
$$

for all x, y, u, v in X. Thus all the conditions of Theorem 2 are satisfied and 0 is a unique point in X such that $g 0=F(0,0)=0$.

Acknowledgment. The first author is thankful to MNTRRS-174009.

References

[1] Aghajani A., Abbas M., Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaca, 64(4)(2014), 941-960.
[2] Banach S., Sur les operations dans les ensembles abstraits el leur application aux equations integrals, Fundam. Math., 3(1922), 133-181.
[3] Bhaskar T.G., Lakshmikantham V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65(2006), 1379-1393.
[4] Czerwik S., Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1993), 5-11.
[5] Fang J.X., On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Sys., 46(1992), 107-113.
[6] George A., Veeramani P., On some result in fuzzy metric space, Fuzzy Sets Syst., 64(1994), 395-399.
[7] Jovanovic M., Kadelburg Z., Radenović S., Common fixed point results in metric-type spaces, Fixed Point Theory Appl., (2010), Article ID 978121, 15 pages, doi:10.1155/2010/978121.
[8] Kramosil I., Michalek J., Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[9] Lakshmikantham V., Ćirić B.LJ., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, 70(2009), 4341-4349.
[10] Menger K., Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28(1942), 535-537.
[11] Mineţ D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144(2004), 431-439.
[12] Moradi S., Omid M., A fixed point theorem for integral type inequality depending on another function, Int. J. Math. Analysis, 4(30)(2010), 1491-1499.
[13] Schweizer B., Sherwood H., Tardiff R.M., Contractions on PM-space examples and counterexamples, Stochastica, 1(1988), 5-17.
[14] Singh S.L., Czerwik S., Krol K., Singh A., Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24(2008), 401-416.
[15] Sedghi S., Shobe N., Common fixed point theorem in b-fuzzy metric space, Nonlinear Functional Analysis and Applications, 17(3)(2012), 349-359.
[16] Sedghi S., Shobe N., Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric space, Nonlinear Functional Analysis and Applications, 19(2)(2014), 285-295.
[17] Sedghi S., Shobe N., Došenović T., Javaheri A., Coupled fixed point theorem in b-fuzzy metric spaces, Novi Sad J. Math., 47(1)(2017), 77-88.
[18] Sedghi S., Shobe N., Selahshoor M.A., A common fixed point theorem for four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics, 1(1)(2006).
[19] Sedghi S., Turkoglu D., Shobe N., Generalization common fixed point theorem in complete fuzzy metric spaces, Journal of Computational Analysis and Applictions, 3(9)(2007), 337-348.
[20] Zadeh L.A., Fuzzy sets, Inform and Control, 8(1965), 338-353.

Tatjana Došenović
Faculty of Technology
Bulevar cara Lazara 1
University of Novi Sad, Serbia
tatjanad@tf.uns.ac.rs
Zeinab Hassanzadeh
Department of Mathematics
Qaemshahr Branch
Islamic Azad University
Qaemshahr, Iran
e-mail: Z.hassanzadeh1368@yahoo.com
Shaban Sedghi
Department of Mathematics
Qaemshahr Branch
Islamic Azad University
Qaemshahr, Iran
e-mail: sedghi_gh@yahoo.com

Received on 03.05.2018 and, in revised form, on 19.12.2018.

