
F A S C I C U L I M A T H E M A T I C I

Nr 61 2018
DOI:10.1515/fascmath-2018-0017
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SOME EXTENSIONS OF BANACH CONTRACTION

PRINCIPLE IN G-METRIC SPACES

Abstract. We present different extensions of the Banach con-
traction principle in the G-metric space setting. More precisely,
we consider mappings for which the contractive condition is satis-
fied by a power of the mapping and for which the power depends
on the specified point in the space. We first state the result in
the continuous case and later, show that the continuity is indeed
not necessary. Imitating some techniques obtained in the met-
ric case, we prove that under certain conditions, it is enough for
the contractive condition to be verified on a proper subset of the
space under consideration. These results generalize well known
comparable results.
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1. Introduction and preliminaries

Many generalizations of metric spaces have appeared in the last decades
and even most of them are generalized metric spaces (see cone metric spaces,
G-metric spaces, etc.), they present they own particularity and address some
specific mathematical problems, both in theory and in application. Once an
exposé1 of the space has been done, it is mathematically ideal to investi-
gate the behaviour of maps between these spaces, specially self maps that
leave certain points of the space fixed. The Banach Contraction Principle
(BCP) is surely the most celebrated result in fixed point theory. Therefore
it represented the default starting point for fixed point theory in different
generalized metric spaces. The BCP has been generalized in many different
directions, in many different generalized metric spaces. The generalized met-
ric space which is our focus here is the G-metric space. Different extensions

1 At least on a topological point of view.
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of the BCP were also presented in G-metric spaces, so inspired by the works
of Bryant [5], Gajić [9] and Mustafa [11], we prove the following:

Theorem 1. Let (X,G) be a complete G-metric space and let T : X → X
be a continuous mapping satisfying the condition: there exists λ ∈ [0, 1) such
that for each x ∈ X, there exists a positive integer n(x) such that

(1) G(Tn(x)x, Tn(x)y, Tn(x)z) ≤ λ G(x, y, z),

whenever y, z ∈ X. Then T leaves exactly one point of X fixed.

The work we present via the different theorems we proved, also extend
some theorems of well-known authors such as of Ćirić [4], Jachymaski [10],
Rhoades [14], from metric spaces to G-metric spaces. Similar work can also
be read in [9] and the references therein. Also a few recent results about
fixed point in G-metric spaces can be read in [1, 2, 3, 6, 7, 8]. Moreover, the
author plans to study some more fixed point results in [7]. The basic ideas
about G-metrics can be read in [13] but for the convenience of the reader,
we here recall the most important ones.

Definition 1 (Compare [13], Definition 3). Let X be a nonempty set,
and let the function G : X×X×X → [0,∞) satisfy the following properties:

(G1) G(x, y, z) = 0 if x = y = z whenever x, y, z ∈ X;
(G2) G(x, x, y) > 0 whenever x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z) whenever x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables);
(G5)

G(x, y, z) ≤ [G(x, a, a) +G(a, y, z)]

for any points x, y, z, a ∈ X.
Then (X,G) is called a G-metric space.

Proposition 1 (Compare [13], Proposition 6). Let (X,G) be a G-metric
space.

Then for a sequence {xn} ⊆ X, the following are equivalent
(i) {xn} is G-convergent to x ∈ X.
(ii) lim

n,m→∞
G(x, xn, xm) = 0.

(iii) lim
n→∞

G(x, xn, xn) = 0.

(iv) lim
n→∞

G(xn, x, x) = 0.

Proposition 2 (Compare [13], Proposition 9). In a G-metric space
(X,G), the following are equivalent

(i) The sequence {xn} ⊆ X is G-Cauchy.
(ii) For each ε > 0 there exists N ∈ N such that G(xn, xm, xm) < ε for
all m,n ≥ N .



Some extensions of Banach contraction . . . 57

Definition 2 (Compare [13], Definition 9). A G-metric space (X,G)
is complete (or more precisely G-complete) if every G-Cauchy sequence of
elements of (X,G) is G-convergent in (X,G).

Proposition 3 (Compare [13], Proposition 7). If (X,G) and (X ′, G′) are
two G-metric space, then a function T : (X,G)→ (X ′, G′) is continuous at
a point x∗ ∈ X if and only if whenever a sequence {xn} ⊆ X is G-convergent
to x∗ ∈ X, then the sequence {Txn} ⊆ X ′ is G′-convergent to Tx∗ ∈ X ′.

We also recall the results by Mustafa:

Theorem 2 ([11]). Let (X,G) be a G-complete G-metric space and let
T : X → X be a mapping such that there exists λ ∈ [0, 1) satisfying

(2) G(Tx, Ty, Tz) ≤ λG(x, y, z),

whenever x, y, z ∈ X. Then T has a unique fixed point. In fact, T is a
Picard operator.

And the result by Bryant:

Theorem 3 (Compare[5]). Let (X, d) be a complete metric space and let
T : X → X be a mapping such that there exists λ ∈ [0, 1) satisfying

(3) d(Tnx, Tny) ≤ λ d(x, y),

for some n > 1, whenever x, y ∈ X. Then T has a unique fixed point.

2. First results

We start with the following lemma, needed for the next Theorem, and
for which a similar version has been given by Gajić et al. [9].

Lemma 1. Let T be a map satisfying the conditions of Theorem 1, then
the extended real valued mapping r : X → [0,∞] defined by

r(x) = sup
n
G(x, Tnx, Tnx),

is actually real valued, i.e. r(x) <∞ whenever x ∈ X.

Proof. Let x ∈ X and define

l(x) = max{G(x, T ix, T ix) : i = 1, 2, · · · , n(x)}.

For a positive interger n, by the Archimedean property, there exists an
integer s ≥ 0 such that

s n(x) < n ≤ (s+ 1)n(x).
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Therefore

G(x, Tnx, Tnx) ≤ G(x, Tn(x)x, Tn(x)x)

+ G(Tn(x)x, Tn(x)Tn−n(x)x, Tn(x)Tn−n(x)x)

≤ l(x) + λG(x, Tn−n(x)x, Tn−n(x)x)

≤ l(x) + λl(x) + λ2l(x) + · · ·+ λsl(x)

≤ l(x)

1− λ
for all n ≥ 0.

Hence r(x) <∞ whenever x ∈ X. �

2.1. Proof of Theorem 1

Proof. Let x0 ∈ X be arbitrary. We construct the sequence {xn} induc-
tively by setting

x1 = Tn(x0)(x0), and xi+1 = Tn(xi)(xi).

If wet set mi = n(xi), by usual procedure, we have that

G(xn, xn+1, xn+1) = G(Tmn−1xn−1, T
mn−1Tmnxn−1, T

mn−1Tmnxn−1)

≤ λG(xn−1, T
mnxn−1, T

mnxn−1)

= λG(Tmn−2xn−2, T
mnTmn−2xn−2, T

mnTmn−2xn−2)

≤ λ2G(xn−2, T
mnxn−2, T

mnxn−2) ≤ · · ·
≤ λnG(x0, T

mnx0, T
mnx0).

From Lemma 1, it follows that

G(xn, xn+1, xn+1) ≤ λnr(x0).

Hence for m > n, we have

G(xn, xm, xm) =
m−1∑
i=n

G(xi, xi+1, xi+1) ≤
λn

1− λ
r(x0)→ 0 as n→∞.

Thus {xn} is a G-Cauchy sequence. Moreover, since X is G-complete
there exists ξ ∈ X such that {xn} G-converges to ξ.

Claim: Tξ = ξ
By way of contraction, assume that Tξ 6= ξ. Then there exists two

disjoint neighborhoods U and V of ξ and Tξ respectively such that

ρ = inf{G(x, y, y) : x ∈ U, y ∈ V } > 0.
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Since T is continuous, xn ∈ U and Txn ∈ V for all n large enough.
However,

G(xn, Txn, Txn) = G(Tmn−1xn−1, T
mn−1Txn−1, T

mn−1Txn−1)

≤ λG(xn−1, Txn−1, Txn−1) ≤ · · ·
< λnG(x0, Tx0, Tx0)→ 0 as n→∞,

a contradiction since ρ > 0. Thus Tξ = ξ.
The uniqueness of the fixed point is given for free by the inequality (1). �

The following corollary is a direct consequence of Theorem 1 and is quite
surprising, as result, even though very interesting.

Corollary 1. Let T be a map satisfying the conditions of Theorem 1, then
for any initial point x0 ∈ X, the sequence of iterates {Tnx0}, n = 1, 2, · · · ,
G-converges to the unique fixed point of T .

Proof. According to the proof of Theorem 1, there exists a unique ξ
such that Tξ = ξ. Now to show that {Tnx0} G-converges to ξ, we set

η = max{G(ξ, Tmx0, T
mx0) : m = 1, 2, · · · , n(ξ)− 1}.

For n sufficiently large, then we know that there exists (r, q) ∈ N2 such
that

n = r.n(ξ) + q, 0 ≤ q < n(ξ), r > 0,

and

G(ξ, Tnx0, T
nx0) = G(Tn(ξ)ξ, T r.n(ξ)+qx0, T

r.n(ξ)+qx0)

≤ λG(ξ, T (r−1).n(ξ)+qx0, T
(r−1).n(ξ)+qx0) ≤ · · ·

≤ λrG(ξ, T qx0, T
qx0) ≤ λrη.

Moreover, since

n− q
n(ξ)

= r =⇒ lim
n→∞

n− q
n(ξ)

= lim
n→∞

r =∞,

we have
G(ξ, Tnx0, T

nx0) ≤ λrη → 0 as n→∞,

i.e. {Tnx0} G-converges to the unique fixed point to ξ. �

Next, we provide an example to illustrate Theorem 1. The function
we consider sastifies (1) but is not a contraction2 and we make use of a
well-known set X.

2 In fact, none of its powers is a contraction.
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Example 1. Let X = [0, 1] that we write in the form

X =
∞⋃
n=1

[
1

2n
,

1

2n−1

]
∪ {0},

and let’s endow X with the G-metric d, defined as

d(x, y, z) = max{|x− y|, |y − z|, |z − x|} for all x, y, z ∈ X.

Let T : X → X be defined as follows:

Tx =


1

2n+1 , if x ∈
[

1
2n ,

3n+5
2n+1(n+2)

]
n+2
n+3

(
x− 1

2n−1

)
+ 1

2n , if x ∈
[

3n+5
2n+1(n+2)

, 1
2n−1

]
and T (0) = 0.

Actually T maps the interval In :=
[

1
2n ,

1
2n−1

]
onto the interval In+1.

The function T is a continuous function on [0, 1] which leaves only 0
fixed but is not a contraction. Moreover, straightforward computations,
considering all the possible cases for x ∈ In and y ∈ Im (with m ≥ n and
m ≤ n), lead to

|Tx− Ty| ≤ n+ 3

n+ 4
|x− y| for all y ∈ X.

Therefore, if we choose λ = 1
2 in (1), then for each x ∈

[
1
2n ,

1
2n−1

]
, one

can take n(x) to be n(x) = n+ 3 and for x = 0, one just requires that n(0)
be such that n(0) ≥ 1.

3. Generalizations

In this section, we present results which extend Theorem 1 along with
Corollary 3. In fact, we look at mappings which are not necessarily contin-
uous, and satisfy a weaker form of (1) for a proper subset of X. Moreover,
we show that Theorem 1 remains true when the hypothesis of continuity
is removed. We provide examples to illustraste the actual extensions. The
proofs we present are merely copies of the ones already done for Theorem 1
and Corollary 3.

Lemma 2. Let (X,G) be a G-metric space and T : X → X a mapping.
Let B ⊂ X with T (B) ⊂ B. If there exists u ∈ B and a positive integer n(u)
such that Tn(u)u = u and

(4) G(Tn(u)u, Tn(u)x, Tn(u)y) ≤ λ G(u, x, y),

for some some λ < 1 and all x, y ∈ B, then u is the unique fixed point of
T in B and the sequence of iterates {Tnx0}, n = 1, 2, · · · , G-converges to u
for any initial datum x0 ∈ B.
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Proof. By (4), it is clear that u is the unique fixed point of Tn(u) in B.
On the other hand, observe that

T (u) = T (Tn(u)u) = Tn(u)(Tu) =⇒ Tu = u,

and u is then the fixed point of T in B. �

For any initial datum x0 ∈ B, since T (B) ⊂ B, we have that Tnx0 ∈ B,
whenever n = 1, 2, · · · . Let’s set

η(x0) = max{G(u, Tmx0, T
mx0),m = 1, 2, · · · , n(u)− 1},

and for n large enough, there exists (r, s) ∈ N2 such that

n = r n(u) + s, 0 ≤ s < n(u), r > 0.

Then

G(u, Tnx0, T
nx0) = G(Tn(u)u, T r n(u)+sx0, T

r n(u)+sx0)

≤ λG(u, T (r−1) n(u)+sx0, T
(r−1) n(u)+sx0) ≤ · · ·

≤ λrG(u, T sx0, T
sx0) ≤ λrη(x0)→ 0 as n→∞,

i.e. Tnx0 → u as n→∞.

Theorem 4. Let (X,G) be a complete G-metric space and T : X → X
a mapping. Suppose there exists B ⊂ X which satisfies:

(i) T (B) ⊂ B
(ii) For some 0 < λ < 1 and each x ∈ B, there exists a positive integer
n(x) ≥ 1 with

G(Tn(x)x, Tn(x)y, Tn(x)z) ≤ λ G(x, y, z),

for all y, z ∈ B,

(iii) For some x0 ∈ B, cl({Tnx0, n ≥ 1})3⊂ B.
Then there exists a unique ξ ∈ B such that Tξ = ξ and Tnx0 → ξ as

n→∞ for each x0 ∈ B.

Proof. We know from Lemma 1 that, for any x ∈ B, r(x) = supnG(x,
Tnx, Tnx) < ∞. Let x0 as in hypothesis (iii) and using (i) and (ii), let’s
construct the sequence of iterates

x1 = Tn(x0)(x0), and xi+1 = Tn(xi)(xi).

3 cl denotes the closure with respect to the topology genererated by G, see [13].
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as in the proof of Theorem 1. It is therefore easy to see, by routine calcula-
tion, that

G(xi, xi+1, xi+1) ≤ λiG(x0, T
mix0, T

mix0) ≤ λir(x0), i ≥ 1,

and

G(xi, xi+k, xi+k) ≤
i+k−1∑
l=1

G(xl, xl+1, xl+1) ≤
λi

1− λ
r(x0), k ≥ 1.

It follows that {xn} is aG-Cauchy sequence. Moreover, sinceX isG-complete,
using hypothesis (iii) there exists ξ ∈ B such that {xn} G-converges to ξ.
Hence, there exists n(ξ) ≥ 1 such that

G(Tn(ξ)ξ, Tn(ξ)y, Tn(ξ)z) ≤ λ G(ξ, y, z),

for all y, z ∈ B and {Tn(ξ)xn} G-converges to Tn(ξ)ξ, i.e.

lim
n→∞

G(xn, T
n(ξ)xn, T

n(ξ)xn) = G(ξ, Tn(ξ)ξ, Tn(ξ)ξ).

On the other hand

G(xn, T
n(ξ)xn, T

n(ξ)xn) = G(Tmn−1xn−1, T
mn−1Tn(ξ)xn−1, T

mn−1Tn(ξ)xn−1)

≤ λG(xn−1, T
n(ξ)xn−1, T

n(ξ)xn−1) ≤ · · ·
≤ λnG(x0, T

n(ξ)x0, T
n(ξ)x0)→ 0 as n→∞.

By Lemma 2, ξ is the unique fixed point of T in B and Tnx0 → ξ for any
initial datum x0 ∈ B. �

Corollary 2. Let T be a map satisfying the conditions of Theorem 4. If
moreover G(Tn(ξ)ξ, Tn(ξ)x, Tn(ξ)y) ≤ λ G(ξ, x, y), then ξ is the unique fixed
point of T in X and the sequence of iterates Tnx0, n = 1, 2, · · · , G-converges
to ξ for any initial datum x0 ∈ X.

Proof. The reult follows directly from Lemma 2. �

We now present two examples.

Example 2. Let X = [0, 1] and let’s endow X with the G-metric d,
defined as

d(x, y, z) = max{|x− y|, |y − z|, |z − x|} for all x, y, z ∈ X.

Let T : X → X be defined as follows:

Tx =

{
1− x, if x ∈ Q ∩X,
1
2 , otherwise.



Some extensions of Banach contraction . . . 63

Then T
(
1
2

)
= 1

2 and for any λ < 1, let B =
{
1
2

}
∪A where A is any collection

of irrationals in [0, 1]. For a rational number y 6= 1
2 , we have 1 − y 6= 1

2 .
Moreover, B cannot any rational x 6= 1

2 .

Example 3. Let X = [0, 1] and let’s endow X with the G-metric d,
defined as

d(x, y, z) = max{|x− y|, |y − z|, |z − x|} for all x, y, z ∈ X.

Let T : X → X be defined as follows:

Tx =

{
x, if x ∈ Q ∩X,
1− x, otherwise.

Then each rational is a fixed point and for any λ < 1, let B = {x}, x
rational.

In the last section of this paper, we shall be concerned with a triplet4

of mappings which satisfy a contractive condition similar to the one we
discussed above, namely: let T1, T2, T3 be self-mappings of a complete
G-metric space (X,G) such that there exists a constant λ, 0 < λ < 1
such that there exist positive integers n(x), m(y), k(z) such that for each
x, y, z ∈ X,

(5) G(T
n(x)
1 x, T

m(y)
2 y, T

k(z)
3 z) ≤ λmax{A,B,C,D,E},

where

A = G(x, y, z), B = G(x, T
n(x)
1 x, T

n(x)
1 x),

C = G(y, T
m(y)
2 y, T

m(y)
2 y), D = G(z, T

k(z)
3 z, T

k(z)
3 z),

E =
1

4
[G(T

n(x)
1 x, y, z) +G(x, T

m(y)
2 y, z) +G(x, y, T

k(z)
3 z)].

Theorem 5. Let T1, T2, T3 be self-mappings on a complete G-metric
space (X,G) which satisfy (5). Then T1, T2 and T3 have a unique common
fixed point.

Proof. Let x0 ∈ X, and define the sequence {xn} by

x1 = T
n(x0)
1 x0, x2 = T

m(x1)
2 x1, x3 = T

k(x2)
3 x2 = · · · ,

x3n+1 = T
n(x3n)
1 x3n, x3n+2 = T

m(x3n+1)
2 x3n+1, x3n+3 = T

k(x3n+2)
3 x3n+2.

4 The author plans to study more thoroughly and with examples common fixed point
results for families of self-mappings in another paper [7].
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Using (5) and assuming, without loss of generality, that xn 6= xm for each
n 6= m,

G(x3n+1, x3n+2, x3n+3) ≤ λmax

{
A′n, B,C,D,

1

4
[Bn +An + Cn]

}
(6)

with

B = G(x3n, x3n+1, x3n+1), C = G(x3n+1, x3n+2, x3n+2),

D = G(x3n+2, x3n+3, x3n+3),

An = G(x3n, x3n+2, x3n+2), A′n = G(x3n, x3n+1, x3n+2),

Bn = G(x3n+1, x3n+1, x3n+2), Cn = G(x3n, x3n+1, x3n+3).

First observe that, if we set B′n := G(x3n+3, x3n+1, x3n+2), we have

B = G(x3n, x3n+1, x3n+1) ≤ G(x3n, x3n+1, x3n+2) = A′n,

C = G(x3n+1, x3n+2, x3n+2) ≤ G(x3n, x3n+1, x3n+2) = A′n

D = G(x3n+2, x3n+3, x3n+3) ≤ G(x3n+1, x3n+2, x3n+3) = B′n,

and
An ≤ A′n, Bn ≤ B′n, and Cn ≤ A′n +B′n.

Therefore

1

4
[An +Bn + Cn] ≤ 1

2
[G(x3n, x3n+1, x3n+2)

+ G(x3n+3, x3n+1, x3n+2)].

Hence, inequality (6) becomes

B′n = G(x3n+1, x3n+2, x3n+3) ≤ λmax

{
A′n, B

′
n,

1

4
[Bn +An + Cn]

}
(7)

which yields

G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2).

Indeed, if

max

{
A′n, B

′
n,

1

4
[An +Bn + Cn]

}
= G(x3n+1, x3n+2, x3n+3) = B′n

we get a contradiction, since λ < 1. So B′n < A′n.
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Similarly, if

max

{
A′n, B

′
n,

1

4
[An +Bn + Cn]

}
=

1

4
[An +Bn + Cn]

(
≤ 1

2
[B′n +A′n]

)
,

we get a contradiction because

B′n ≤
1

2
[B′n +A′n] ≤ A′n5.

We then conclude that

G(x3n+1, x3n+2, x3n+3) ≤ λ G(x3n, x3n+1, x3n+2).

In the same manner, it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ λ G(x3n+1, x3n+2, x3n+3),

and

G(x3n, x3n+1, x3n+2) ≤ λ G(x3n−1, x3n, x3n+1),

so that

G(x3n, x3n+1, x3n+2) ≤ λ3nG(x0, x1, x2),

G(x3n+1, x3n+2, x3n+3) ≤ λ3nG(x1, x2, x3),

G(x3n+2, x3n+3, x3n+4) ≤ λ3nG(x2, x3, x4).

Therefore, for all n

G(xn, xn+1, xn+2) ≤ λn r(x0),

with

r(x0) = max{G(x0, x1, x2), G(x1, x2, x3), G(x2, x3, x4)}.

Hence for any l > m > n, we have

G(xn, xm, xl) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2)

+ · · ·+G(xl−1, xl−1, xl)

≤ G(xn, xn+1, xn+2) +G(xn+1, xn+2, xn+3)

+ · · ·+G(xl−2, xl−1, xl)

≤ λn

1− λ
r(x0).

5 Remember that for two positive reals 0 < α < β, we have α < α+β
2

< β.
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Similarly, for the cases l = m > n, and l > m = n, we have

G(xn, xm, xl) ≤
λn−1

1− λ
r(x0).

Thus is {xn} is G-Cauchy and hence G-converges. Call the limit ξ. From
(5), we have

G(T
n(ξ)
1 ξ, x3n+2, x3n+3) = G(T

n(ξ)
1 ξ, T

m(x3n+1)
2 x3n+1, T

k(x3n+2)
3 x3n+2)(8)

≤ λmax{A,B,C,D,E},

with

A = G(ξ, x3n+1, x3n+2), B = G(ξ, T
n(ξ)
1 ξ, T

n(ξ)
1 ξ)

C = G(x3n+1, T
m(x3n+1)
2 x3n+1, T

m(x3n+1)
2 x3n+1),

D = G(x3n+2, T
k(x3n+2)
3 x3n+2, T

k(x3n+2)
3 x3n+2),

E =
1

4
[G(T

n(ξ)
1 ξ, x3n+1, x3n+2) +G(ξ, T

m(x3n+1)
2 x3n+1, x3n+2)

+ G(ξ, x3n+1, T
k(x3n+2)
3 x3n+2)].

Taking the limit in (8) as n→∞, we obtain

G(T
n(ξ)
1 ξ, ξ, ξ) ≤ λmax

{
0, G(ξ, T

n(ξ)
1 ξ, T

n(ξ)
1 ξ), 0, 0,

1

4
G(T

n(ξ)
1 ξ, ξ, ξ)

}
≤ λG(T

n(ξ)
1 ξ, T

n(ξ)
1 ξ, ξ).

If we assume, by way of contradiction that ξ 6= T
n(ξ)
1 ξ, we get that

G(T
n(ξ)
1 ξ, ξ, ξ) ≤ λ G(T

n(ξ)
1 ξ, T

n(ξ)
1 ξ, ξ) ≤ λ G(T

n(ξ)
1 ξ, ξ, ξ).

a contradiction, hence

ξ = T
n(ξ)
1 ξ

Similarly, one shows that

T
m(ξ)
2 ξ = ξ = T

k(ξ)
3 ξ.

Moreover, if η is a point such that

η = T
n(η)
1 η = T

m(η)
2 η = T

k(η)
3 η,

then from (5), we can write

G(ξ, η, η) = G(T
n(ξ)
1 ξ), T

m(η)
2 η, T

k(η)
3 η) ≤ λmax

{
G(ξ, η, η),

3

4
G(ξ, η, η)

}
,
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which implies η = ξ, i.e. ξ is the unique point satisfying

a = T
n(a)
1 a = T

m(a)
2 a = T

k(a)
3 a.

Furthermore the condition ξ = T
n(ξ)
1 ξ implies

T1(ξ) = T1(T
n(ξ)
1 ξ) = T

n(ξ)
1 (T1ξ).

From the uniqueness of ξ, we derive that T1ξ = ξ. Similarly,

T2ξ = ξ = T3ξ.

This completes the proof. �

We then have the following two corollaries, for which the proofs are quite
straightforward.

Corollary 3. Let T be a self-mapping on a complete G-metric space
(X,G) such that there exists a positive real number λ, 0 < λ < 1 such that,
for each x, y, z ∈ X there exist positive integers n(x), n(y), n(z) such that

(9) G(Tn(x)x, Tn(y)y, Tn(z)z) ≤ λmax{A,B,C,D,E},

where

A = G(x, y, z), B = G(x, Tn(x)x, Tn(x)x),

C = G(y, Tn(y)y, Tn(y)y), D = G(z, Tn(z)z, Tn(z)z),

E =
1

4
[G(Tn(x)x, y, z) +G(x, Tn(y)y, z) +G(x, y, Tn(z)z)].

Then T has a unique fixed point.

Proof. In Theorem 5, set T1 = T2 = T3, m(y) = n(y) and k(z) = n(z). �

Corollary 4. Let {Tn} be a sequence of self-mappings on a complete
G-metric space (X,G) such that there exists a positive real number λ, 0 <
λ < 1 such that, for each x, y, z ∈ X there exists positive integers n(x), n(y),
n(z) such that, for each i, j, k = 1, 2, · · · ,

(10) G(T
n(x)
i x, T

n(y)
j y, T

n(z)
k z) ≤ λmax{A,B,C,D,E},

where

A = G(x, y, z), B = G(x, T
n(x)
i x, T

n(x)
i x),

C = G(y, T
n(y)
j y, T

n(y)
j y), D = G(z, T

n(z)
k z, T

n(z)
k z),

E =
1

4
[G(T

n(x)
i x, y, z) +G(x, T

n(y)
j y, z) +G(x, y, T

n(z)
k z)].

Then there exists a unique common fixed point for the family {Tn}.
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We here state the last theorem of this paper.

Theorem 6. Let {Tn} be a sequence of continuous self-mappings of a
complete G-metric space (X,G) such that there exists a positive real number
λ, 0 < λ < 1 such that, for each x, y, z ∈ X there exists a positive integer
n(x) such that

(11) G(T
n(x)
i x, T

n(x)
i y, T

n(x)
i z) ≤ λmax{A,B,C,D,E},

where

A = G(x, y, z), B = G(x, T
n(x)
i x, T

n(x)
i x),

C = G(y, T
n(x)
i y, T

n(x)
i y), D = G(z, T

n(x)
i z, T

n(x)
i z),

E =
1

4
[G(T

n(x)
i x, y, z) +G(x, T

n(x)
i y, z) +G(x, y, T

n(x)
i z)].

Suppose {Ti} converges pointwise to a continuous function T . Then T has
a unique fixed point x∗. Moreover if we call x∗i the unique fixed points of the
Ti’s, then the sequence {x∗i } G-converges to x∗.

Proof. In (11), take the limit as i→∞ and use the continuity of T , Ti
and G to obtain the result that T satisfies (11). From Corollary 3, T has a
unique point x∗.

From (11), we have

G(T
n(x∗)
i x∗, x∗i , x

∗
i ) = G(T

n(x∗)
i x∗, T

n(x∗)
i x∗i , T

n(x∗)
i x∗i )(12)

≤ λmax{A,B,C}

where

A = G(x∗, x∗i , x
∗
i ), B = G(x∗, T

n(x∗)
i x∗, T

n(x∗)
i x∗)

C =
1

4
G(T

n(x∗)
i x∗, x∗i , x

∗
i ) +

1

2
G(x∗, x∗i , x

∗
i ).

Taking the limit as i→∞ in (12), we obtain

lim
i→∞

G(x∗, x∗i , x
∗
i ) ≤ λ lim

i→∞
G(x∗, x∗i , x

∗
i ),

which is true only if
lim
i→∞

G(x∗, x∗i , x
∗
i ) = 0.

�
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4. Concluding remark

Some comments about Bryant’s result can be read in [15], where the
author motivated some interesting questions regarding this modified Banach
principle. More precisely, he proved that for a single valued mapping T in a
complete metric space (X, d), if Tn, for some n > 1, is a contraction, then T
itself6 is a contraction under another related metric d′. The intuition behind
Theorem 1 is that, even though the mapping T is not a contraction, locally,
there is a power of T which is a contraction, and that is enough for T to
admit a unique fixed point.

Furthermore, in the results presented in the last section of this paper, one
can obviously weaken the contractive condition by restricting it to a subset
B of X such that B is invariant under the mappings involved and contains
the closure of all iterates of some x0 ∈ B.

Extending the BCP requires a structure of complete metric-like space with
contractive condition on the map. There is vast amount of literature dealing
with extensions/generalizations of the BCP. An attempt was made in this
manuscript to present some extensions of the BCP in which the conclusion
is obtained under mild modified conditions and which play important role
in the development of G-metric fixed point theory.
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