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1. Introduction

In 1922 S. Banach [3] formulated the contraction known is Banach con-
traction principle. Some results related with generalization of metric space
can be found in ([1]-[12]).

In 1989, Bakhtin formulated the b-metric spaces [2], later several re-
searchers work on this space and obtained so many results on this spaces
can be found in ([5, 6, 7]).

In generalized contractions one is (α, β)-weak contraction. Using this
contraction, researchers proved results (for detail see [13, 14, 15, 16, 17]).
Currently the study of (α, β)-contractions gain the attractions of many re-
searches. In this regards many fixed point results and their applications are
studied (see [18, 19, 20] and the reference cited therein).

Mustafa et. al. defined the notion of G-metric space [4]. Sedghi et. al.
gave the concept of an S-metric space [11]. Aghajani et.al. presented a new
type of metric is called Gb-metric [1]. Recently Sedghi et al. [10] defined
Sb-metric space by using the S-metric space [11].

The aim of present article is to prove applications to integral equations
and Homotopy theory via generalized (α, β)-rational contraction, we can
also gave related fixed point results and example.

First we recall some basic results.
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2. Preliminaries

Definition 1 ([10]). Let X be a non-empty set and b ≥ 1 be given real
number. Suppose that a mapping Sb : X3 → [0,∞) be a function satisfying
the following properties:

(Sb1) 0 < Sb(x, y, z) for all x, y, z ∈ X with x 6= y 6= z 6= x,
(Sb2) Sb(x, y, z) = 0⇔ x = y = z,
(Sb3) Sb(x, y, z) ≤ b(Sb(x, x, a)+Sb(y, y, a)+Sb(z, z, a)) for all x, y, z ∈ X
and a ∈ X.

Then the function Sb is called a Sb-metric on X and the pair (X,Sb) is called
a Sb-metric space.

Remark 1 ([10]). It should be noted that, the class of Sb-metric spaces
is effectively larger than that of S-metric spaces. Indeed each S-metric space
is a Sb-metric space with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric
on X.

Example 1 ([10]). Let (X,S) be S-metric space and S∗(x, y, z) =
S(x, y, z)p, where p > 1 is a real number. Note that S∗ is a Sb-metric
with b = 22(p−1). Also, (X,S∗) is not necessarily a S-metric space.

Definition 2 ([10]). Let (X,Sb) be a Sb-metric space. Then, for x ∈ X,
r > 0 we defined the open ball BSb

(x, r) and closed ball BSb
[x, r] with center

x and radius r as follows respectively:

BSb
(x, r) = {y ∈ X : Sb(y, y, x) < r} and

BSb
[x, r] = {y ∈ X : Sb(y, y, x) ≤ r}.

Lemma 1 ([10]). In a Sb-metric space, we have

Sb(u, u, w) ≤ 2bSb(u, u, v) + b2Sb(v, v, w).

Lemma 2 ([10]). In a Sb-metric space, we have

Sb(u, u, v) ≤ bSb(v, v, u) and Sb(v, v, u) ≤ bSb(u, u, v).

Definition 3 ([10]). If (X,Sb) be a Sb-metric space. A sequence {xn}
in X is said to be:

(a) Sb-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that
Sb(xn, xn, xm) < ε for each m,n ≥ n0.

(b) Sb-convergent to a point x ∈ X if, for each ε > 0, there exists a
positive integer n0 such that Sb(xn, xn, x) < ε or Sb(x, , x, xn) < ε for all
n ≥ n0 and we denote by lim

n→∞
xn = x.
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Definition 4 ([10]). A Sb-metric space (X,Sb) is called complete if every
Sb-Cauchy sequence is Sb-convergent in X.

Lemma 3 (([10]). If (X,Sb) be a Sb-metric space with b ≥ 1 and suppose
that {xn} is a Sb-convergent to x, then we have

(i) 1
2bSb(y, y, x) ≤ lim

n→∞
inf Sb(y, y, xn) ≤ lim

n→∞
supSb(y, y, xn)

≤ 2bSb(y, y, x)
and

(ii) 1
b2
Sb(x, x, y) ≤ lim

n→∞
inf Sb(xn, xn, y) ≤ lim

n→∞
supSb(xn, xn, y)

≤ b2Sb(x, x, y)
for all y ∈ X.

In particular, if x = y, then we have lim
n→∞

Sb(xn, xn, y) = 0.

In the next section we gave our main results.

3. Main results

Definition 5. Let (X,Sb) be Sb-metric space and let the mapping E :
X → X. We say that the mapping E satisfy generalized (α, β)-rational con-
traction if there exists continuous maps α, β : [0,∞)→ [0,∞) such that

(5.1) 1
4b3

min {Sb(x, x,Ex), Sb(y, y, Ey)} ≤ Sb(x, x, y) ⇒
α
(
4b5Sb (Ex,Ex,Ey)

)
≤ α

(
N i
E (x, y)

)
− β

(
N i
E (x, y)

)
,

for all x, y ∈ X, x is comparable to y, i = 3 or 4 and

N3
f (x, y) = max

{
Sb(x, x, y), Sb(x,x,Ex)Sb(y,y,Ey)

1+Sb(x,x,y)+Sb(Ex,Ex,Ey)
,

Sb(x,x,Ey)Sb(y,y,Ex)
1+Sb(x,x,y)+Sb(Ex,Ex,Ey)

}
.

N4
E (x, y) = max

{
Sb(x, x, y), Sb(x, x,Ex), Sb(y, y, Ey),

Sb(x,x,Ey)Sb(y,y,Ex)
1+Sb(x,x,y)+Sb(Ex,Ex,Ey)

}
,

(5.2) α(t) and β(t) vanish at t = 0
(5.3) β(t) > 0 for t > 0

Definition 6. Let (X,Sb,�) be a partially ordered complete Sb-metric
space which is said to be regular if every two elements of X are comparable,
i.e., if x, y ∈ X implies either x � y or y � x.

Definition 7. Suppose that (X,�) is a partially ordered set and E is
a mapping of X into itself. We say that E is non-decreasing if for every
x, y ∈ X, x � y implies that Ex � Ey

Theorem 1. Let (X,Sb,�) be an partially ordered complete Sb-metric
space, E : X → X satisfies generalized (α, β)-contraction with i = 3 and
assume that the non decreasing function E is continuous or X is regular. If
there exists x0 ∈ X with x0 � Ex0. Then E has unique fixed point in X.
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Proof. Let x0 ∈ X. Since E is self-map, there exists a sequence {xn} in
X such that

xn+1 = E xn, n = 0, 1, 2, 3, · · · .

Case (i): If xn = Exn = xn+1, then clearly proof is over.
Case (ii): Assume xn 6= Exn, ∀ n. Since x0 � Ex0 = x1 and by

definition of E, we have

x0 � Ex0 � E2x0 � E3x0 � · · · � Enx0 � En+1x0 � · · ·

Since 1
4b3

min {Sb(x0, x0, Ex0), Sb(x1, x1, Ex1)} ≤ Sb(x0, x0, x1).
Now

α
(
4b5Sb

(
Ex0, Ex0, E

2x0
))

= α
(
4b5Sb (Ex0, Ex0, Ex1)

)
≤ α

(
N3
f (x0, x1)

)
− β

(
N3
f (x0, x1)

)
,

where

N3
f (x0, x1) = max

{
Sb (x0, x0, x1) ,

Sb(x0,x0,Ex0)Sb(x1,x1,Ex1)
1+Sb(x0,x0,x1)+Sb(Ex0,Ex0,Ex1)

,
Sb(x0,x0,Ex1)Sb(x1,x1,Ex0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)

}

= max

 Sb (x0, x0, Ex0) ,
Sb(x0,x0,Ex0)Sb(Ex0,Ex0,E2x0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)
,

Sb(x0,x0,E2x0)Sb(Ex0,Ex0,Ex0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)


= Sb (x0, x0, Ex0)

Thus

α
(
4b5Sb

(
Ex0, Ex0, E

2x0
))
≤ α (Sb (x0, x0, Ex0))− β (Sb (x0, x0, Ex0)) .

Also since 1
4b3

min {Sb(x1, x1, Ex1), Sb(x2, x2, Ex2)} ≤ Sb(x1, x1, x2).
So that we have

α
(
4b5Sb

(
E2x0, E

2x0, E
3x0
))
≤ α

(
Sb
(
Ex0, Ex0, E

2x0
))

− β
(
Sb
(
Ex0, Ex0, E

2x0
))
.

Continuing this way we can conclude that

α
(
4b5Sb

(
En+1x0, E

n+1x0, E
n+2x0

))
≤ α

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
− β

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
.

Thus
{
Sb
(
Enx0, E

nx0, E
n+1x0

)}
is non-increasing and must converges to a

real number η ≥ 0 (say). Also

α
(
4b5Sb

(
En+1x0, E

n+1x0, E
n+2x0

))
≤ α

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
− β

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
.
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Letting n→∞, we have

α(4b5η) ≤ α(η)− β(η).

It is clear that η = 0. that is

lim
n→∞

Sb
(
Enx0, E

nx0, E
n+1x0

)
= 0.

Now we prove {Enx0} is Cauchy sequence in (X,Sb). On contrary we sup-
pose that {Enx0} is not Cauchy. Then there exist ε > 0 and monotonically
increasing sequence of natural numbers {mk} and {nk} such that nk > mk.

(1) Sb (Emkx0, E
mkx0, E

nkx0) ≥ ε

and

(2) Sb
(
Emkx0, E

mkx0, E
nk−1x0

)
< ε.

First we claim that

1

4b3
min {Sb (xmk

, xmk
, Exmk

) , Sb (xnk−1, xnk−1, Exnk−1)}(3)

≤ Sb (xmk
, xmk

, xnk−1) .

On contrary suppose

1

4b3
min {Sb (xmk

, xmk
, Exmk

) , Sb (xnk−1, xnk−1, Exnk−1)}

> Sb (xmk
, xmk

, xnk−1) .

Now consider

ε ≤ Sb (Emkx0, E
mkx0, E

nkx0)

≤ 2bSb
(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
nkx0

)
<

1

2b2
min

{
Sb
(
Emkx0, E

mkx0, E
mk+1x0

)
, Sb (xnk−1, xnk−1, xnk

)
}

+ b2Sb
(
Enk−1x0, E

nk−1x0, E
nkx0

)
.

Letting k →∞, it follows ε ≤ 0. It is a contradiction. Hence our claim (3)
is holds. From (1) and (2), we have

ε ≤ Sb (Emkx0, E
mkx0, E

nkx0)

≤ 2bSb
(
Emkx0, E

mkx0, E
mk+1x0

)
+ b2Sb

(
Emk+1x0, E

mk+1x0, E
nkx0

)
.
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Letting k →∞, we have ε
b2
≤ Sb

(
Emk+1x0, E

mk+1x0, E
nkx0

)
. Then

α
(
4b3ε

)
≤ lim

k→∞
α
(
4b5Sb

(
Emk+1x0, E

mk+1x0, E
nkx0

))
(4)

= lim
k→∞

α
(
4b5Sb (Exmk

, Exmk
, Exnk−1)

)
)

≤ lim
k→∞

α
(
N3
f (xmk

, xnk−1)
)
− lim
k→∞

β
(
N3
f (xmk

, xnk−1)
)
,

where

lim
k→∞

N3
f (xmk

, xnk−1)

= lim
k→∞

max


Sb
(
Emkx0, E

mkx0, E
nk−1x0

)
,

Sb(Emkx0,E
mkx0,E

mk+1x0)Sb(Enk−1x0,E
nk−1x0,E

nkx0)
1+Sb(Emkx0,E

mkx0,E
nk−1x0)+Sb(Emk+1x0,E

mk+1x0,E
nkx0)

Sb(E
mkx0,E

mkx0,E
nkx0)Sb(Enk−1x0,E

nk−1x0,E
mk+1x0)

1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)

 .

But

lim
k→∞

Sb(E
mkx0,E

mkx0,E
nkx0)Sb(Enk−1x0,E

nk−1x0,E
mk+1x0)

1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)

= lim
k→∞



[
2bSb

(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
nkx0

)]
×
[
2bSb

(
Enk−1x0, E

nk−1x0, E
mkx0

)
+ b2Sb (Emkx0, E

mkx0, E
mkx0)

]


1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)
≤ 4b3ε.

and

lim
k→∞

Sb(E
mkx0,E

mkx0,E
mk+1x0)Sb(Enk−1x0,E

nk−1x0,E
nkx0)

1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)

= lim
k→∞



[
2bSb

(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
mk+1x0

)]
×
[
2bSb

(
Enk−1x0, E

nk−1x0, E
mkx0

)
+ b2Sb (Emkx0, E

mkx0, E
mkx0)

]


1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)
≤ 4b3ε.

Now from (4), we have

α
(
4b3ε

)
≤ α

(
4 b3 ε

)
− lim
k→∞

β
(
N4
E (xmk

, xnk−1)
)
< α

(
4b3ε

)
.

Is a contradiction.
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Hence {Enx0} is Cauchy sequence in (X,Sb). By completeness of (X,Sb),
it follows the sequence {Enx0} → ϑ ∈ (X,Sb). That is

lim
k→∞

Enx0 = ϑ = lim
k→∞

En+1x0.

First we claim that for each n ≥ 1, at least one of the following assertion is
holds.

1

4b3
Sb (xn+1, xn+1, xn) ≤ Sb(ϑ, ϑ, xn) or

1

4b3
Sb (xn, xn, xn−1) ≤ Sb(ϑ, ϑ, xn−1).

On contrary suppose that

1

4b3
Sb (xn+1, xn+1, xn) > Sb(ϑ, ϑ, xn) and

1

4b3
Sb (xn, xn, xn−1) > Sb(ϑ, ϑ, xn−1).

Now consider

Sb (xn−1, xn−1, xn) ≤ 2bSb (xn−1, xn−1, ϑ) + b2Sb (ϑ, ϑ, xn)

< 2b2Sb (ϑ, ϑ, xn−1) + b2
1

4b3
Sb (xn+1, xn+1, xn)

< 2b2
1

4b3
Sb (xn, xn, xn−1) +

1

4b
Sb (xn+1, xn+1, xn)

=
1

2b
b Sb (xn−1, xn−1, xn) +

1

4b
b Sb (xn, xn, xn+1)

≤ 1

2
Sb (xn−1, xn−1, xn) +

1

4b3
Sb (xn−1, xn−1, xn)

=
2b3 + 1

4b3
Sb (xn−1, xn−1, xn)

≤ 3

4
Sb (xn−1, xn−1, xn) .

It is a contradiction. Hence our claim is holds. Since Exn → ϑ and (X,Sb)
is regular, it follows xn is comparable to ϑ. Suppose Eϑ 6= ϑ. From (5.1)
and by the definition of α, Lemma (3), we have

α
(
2b4Sb(Eϑ,Eϑ, ϑ)

)
≤ lim

n→∞
inf α

(
4b5Sb

(
Eϑ,Eϑ,En+1x0

))
(5)

≤ lim
n→∞

inf α
(
N3
f (ϑ, xn)

)
− lim

n→∞
inf β

(
N3
f (ϑ, xn)

)
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Here

lim
n→∞

N3
f (ϑ, xn) = lim

n→∞
max

{
Sb (ϑ, ϑ,Eϑ) , Sb(ϑ,ϑ,Eϑ),Sb(xn,xn,Exn)

1+Sb(ϑ,ϑ,xn)Sb(Eϑ,Eϑ,xn),
Sb(ϑ,ϑ,Exn)Sb(xn,xn,Eϑ)

1+Sb(ϑ,ϑ,xn)+Sb(Eϑ,Eϑ,Exn)

}
= Sb (ϑ, ϑ,Eϑ) .

Hence from (5), we have

α
(
2b2 Sb(Eϑ,Eϑ, ϑ)

)
≤ α (Sb (ϑ, ϑ,Eϑ))− β (Sb (ϑ, ϑ,Eϑ))

≤ α (Sb (ϑ, ϑ,Eϑ)) .

Clearly ϑ is fixed point of E. Assume ϑ∗ is also fixed point of E 3 ϑ 6= ϑ∗.
Since 1

4b3
min {Sb (ϑ, ϑ,Eϑ) , Sb (ϑ∗, ϑ∗, Eϑ∗)} ≤ Sb (ϑ, ϑ, ϑ∗).

Consider

α
(
4b5Sb (ϑ, ϑ, ϑ∗)

)
≤ α

(
N4
E (ϑ, ϑ∗)

)
− β

(
N4
E (ϑ, ϑ∗)

)
= α (Sb (ϑ, ϑ, ϑ∗))− β (Sb (ϑ, ϑ, ϑ∗))

< α (Sb (ϑ, ϑ, ϑ∗)) .

Clearly ϑ is unique fixed point of E in (X,Sb). �

Example 2. Let us define Sb : X × X × X → R+ by Sb(u, v, w) =
(|v +w− 2u|+ |v −w|)2 where X = [0, 1] and � by u � w ⇐⇒ u ≤ w. So
clearly (X,Sb,�) is complete ordered Sb - metric space with b = 4. Define
E : X → X by E(u) = u

16
√
2
, also α, β : R+ → R+ by α(t) = t and

β(t) = (2b2−1)t
2b2

.

α
(
4b5Sb(Eu,Eu,Ev)

)
= 4b5(|Eu+ Ev − 2Eu|+ |Eu− Ev|)2

= 4b5
(

2

∣∣∣∣ u

16
√

2
− v

16
√

2

∣∣∣∣)2

=
1

2b2
Sb(u, u, v)

≤ α
(
N3
f (u, v)

)
− β

(
N3
f (u, v)

)
.

Hence from Theorem 1, 0 is unique fixed point of E.

Theorem 2. Let (X,Sb,�) be an partially ordered complete Sb metric
space and let E : X → X be satisfies generalized (α, β)-contraction with
i = 4 and assume that X is regular or the non decreasing function E is
continuous. If there exists x0 ∈ X with x0 � Ex0. Then E has unique fixed
point in X.
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Proof. If we replace N4
E (x, y) in place of N3

E (x, y), the rest of proof
follows from Theorem 1. �

Theorem 3. Let (X,Sb,�) be an partially ordered complete Sb metric
space and let E : X → X be satisfies (3.1) 1

4b3
min {Sb(x, x,Ex), Sb(y, y, Ey)}

≤ Sb(x, x, y) implies that

4b5Sb (Ex,Ex,Ey) ≤ N i
E (x, y)− β

(
N i
E (x, y)

)
,

where β : [0,∞)→ [0,∞) continuous with β(t) > 0 for t > 0 and i = 3 and
X is regular or the non decreasing function E is continuous. If there exists
x0 ∈ X with x0 � Ex0. Then E has unique fixed point in X.

Proof. Let x0 ∈ X. Since E is self-map, there exists a sequence {xn} in
X such that

xn+1 = E xn, n = 0, 1, 2, 3, · · · .

Case (i): If xn = Exn = xn+1, then clearly proof is over.
Case (ii): Assume xn 6= Exn, ∀n. Since x0 � Ex0 = x1 and by definition

of E, we have

x0 � Ex0 � E2x0 � E3x0 � · · · � Enx0 � En+1x0 � · · ·

Since 1
4b3

min {Sb(x0, x0, Ex0), Sb(x1, x1, Ex1)} ≤ Sb(x0, x0, x1). Now

4b5Sb
(
Ex0, Ex0, E

2x0
)

= 4b5Sb (Ex0, Ex0, Ex1)

≤ N3
f (x0, x1)− β

(
N3
f (x0, x1)

)
,

where

N3
f (x0, x1) = max

{
Sb (x0, x0, x1) ,

Sb(x0,x0,Ex0)Sb(x1,x1,Ex1)
1+Sb(x0,x0,x1)+Sb(Ex0,Ex0,Ex1)

,
Sb(x0,x0,Ex1)Sb(x1,x1,Ex0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)

}

= max

Sb (x0, x0, Ex0) ,
Sb(x0,x0,Ex0)Sb(Ex0,Ex0,E2x0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)
,

Sb(x0,x0,E2x0)Sb(Ex0,Ex0,Ex0)

1+Sb(x0,x0,Ex0)+Sb(Ex0,Ex0,E2x0)


= Sb (x0, x0, Ex0)

Thus

4b5Sb
(
Ex0, Ex0, E

2x0
)
≤ Sb (x0, x0, Ex0)− β (Sb (x0, x0, Ex0)) .

Also since 1
4b3

min {Sb(x1, x1, Ex1), Sb(x2, x2, Ex2)} ≤ Sb(x1, x1, x2).
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So that we have

4b5Sb
(
E2x0, E

2x0, E
3x0
)
≤ Sb

(
Ex0, Ex0, E

2x0
)

− β
(
Sb
(
Ex0, Ex0, E

2x0
))
.

Continuing this way we can conclude that

4b5Sb
(
En+1x0, E

n+1x0, E
n+2x0

)
≤ Sb

(
Enx0, E

nx0, E
n+1x0

)
− β

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
.

Thus
{
Sb
(
Enx0, E

nx0, E
n+1x0

)}
is non-increasing and must converges to a

real number η ≥ 0 (say). Also

4b5Sb
(
En+1x0, E

n+1x0, E
n+2x0

)
≤ Sb

(
Enx0, E

nx0, E
n+1x0

)
− β

(
Sb
(
Enx0, E

nx0, E
n+1x0

))
.

Letting n→∞, we have

4b5η ≤ η − β(η).

It is clear that η = 0. that is

lim
n→∞

Sb
(
Enx0, E

nx0, E
n+1x0

)
= 0.

Now we prove {Enx0} is Cauchy sequence in (X,Sb). On contrary suppose
that {Enx0} is not Cauchy. Then there exist ε > 0 and monotonically
increasing sequence of natural numbers {mk} and {nk} such that nk > mk.

(6) Sb (Emkx0, E
mkx0, E

nkx0) ≥ ε

and

(7) Sb
(
Emkx0, E

mkx0, E
nk−1x0

)
< ε.

First we claim that

1

4b3
min {Sb (xmk

, xmk
, Exmk

) , Sb (xnk−1, xnk−1, Exnk−1)}(8)

≤ Sb (xmk
, xmk

, xnk−1) .

On contrary suppose that

1

4b3
min {Sb (xmk

, xmk
, Exmk

) , Sb (xnk−1, xnk−1, Exnk−1)}

> Sb (xmk
, xmk

, xnk−1) .
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Now consider

ε ≤ Sb (Emkx0, E
mkx0, E

nkx0)

≤ 2bSb
(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
nkx0

)
<

1

2b2
min

{
Sb
(
Emkx0, E

mkx0, E
mk+1x0

)
, Sb (xnk−1, xnk−1, xnk

)
}

+b2Sb
(
Enk−1x0, E

nk−1x0, E
nkx0

)
.

Letting k →∞, it follows that ε ≤ 0. It is a contradiction. Hence our claim
(8) is holds. From (6) and (7), we have

ε ≤ Sb (Emkx0, E
mkx0, E

nkx0)

≤ 2bSb
(
Emkx0, E

mkx0, E
mk+1x0

)
+ b2Sb

(
Emk+1x0, E

mk+1x0, E
nkx0

)
.

Letting k →∞, we have ε
b2
≤ Sb

(
Emk+1x0, E

mk+1x0, E
nkx0

)
. Then

4b3ε ≤ lim
k→∞

4b5Sb
(
Emk+1x0, E

mk+1x0, E
nkx0

)
(9)

= lim
k→∞

4b5Sb (Exmk
, Exmk

, Exnk−1)

≤ lim
k→∞

N3
f (xmk

, xnk−1)− lim
k→∞

β
(
N3
f (xmk

, xnk−1)
)
,

where

lim
k→∞

N3
f (xmk

, xnk−1)

= lim
k→∞

max


Sb
(
Emkx0, E

mkx0, E
nk−1x0

)
,

Sb(Emkx0,E
mkx0,E

mk+1x0)Sb(Enk−1x0,E
nk−1x0,E

nkx0)
1+Sb(Emkx0,E

mkx0,E
nk−1x0)+Sb(Emk+1x0,E

mk+1x0,E
nkx0)

Sb(E
mkx0,E

mkx0,E
nkx0)Sb(Enk−1x0,E

nk−1x0,E
mk+1x0)

1+Sb(Emkx0,E
mkx0,E

nk−1x0)+Sb(Emk+1x0,E
mk+1x0,E

nkx0)

 .

But

lim
k→∞

Sb (Emkx0, E
mkx0, E

nkx0)Sb
(
Enk−1x0, E

nk−1x0, E
mk+1x0

)
1 + Sb (Emkx0, Emkx0, Enk−1x0) + Sb (Emk+1x0, Emk+1x0, Enkx0)

= lim
k→∞


[
2bSb

(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
nkx0

)]
×
[
2bSb

(
Enk−1x0, E

nk−1x0, E
mkx0

)
+ b2Sb (Emkx0, E

mkx0, E
mkx0)

]


1 + Sb (Emkx0, Emkx0, Enk−1x0) + Sb (Emk+1x0, Emk+1x0, Enkx0)

≤ 4b3ε.
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and

lim
k→∞

Sb (Emkx0, E
mkx0, E

mk+1x0)Sb
(
Enk−1x0, E

nk−1x0, E
nkx0

)
1 + Sb (Emkx0, Emkx0, Enk−1x0) + Sb (Emk+1x0, Emk+1x0, Enkx0)

= lim
k→∞


[
2bSb

(
Emkx0, E

mkx0, E
nk−1x0

)
+ b2Sb

(
Enk−1x0, E

nk−1x0, E
mk+1x0

)]
×
[
2bSb

(
Enk−1x0, E

nk−1x0, E
mkx0

)
+ b2Sb (Emkx0, E

mkx0, E
mkx0)

]


1 + Sb (Emkx0, Emkx0, Enk−1x0) + Sb (Emk+1x0, Emk+1x0, Enkx0)

≤ 4b3ε.

Now from (9), we have

4b3ε ≤ 4b3ε− lim
k→∞

β
(
N4
E (xmk

, xnk−1)
)
< 4b3ε.

Is a contradiction. Hence {Enx0} is Cauchy sequence in (X,Sb). By com-
pleteness of (X,Sb), it follows that the sequence {Enx0} → ϑ ∈ (X,Sb).
That is

lim
k→∞

Enx0 = ϑ = lim
k→∞

En+1x0.

First we claim that for each n ≥ 1, at least one of the following assertion is
holds.

1

4b3
Sb (xn+1, xn+1, xn) ≤ Sb(ϑ, ϑ, xn) or

1

4b3
Sb (xn, xn, xn−1) ≤ Sb(ϑ, ϑ, xn−1).

On contrary suppose that

1

4b3
Sb (xn+1, xn+1, xn) > Sb(ϑ, ϑ, xn) and

1

4b3
Sb (xn, xn, xn−1) > Sb(ϑ, ϑ, xn−1).

Now consider

Sb (xn−1, xn−1, xn) ≤ 2bSb (xn−1, xn−1, ϑ) + b2Sb (ϑ, ϑ, xn)

≤ 1

2
Sb (xn−1, xn−1, xn) +

1

4b3
Sb (xn−1, xn−1, xn)

=
2b3 + 1

4b3
Sb (xn−1, xn−1, xn) ≤ 3

4
Sb (xn−1, xn−1, xn) .

It is a contradiction. Hence our claim is holds.Since Exn → ϑ and (X,Sb)
is regular, it follows xn is comparable to ϑ. Suppose Eϑ 6= ϑ. From (3) and
Lemma (3), we have

2b4Sb(Eϑ,Eϑ, ϑ) ≤ lim
n→∞

inf
(
4b5Sb

(
Eϑ,Eϑ,En+1x0

))
(10)

≤ lim
n→∞

inf
(
N3
f (ϑ, xn)

)
− lim
n→∞

inf β
(
N3
f (ϑ, xn)

)
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Here

lim
n→∞

N3
f (ϑ, xn) = lim

n→∞
max

{
Sb (ϑ, ϑ,Eϑ) , Sb(ϑ,ϑ,Eϑ),Sb(xn,xn,Exn)

1+Sb(ϑ,ϑ,xn)Sb(Eϑ,Eϑ,xn),
Sb(ϑ,ϑ,Exn)Sb(xn,xn,Eϑ)

1+Sb(ϑ,ϑ,xn)+Sb(Eϑ,Eϑ,Exn)

}
= Sb (ϑ, ϑ,Eϑ) .

Hence from (10), we have

2b2Sb(Eϑ,Eϑ, ϑ) ≤ Sb (ϑ, ϑ,Eϑ)− β (Sb (ϑ, ϑ,Eϑ))

≤ Sb (ϑ, ϑ,Eϑ) .

Clearly ϑ is fixed point of E. Assume ϑ∗ is also fixed point of E 3 ϑ 6= ϑ∗.
Since 1

4b3
min {Sb (ϑ, ϑ,Eϑ) , Sb (ϑ∗, ϑ∗, Eϑ∗)} ≤ Sb (ϑ, ϑ, ϑ∗).

Consider

4b5Sb (ϑ, ϑ, ϑ∗) ≤ N4
E (ϑ, ϑ∗)− β

(
N4
E (ϑ, ϑ∗)

)
= Sb (ϑ, ϑ, ϑ∗)− β (Sb (ϑ, ϑ, ϑ∗))

< Sb (ϑ, ϑ, ϑ∗) .

Clearly ϑ is unique fixed point of E in (X,Sb). �

Theorem 4. Let (X,Sb,�) be an partially ordered complete Sb metric
space and let E : X → X be satisfies generalized (α, β)-contraction with
i = 4 and assume that X is regular or the non decreasing function E is
continuous. If there exists x0 ∈ X with x0 � Ex0. Then E has unique fixed
point in X.

Proof. If we replace N4
E (x, y) in place of N3

E (x, y), the rest of proof
follows from Theorem 3. �

Theorem 5. Let (X,Sb,�) be an partially ordered complete Sb metric
space and let E : X → X be satisfies (5.1) 1

4b3
min {Sb(x, x,Ex), Sb(y, y, Ey)}

≤ Sb(x, x, y) implies that

Sb (Ex,Ex,Ey) ≤ λN i
E (x, y) ,

where λ ∈
[
0, 1

4b5

)
and i = 3, 4 and the non decreasing function E is contin-

uous or X is regular. If there exists x0 ∈ X with x0 � Ex0. Then E has
unique fixed point in X.

4. Application to integral equations

In this section, we study the existence of a unique solution to an initial
value problem as an application to Theorem 3.
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Theorem 6. Consider the I. V. P.

(11) u′(x) = P (x, u(x)), x ∈ I = [0, 1], u(0) = u0

where P : I×
[
u0
4 ,∞

)
→
[
u0
4 ,∞

)
and u0 ∈ R. Then (11) has unique solution

.

Proof. The integral equation of I. V. P. (11) is

u(x) = u0 + 5b4
x∫

0

P (t, u(t))dt.

Let X = C
(
I,
[
u0
4 ,∞

))
and Sb(u, v, w) = (|v + w − 2v| + |v − w|)2 for

u, v, w ∈ X. Define β : [0,∞) → [0,∞) by β(x) = (25b3−4)x
25b3

. Define
E : X → X by

(12) E(u)(x) =
u0
5b4

+

x∫
0

P (t, u(t))dt.

Now

4b5Sb(Eu(x), Eu(x), Ev(x))

= 4b5 {|Eu(x) + Ev(x)− 2Eu(x)|+ |Eu(x)− Ev(x)|}2

= 16b5 |Eu(x)− Ev(x)|2

=
16b5

25b8

∣∣∣∣∣∣u0 + 5b4
x∫

0

P (t, u(t))dt− v0 − 5b4
x∫

0

P (x, v(x))dx

∣∣∣∣∣∣
2

=
16

25b3
|u(x)− v(x)|2 =

4

25b3
S(u, u, v)

≤ N3
f (u, v)− β

(
N3
f (u, v)

)
It follows from Theorem 3, E has a unique fixed point in X. �

5. Application to homotopy

In this section, we study the existence of a unique solution to homotopy
theory.

Theorem 7. Let (X,Sb) be complete Sb-metric space, U be an open
subset of X and U be closed subset of X such that U ⊆ U . Suppose Hb :
U × [0, 1]→ X be an operator with following conditions are satisfying, (7.1)
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u 6= Hb(u, κ) for each u ∈ ∂U and κ ∈ [0, 1] (Here ∂U = boundary of
U in X), (7.2) 1

4b3
min {Sb (u, u,Hb(u, κ)) , Sb (v, v,Hb(v, κ))} ≤ Sb (u, u, v)

implies that

4b5Sb(Hb(u, κ), Hb(u, κ), Hb(v, κ)) ≤ Sb(u, u, v)− β(Sb(u, u, v))

for all u, v ∈ U and κ ∈ [0, 1], where β defined in Theorem(3), (7.3) ∃
Mb ≥ 0 3 Sb(Hb(u, κ), Hb(u, κ), Hb(u, ζ)) ≤ Mb|κ − ζ| for every u ∈ U and
κ, ζ ∈ [0, 1]. Then Hb(·, 0) has a fixed point ⇐⇒ Hb(·, 1) has a fixed point.

Proof. Let the set

B = {κ ∈ [0, 1] : u = Hb(u, κ) for some u ∈ U}.

Since Hb(., 0) has a fixed point in U , so 0 ∈ B.
Now we show that B is both closed and open in [0, 1] and hence by the

connectedness B = [0, 1]. Let {κn}∞n=1 ⊆ B with κn → κ ∈ [0, 1] as n→∞.
We must show κ ∈ B. Since κn ∈ B for n = 1, 2, 3, · · · , there exists un ∈ U
with un = Hb(un, κn).

Consider

Sb(un, un, un+1) = Sb(Hb(un, κn), Hb(un, κn), Hb(un+1, κn+1))
≤ 2bSb(Hb(un, κn), Hb(un, κn), Hb(un+1, κn))

+ b2Sb(Hb(un+1, κn), Hb(un+1, κn), Hb(un+1, κn+1))
≤ 2bSb(Hb(un, κn), Hb(un, κn), Hb(un+1, κn))

+ b2M |κn − κn+1|.

Letting n→∞, we get

lim
n→∞

Sb(un, un, un+1)

≤ lim
n→∞

2bSb(Hb(un, κn), Hb(un, κn), Hb(un+1, κn)) + 0.

Since

1

4b3
min {Sb (un, un, Hb(un, κ)) , Sb (un+1, un+1, Hb(un+1, κ))}

≤ Sb (un, un, un+1) .

Therefore, from 7, we have

lim
n→∞

2b4Sb(un, un, un+1) ≤ lim
n→∞

4b5Sb(Hb(un, κn), Hb(un, κn), Hb(un+1, κn))

≤ lim
n→∞

[Sb(un, un, un+1)− β(Sb(un, un, un+1))] .

It follows that

(13) lim
n→∞

Sb(un, un, un+1) = 0.
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Now we prove {un} is a Sb−Cauchy sequence in (X,Sb). On contrary
suppose {un} is not a Sb−Cauchy. There exists an ε > 0 and monotone
increasing sequence of natural numbers {mk} and {nk} such that nk > mk,

(14) Sb(umk
, umk

, unk
) ≥ ε

and

(15) Sb(umk
, umk

, unk−1) < ε.

Therefore from (14) and (15), we have

ε ≤ Sb(umk
, umk

, unk
)

≤ 2bSb(umk
, umk

, umk+1) + b2Sb(umk+1, umk+1, unk
).

Letting k →∞ , we have

ε

b2
≤ lim

n→∞
Sb (umk+1, umk+1, unk

) .

But

lim
n→∞

Sb (umk+1, umk+1, unk
) ≤ lim

n→∞
9b4Sb (Hb(umk+1, κmk+1),

Hb(umk+1, κmk+1), Hb(unk
, κnk

))

≤ lim
n→∞

[Sb(umk+1, umk+1, unk
)

− β(Sb(umk+1, umk+1, unk
))] .

It follows
lim
n→∞

Sb (umk+1, umk+1, unk
)) ≤ 0.

So that
ε ≤ 0,

it is a contradiction.
Hence {un} is a Sb−Cauchy sequence in (X,Sb). By completeness ∃η ∈

U 3

(16) lim
n→∞

un = η = lim
n→∞

un+1.

Since

1

4b3
min {Sb (η, η,Hb(η, κ)) , Sb (un, un, Hb(un, κ))} ≤ Sb (η, η, un) .

1
2bSb (Hb(η, κ), Hb(η, κ), η) ≤ lim

n→∞
inf Sb (Hb(η, κ), Hb(η, κ), Hb(un, κ))

≤ lim
n→∞

inf 4b5Sb (Hb(η, κ), Hb(η, κ), Hb(un, κ))

≤ lim
n→∞

inf[Sb (η, η, un)− β(Sb(η, η, un))]

= 0.
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It follows that η = Hb(η, κ). Thus κ ∈ B. Clearly B is closed in [0, 1].
Let κ0 ∈ B, then ∃u0 ∈ U 3 u0 = Hb(u0, κ0). Since U is open, then there
exists r > 0 such that BSb

(u0, r) ⊆ U . Choose κ ∈ (κ0 − ε, κ0 + ε) such
that |κ − κ0| ≤ 1

Mn < ε. Then for u ∈ Bp(u0, r) = {u ∈ X/Sb(u, u, u0) ≤
r + b2Sb(u0, u0, u0)}. Also

1

4b3
min {Sb (u, u,Hb(u, κ), Sb (u0, u0, Hb(u0, κ)))} ≤ Sb (u, u, u0) .

Sb(Hb(u, κ), Hb(u, κ), x0) = Sb(Hb(u, κ), Hb(u, κ), Hb(u0, κ0))
≤ 2bSb(Hb(u, κ), Hb(u, κ), Hb(u, κ0))
+ b2Sb(Hb(u, κ0), Hb(u, κ0), Hb(u0, κ0))
≤ 2bM |κ− κ0|
+ b2Sb(Hb(u, κ0), Hb(u, κ0), Hb(u0, κ0))

≤ 2b
Mn−1 + b2Sb(Hb(u, κ0), Hb(u, κ0), Hb(u0, κ0)).

Letting n→∞, we obtain

Sb(Hb(u, κ), Hb(u, κ), x0) ≤ b2Sb(Hb(u, κ0), Hb(u, κ0), Hb(u0, κ0))
≤ 4b5Sb(Hb(u, κ0), Hb(u, κ0), Hb(u0, κ0))
≤ Sb(u, u, u0)− β(Sb(u, u, x0))
≤ Sb(u, u, u0).

Sb(Hb(u, κ), Hb(u, κ), u0) ≤ Sb(u, u, u0)
≤ r + b2Sb(u0, u0, u0).

Thus for each fixed κ ∈ (κ0 − ε, κ0 + ε), Hb(., κ) : Bp(u0, r) → Bp(u0, r).
Then all conditions of Theorem (7) are satisfied. Thus we conclude that
Hb(., κ) has a fixed point in U . But this must be in U . Therefore, κ ∈ B for
κ ∈ (κ0 − ε, κ0 + ε). Hence (κ0 − ε, κ0 + ε) ⊆ B. Clearly B is open in [0, 1].
To prove the reverse, we can use the similar process. �

6. Conclusions

In this paper we conclude some applications to integral equations and
homotopy theory by using (α, β)-rational contraction fixed point theorems
in partially ordered Sb-metric spaces
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