Marek Lassak and Micha乇Musielak

DIAMETER OF REDUCED SPHERICAL CONVEX BODIES

Abstract

The intersection L of two different non-opposite hemispheres of the unit sphere S^{2} is called a lune. By $\Delta(L)$ we denote the distance of the centers of the semicircles bounding L. By the thickness $\Delta(C)$ of a convex body $C \subset S^{2}$ we mean the minimal value of $\Delta(L)$ over all lunes $L \supset C$. We call a convex body $R \subset S^{2}$ reduced provided $\Delta(Z)<\Delta(R)$ for every convex body Z being a proper subset of R. Our aim is to estimate the diameter of R, where $\Delta(R)<\frac{\pi}{2}$, in terms of its thickness. KEY words: spherical convex body, spherical geometry, hemisphere, lune, width, constant width, thickness, diameter.

AMS Mathematics Subject Classification: 52A55.

1. Introduction

Let S^{2} be the unit sphere of the 3 -dimensional Euclidean space E^{3}. A great circle of S^{2} is the intersection of S^{2} with any two-dimensional linear subspace of E^{3}. By a pair of antipodes of S^{2} we mean any pair of points being the intersection of S^{2} with a one-dimensional subspace of E^{3}. Observe that if two different points $a, b \in S^{2}$ are not antipodes, there is exactly one great circle passing through them. By the arc ab connecting them we understand the shorter part of the great circle through a and b. By the distance $|a b|$ of a and b we mean the length of the arc $a b$. The notion of the diameter of any set $A \subset S^{2}$ not containing antipodes is taken with respect to this distance and denoted by $\operatorname{diam}(A)$.

A subset of S^{2} is called convex if it does not contain any pair of antipodes of S^{2} and if together with every two points it contains the arc connecting them. A closed convex set $C \subset S^{2}$ with non-empty interior is called a convex body. Its boundary is denoted by $\operatorname{bd}(C)$. If no arc is in $\operatorname{bd}(C)$, we say that the body is strictly convex. Convexity on S^{2} is considered in very many papers and monographs. For instance in [1], [2], [3], [4], [5] and [14].

The set of points of S^{2} in the distance at most ρ, where $0<\rho \leq \frac{\pi}{2}$, from a point $c \in S^{2}$ is called a spherical disk, or shorter a disk, of radius ρ and center c. Disks of radius $\frac{\pi}{2}$ are called hemispheres. Two hemispheres whose centers are antipodes are called opposite hemispheres. The set of points of a great circle of S^{2} which are at distance at most $\frac{\pi}{2}$ from a fixed point p of this great circle is called a semicircle. We call p the center of this semicircle.

Let $C \subset S^{2}$ be a convex body and $p \in \operatorname{bd}(C)$. We say that a hemisphere K supports C at p provided $C \subset K$ and p is in the great circle bounding K.

Since the intersection of every family of convex sets is also convex, for every set $A \subset S^{2}$ contained in an open hemisphere of S^{2} there is the smallest convex set $\operatorname{conv}(A)$ containing A. We call it the convex hull of A.

If non-opposite hemispheres G and H are different, then $L=G \cap H$ is called a lune. The semicircles bounding L and contained in G and H, respectively, are denoted by G / H and H / G. The thickness $\Delta(L)$ of L is defined as the distance of the centers of G / H and H / G.

After [8] recall a few notions. For any hemisphere K supporting a convex body $C \subset S^{2}$ we find a hemisphere K^{*} supporting C such that the lune $K \cap K^{*}$ is of the minimum thickness (by compactness arguments at least one such a hemisphere K^{*} exists). The thickness of the lune $K \cap K^{*}$ is called the width of C determined by K and it is denoted by $\operatorname{width}_{K}(C)$. By the thickness $\Delta(C)$ of a convex body $C \subset S^{2}$ we understand the minimum of width $_{K}(C)$ over all supporting hemispheres K of C. We say that a convex body $R \subset S^{2}$ is reduced if for every convex body $Z \subset R$ different from R we have $\Delta(Z)<\Delta(R)$. This definition is analogous to the definition of a reduced body in normed spaces (for a survey of results on reduced bodies see [10]). If for all hemispheres K supporting C the numbers width ${ }_{K}(C)$ are equal, we say that C is of constant width. Spherical bodies of constant width are discussed in [12] and applied in [6].

Just bodies of constant width, and in particular disks, are simple examples of reduced bodies on S^{2}. Also each of the four parts of a disk dissected by two orthogonal great circles through the center of this disk is a reduced body. It is called a quarter of a disk. There is a wide class of reduced odd-gons on S^{2} (see [9]). In particular, the regular odd-gons of thickness at most $\frac{\pi}{2}$ are reduced.

2. Two lemmas

Lemma 1. Let $L \subset S^{2}$ be a lune of thickness at most $\frac{\pi}{2}$ whose bounding semicircles are Q and Q^{\prime}. For every u, v, z in Q such that $v \in u z$ and for every $q \in L$ we have $|q v| \leq \max \{|q u|,|q z|\}$.

Proof. If $\Delta(L)=\frac{\pi}{2}$ and q is the center of Q^{\prime}, then the distance between
q and any point of Q is the same, and thus the assertion is obvious. Consider the opposite case when $\Delta(L)<\frac{\pi}{2}$, or $\Delta(L)=\frac{\pi}{2}$ but q is not the center of Q^{\prime}. Clearly, the closest point $p \in Q$ to q is unique. Observe that for $x \in Q$ the distance $|q x|$ increases as the distance $|p x|$ increases. This easily implies the assertion of our lemma.

In a standard way, an extreme point of a convex body $C \subset S^{2}$ is defined as a point for which the set $C \backslash\{e\}$ is convex (see [8]). The set of extreme points of C is denoted by $E(C)$.

Lemma 2. For every convex body $C \subset S^{2}$ of diameter at most $\frac{\pi}{2}$ we have $\operatorname{diam}(E(C))=\operatorname{diam}(C)$.

Proof. Clearly, $\operatorname{diam}(E(C)) \leq \operatorname{diam}(C)$.
In order to show the opposite inequality $\operatorname{diam}(C) \leq \operatorname{diam}(E(C))$, thanks to $\operatorname{diam}(C)=\operatorname{diam}(\operatorname{bd}(C))$, it is sufficient to show that $|c d| \leq \operatorname{diam}(E(C))$ for every $c, d \in \operatorname{bd}(C)$. If $c, d \in E(C)$, this is trivial. In the opposite case, at least one of these points does not belong to $E(C)$. If, say $d \notin E(C)$, then having in mind that C is a convex body and $d \in \operatorname{bd}(C)$ we see that there are $e, f \in E(C)$ different from d such that $d \in e f$. From $E(C) \subset \operatorname{bd}(C)$, we see that $e, f \in \operatorname{bd}(C)$. Since also $d \in \operatorname{bd}(C)$, the arc ef is a subset of $\operatorname{bd}(C)$.

Recall that by Theorem 3 of [8] we have $\operatorname{width}_{K}(C) \leq \operatorname{diam}(C)$ for every hemisphere K supporting C. In particular, for the hemisphere K supporting C at all points of the arc $e f$. Thus by the assumption that $\operatorname{diam}(C) \leq \frac{\pi}{2}$ we obtain width ${ }_{K}(C) \leq \frac{\pi}{2}$ for our particular K. Hence we may apply Lemma 1 taking this K / K^{*} in the part of Q there. We obtain $|c d| \leq \max \{|c e|,|c f|\}$.

If $c \in E(C)$, from $e, f \in E(C)$ we conclude that $|c d| \leq \operatorname{diam}(E(C))$. If $c \notin E(C)$, from $c \in \operatorname{bd}(C)$ we see that there are $g, h \in E(C)$ such that $c \in g h$. Similarly to the preceding paragraph we show that $|e c| \leq \max \{|e g|,|e h|\}$ and $|f c| \leq \max \{|f g|,|f h|\}$. By these two inequalities and by the preceding paragraph we get $|c d| \leq \max \{|e g|,|e h|,|f g|,|f h|\} \leq \operatorname{diam}(E(C))$, which ends the proof.

The assumption that $\operatorname{diam}(C) \leq \frac{\pi}{2}$ is substantial in Lemma 2, as it follows from the example of a regular triangle of any diameter greater than $\frac{\pi}{2}$. The weaker assumption that $\Delta(C) \leq \frac{\pi}{2}$ is not sufficient, which we see taking in the part of C any isosceles triangle T with $\Delta(T) \leq \frac{\pi}{2}$ and the arms longer than $\frac{\pi}{2}$ (so with the base shorter than $\frac{\pi}{2}$). The diameter of T equals to the distance between the midpoint of the base and the opposite vertex of T. Hence $\operatorname{diam}(T)$ is over the length of each of the sides.

3. Diameter of reduced spherical bodies

The following theorem is analogous to the first part of Theorem 9 from [7] and confirms the conjecture from [9], p. 214. By the way, the much weaker estimate $2 \arctan \left(\sqrt{2} \tan \frac{\Delta(R)}{2}\right)$ results from Theorem 2 in [13].

Theorem 1. For every reduced spherical body $R \subset S^{2}$ with $\Delta(R)<\frac{\pi}{2}$ we have $\operatorname{diam}(R) \leq \arccos \left(\cos ^{2} \Delta(R)\right)$. This value is attained if and only if R is the quarter of disk of radius $\Delta(R)$. If $\Delta(R) \geq \frac{\pi}{2}$, then $\operatorname{diam}(R)=\Delta(R)$.

Proof. Assume that $\Delta(R)<\frac{\pi}{2}$. In order to show the first statement, by Lemma 2 it is sufficient to show that the distance between any two different points e_{1}, e_{2} of $E(R)$ is at most $\arccos \left(\cos ^{2} \Delta(R)\right)$. Since R is reduced, according to the statement of Theorem 4 in [8] there exist lunes $L_{j} \supset R$, where $j \in\{1,2\}$, of thickness $\Delta(R)$ with e_{j} as the center of one of the two semicircles bounding L_{j} (see Figure). Denote by b_{j} the center of the other semicircle bounding L_{j}.

If $e_{1}=b_{2}$ or $e_{2}=b_{1}$, then $\left|e_{1} e_{2}\right|=\Delta(R)$, which by $\Delta(R) \in\left(0, \frac{\pi}{2}\right)$ is at most $\arccos \left(\cos ^{2} \Delta(R)\right)$. Otherwise $L_{1} \cap L_{2}$ is a non-degenerate spherical quadrangle with points $e_{1}, b_{2}, b_{1}, e_{2}$ in its consecutive sides. Therefore, since $e_{1} \neq e_{2}$, arcs $e_{1} b_{1}$ and $e_{2} b_{2}$ intersect at exactly one point. Denote it by g. Observe that it may happen $b_{1}=b_{2}=g$.

Let F be the great circle orthogonal to the great circle containing $e_{1} b_{1}$ and passing through e_{2}. Since $e_{2} \in L_{1}$, we see that F intersects $e_{1} b_{1}$. Let f

Figure. Illustration to the proof of Theorem 1.
be the intersection point of them. Note that we do not exclude the case $f=b_{1}$. From $\left|e_{2} b_{2}\right|=\Delta(R)$ we see that $\left|g e_{2}\right| \leq \Delta(R)<\frac{\pi}{2}$. Thus from the right spherical triangle $g f e_{2}$ we conclude that $\left|f e_{2}\right| \leq \Delta(R)$. Moreover, from $\left|e_{1} b_{1}\right|=\Delta(R)$ and $f \in e_{1} b_{1}$ we obtain $\left|f e_{1}\right| \leq \Delta(R)$. Consequently,
from the formula $\cos k=\cos l_{1} \cos l_{2}$ for the right spherical triangle with hypotenuse k and legs l_{1}, l_{2} applied to the triangle $e_{1} f e_{2}$ (again see Figure) we obtain $\left|e_{1} e_{2}\right| \leq \arccos \left(\cos ^{2} \Delta(R)\right)$.

Observe that thanks to $\Delta(R)<\frac{\pi}{2}$, the shown inequality becomes the equality only if $g=f=b_{1}=b_{2}$. In this case, by Proposition 3.2 of [11], our body R is a quarter of disk of radius $\Delta(R)$.

Finally, we show the last statement of the theorem. Assume that $\Delta(R) \geq$ $\frac{\pi}{2}$. By Theorem 4.3 of [11], the body R is of constant width $\Delta(R)$.

There is an arc $p q \subset R$ of length equal to diam (R). Clearly, $p \in \operatorname{bd}(R)$. Take a lune L from Theorem 5.2 of [11] such that p is the center of a semicircle bounding L. Denote by s the center of the other semicircle S bounding L. By the third part of Lemma 3 in [8], we have $|p x|<|p s|$ for every $x \in S$ different from s. Hence $|p x| \leq|p s|$ for every $x \in S$. So also $|p z| \leq|p s|$ for every $z \in L$. In particular, $|p q| \leq|p s|$. Since $\operatorname{diam}(R)=|p q|$ and $\Delta(R)=\Delta(L)=|p s|$, we obtain $\operatorname{diam}(R) \leq \Delta(R)$.

Let us show the opposite inequality.
If $\operatorname{diam}(R) \leq \frac{\pi}{2}$, by Theorem 3 of [8] we get $\Delta(R)=\operatorname{diam}(R)$. If $\operatorname{diam}(R)>\frac{\pi}{2}$, then by Proposition 1 of [8] we get $\Delta(R) \leq \operatorname{diam}(W)$. Consequently, always we have $\Delta(R) \leq \operatorname{diam}(R)$.

From the inequalities obtained in the two preceding paragraphs we get the equality $\operatorname{diam}(R)=\Delta(R)$. Hence the last assertion of the theorem is proved.

Proposition 3.5 of [11] implies that for every reduced spherical body R with $\Delta(R) \leq \frac{\pi}{2}$ on S^{2} we have $\operatorname{diam}(R) \leq \frac{\pi}{2}$. Here is a more precise form of this statement.

Proposition 1. Let $R \subset S^{2}$ be a reduced body. Then $\operatorname{diam}(R)<\frac{\pi}{2}$ if and only if $\Delta(R)<\frac{\pi}{2}$. Moreover, $\operatorname{diam}(R)=\frac{\pi}{2}$ if and only if $\Delta(R)=\frac{\pi}{2}$.

Proof. We start with proving the first statement of our proposition. The function $f(x)=\arccos \left(\cos ^{2} x\right)$ is increasing in the interval $\left[0, \frac{\pi}{2}\right]$ as a composition of the decreasing functions $\arccos x$ and $\cos ^{2} x$. From $f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$ we conclude that in the interval $\left[0, \frac{\pi}{2}\right)$ the function $f(x)$ accepts only the values below $\frac{\pi}{2}$. Thus by Theorem 1 , if $\Delta(R)<\frac{\pi}{2}$, then $\operatorname{diam}(R)<\frac{\pi}{2}$. The opposite implication results from the inequality $\Delta(C) \leq \operatorname{diam}(C)$ for every spherical convex body C, which follows from Theorem 3 and Proposition 1 of [8].

Let us show the second part of our proposition.
Assume that $\operatorname{diam}(R)=\frac{\pi}{2}$. The inequality $\Delta(R)<\frac{\pi}{2}$ is impossible, by the first statement of our proposition. Also the inequality $\Delta(R)>\frac{\pi}{2}$ is impossible, because by $\Delta(R) \leq \operatorname{diam}(R)$ (see Proposition 1 of [8]), it would
imply $\operatorname{diam}(R)>\frac{\pi}{2}$ in contradiction to the assumption at the beginning of this paragraph. So $\Delta(R)=\frac{\pi}{2}$.

Now assume that $\Delta(R)=\frac{\pi}{2}$. By the second statement of Theorem 1 we get $\operatorname{diam}(R)=\frac{\pi}{2}$.

References

[1] Besau F., Schuster F., Binary operations in spherical convex geometry, Indiana Univ. Math. J., 65(4)(2016), 1263-1288.
[2] Danzer L., Grünbaum B., Klee V., Helly's theorem and its relatives, Proc. of Symp. in Pure Math., vol. VII, Convexity, (1963), 99-180.
[3] Ferreira O.P., Iusem A.N., Németh S.Z., Projections onto convex sets on the sphere, J. Global Optim., 57(2013), 663-676.
[4] Gao F., Hug D., Schneider R., Intrinsic volumes and polar sets in spherical space, Math. Notae, 41(2003), 159-176.
[5] Hadwiger H., Kleine Studie zur kombinatorischen Geometrie der Sphäre, Nagoya Math. J., 8(1955), 45-48.
[6] Han H., Nishimura T., Self-dual Wulff shapes and spherical convex bodies of constant width $\pi / 2$, J. Math. Soc. Japan, 69(2017), 1475-1484.
[7] Lassak M., Reduced convex bodies in the plane, Israel J. Math., 70(1990), 365-379.
[8] Lassak M., Width of spherical convex bodies, Aequationes Math., 89(2015), 555-567.
[9] Lassak M., Reduced spherical polygons, Colloq. Math., 138(2015), 205-216.
[10] Lassak M., Martini H., Reduced convex bodies in finite-dimensional normed spaces - a survey, Results Math., 66(3-4)(2014), 405-426.
[11] Lassak M., Musielak M., Reduced spherical convex bodies, Bull. Pol. Ac. Math., 66(2018), 87-97.
[12] Lassak M., Musielak M., Spherical bodies of constant width, Aequationes Math., 92(2018), 627-640.
[13] Musielak M., Covering a reduced spherical body by a disk, Ukr. Math. J., to appear (see also arXiv:1806.04246).
[14] Van Brummelen G., Heavenly mathematics. The forgotten art of spherical trigonometry, Princeton University Press, Princeton, 2013.

Marek Lassak
Instytut Matematyki I Fizyki
University of Science and Technology
85-796 Bydgoszcz, Poland
e-mail: marek.lassak@utp.edu.pl
Micha乇Musielak
Instytut Matematyki i Fizyki
University of Science and Technology
85-796 Bydgoszcz, Poland
e-mail: michal.musielak@utp.edu.pl
Received on 23.04.2018 and, in revised form, on 09.11.2018.

