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Abstract. We study the solvability of general quadratic Volterra
integral equations in the space of Lebesgue integrable functions on
the half line. Using the conjunction of the technique of measures
of weak noncompactness with modified Schauder fixed point prin-
ciple we show that the integral equation, under certain conditions,
has at least one solution. Moreover, that result generalizes several
ones obtained earlier in many research papers and monographs.
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1. Introduction

We are going to study the solvability of the following integral equation

x(t) = g

(
t, (T1x)(t), (T2x)(t)

∫ t

0
k(t, s)f(s, x(s))ds ,(1)

(T3x)(t)

∫ t

0
u(t, s, x(s))ds

)
, t ∈ R+,

where Ti, i = 1, 2, 3 are operators which map L1(R+), i.e. the space of
Lebesgue integrable functions on R+ into itself continuously.

Many authors have studied different particular cases of the integral equa-
tions (1) on noncompact intervals (cf. [8, 9, 13]).

Developing a modified new method of the descriptive theory [11], we ob-
tain a new generalization of the Scorza-Dragoni theorem for general operator
T : N×X → Y defined on the product of a topological space N with σ-finite
Borel regular measure and a metrizable separable locally compact space X.

Let us mention that the functional quadratic integral equations are often
applicable in the theory of radiative transfer, kinetic theory of gases, in the
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theory of neutron transport, in the traffic theory, in plasma physics and in
numerous branches of mathematical physics (cf. [6, 7, 12]).

In this paper we generalize a lot of variants of the Scorza-Dragoni the-
orem. We will unify some known results, for particular cases of equation
(1) in one proof and will extend some of them from compact interval to
noncompact one in the space L1(R+). Our main tools are the measure of
noncompactness and Schauder’s fixed point theorem.

2. Notation and auxiliary facts

Let R be the field of real numbers and R+ be the interval [0,∞). If Z
is a Lebesgue measurable subset of R, then the symbol meas(Z) stands for
the Lebesgue measure of Z. Further, denote by L1(Z) the space of all real
functions defined and Lebesgue measurable on the set Z. When Z = R+,
we will write L1 and L∞ instead of L1(R+) and L∞(R+) respectively.

Denote by C(D) the Banach space of real functions defined and continu-
ous on a nonempty bounded and closed subset D of R. The space C(D) will
be considered with the standard maximum norm. Let us fix a nonempty
and bounded subset X of C(D) and a positive number τ . For x ∈ X and
ε ≥ 0 let us denote by ωτ (x, ε) the modulus of continuity of the function x,
on the closed and bounded interval [0, τ ] defined by

ωτ (x, ε) = sup{|x(t2)− x(t1)| : t1, t2 ∈ [0, τ ], |t2 − t1| ≤ ε}.

A measure on a σ-algebra A of subsets of a certain set N is defined as a
σ-additive function of a set γ : A → [0,∞] such that γ(φ) = 0. A measure
defined on the σ-algebra B of all Borel subsets of a certain topological space
is called a Borel measure. A Borel measure γ : A → [0,∞], where A is a
σ-algebra of measurable sets, is called regular if, for every set H ∈ A and
every ε > 0, there exist a closed set F ⊆ H and open set G ⊇ H such that
γ(G\F) < ε.

Now we present the concept of measure of weak noncompactness. Assume
that (E, ‖ · ‖) is an arbitrary Banach space with zero element θ. Denote by
B(x, r) the closed ball centered at x and with radius r. The symbol Br
stands for the ball B(θ, r). Denote by ME the family of all nonempty and
bounded subsets of E and by NW

E its subfamily consisting of all relatively
weakly compact sets. The symbol X̄W stands for the weak closure of a set
X and the symbol ConvX will denote the convex closed hull of a set X.

Definition 1 ([5]). A mapping µ :ME → [0, ∞) is said to be a measure
of weak noncompactness in E if it satisfies the following conditions:

(a) The family Ker µ = {X ∈ ME : µ(X) = 0} is nonempty and Ker
µ ⊂ NW

E .
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(b) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(c) µ(ConvX) = µ(X).
(d) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

(e) If Xn ∈ ME, Xn = X̄n
W

and Xn+1 ⊂ Xn for n = 1, 2, · · · and if
limn→∞ µ(Xn) = 0, then the intersection X∞ =

⋂∞
n=1Xn is nonempty.

The family Ker µ described in (1) is said to be the kernel of the measure
of weak noncompactness µ. Let us observe that the intersection set X∞
from (5) belongs to Ker µ. Indeed, since µ(X∞) ≤ µ(Xn) for every n, then
we have that µ(X∞) = 0. This simple observation will be important in our
further considerations.

Now, for a nonempty and bounded subset X of the space L1 let us define:

(2) c(X) = lim
ε→0

{
sup
x∈X

{
sup

[∫
D
|x(t)|dt,D ⊂ R+,meas(D) ≤ ε

]}}
and

(3) d(X) = lim
τ→∞

{
sup

[∫ ∞
τ
|x(t)|dt : x ∈ X

]}
.

Put

(4) µ(X) = c(X) + d(X).

It can be shown [4] that the function µ is a measure of weak noncom-
pactness in the space L1.

Now, we will investigate many properties of operators acting on different
function spaces. Let us recall some basic lemmas.

Definition 2 ([1]). Assume that a function f : R+ × R → R satisfies
Carathéodory conditions i.e. it is measurable in t for any x ∈ R and contin-
uous in x for almost all t ∈ R+. Then to every measurable function x, we
may assign the function

F (x)(t) = f(t, x(t)), t ∈ R+.

The operator F defined in such a way is called the superposition (Nemytskii)
operator generated by the function f .

Theorem 1 ([1]). Suppose that f satisfies Carathéodory conditions. The
superposition operator F maps the space L1 into L1 if and only if

(5) |f(t, x)| ≤ a(t) + b |x|,

for all t ∈ R+ and x ∈ R, where a ∈ L1 and b ≥ 0. Moreover, this operator
is continuous.
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Assume that I ⊆ R+ is an interval. The following Lusin-Dragoni theo-
rem explains the structure of measurable functions and functions satisfying
Carathéodory conditions. Below and subsequently by Dc we will denote the
complement of the set D.

Theorem 2 ([14]). Let f : I×R→ R be a function satisfying Carathéodory
conditions. Then for each ε > 0 there exists a closed subset Dε of the interval
I such that meas(Dc

ε) ≤ ε and f |Dε×R is continuous.

Consider a general operator T : N × X → Y , where N is a topological
space with Borel measure γ and X and Y are topological spaces. We will
denote T t(x) = Tx(t) = (Tx)(t) for (t, x) ∈ N ×X.

Definition 3. A mapping T is called a Carathéodory function if the
mapping T t : X → Y is continuous for every t ∈ N , and the mapping
Tx : N → Y is measurable for every x ∈ X. We say that a mapping T
possesses the Scorza-Dragoni property if, for every ε > 0, there exists a
closed set Nε ⊆ N such that γ(N\Nε) < ε and the restriction T |Nε×X is
continuous.

Recall that the Scorza-Dragoni property plays a similar role for functions
defined on I × R as the Lusin property for functions defined on I. We will
extend such a result for noncompact intervals.

The following generalization of Theorem 2 is obtained by direct general-
ization of the method used in [11] in topological spaces to general operator
T . The measurability of a function is considered with respect to a σ-algebra
of γ-measurable sets (cf. [11, Theorem 3]).

Lemma 1. Let N is a topological space with σ-finite regular measure γ,X
is a metrizable separable locally compact space, Y is a metrizable separable
space, and T : N ×X → Y is a Carathéodory function. Then T possesses
the Scorza-Dragoni property.

Proof. Let dX and dY be the metrics that generate the topologies of
the spaces X and Y , respectively, and let X̃ = {x1, x2, · · · } be a set dense
in X. We fix an arbitrary ε > 0. The space Y has at most countable base.
Hence, for every k ∈ N one can always find a closed set Hk in N for which
γ(N\Hk) < ε

2k+2 and the restriction Txk |Hk is continuous (cf. [11, Theorem
1]). The set E =

⋂∞
k=1Hk is closed and γ(N\Ek) < ε

4 .
Let (Gm)∞m=1 be an increasing sequence of open sets from X such that

their closures Gm are compact and
⋃∞
m=1 Gm = X. We set

Hm,n =

{
t ∈ E : (∀x′, x′′ ∈ Gm)

(
dX(x′, x′′) <

1

n

⇒ dY
(
T t(x′), T t(x′′)

)
≤ 1

m

)}
.
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Let us show that
⋃∞
n=1Hm,n = E for any fixed number m. Consider

arbitrary t ∈ E and m ∈ N. The function T t : X → Y is continuous on X
and, therefore, by virtue of the Cantor theorem, it is uniformly continuous
on the compact set Gm and, hence, on Gm. This implies that there exists a
number n0 ∈ N such that, for all x′, x′′ ∈ Gm, the relation dX(x′, x′′) < 1

n0

yields dY (T t(x′), (T t(x′′)) ≤ 1
m . Therefore, t ∈ Hm,n0 and, hence, t ∈⋃∞

n=1Hm,n. We now show that the sets Hm,n are measurable. For this

purpose, we put Xm = X̃
⋂
Gm and consider the set

H̃m,n =

{
t ∈ E : (∀x′, x′′ ∈ Xm)

(
dX(x′, x′′) <

1

n

⇒ dY
(
T t(x′), T t(x′′)

)
≤ 1

m

)}
.

It is obvious that Hm,n ⊆ H̃m,n. Let us show that H̃m,n ⊆ Hm,n. Assume

that t ∈ H̃m,n and the points x′, x′′ ∈ Gm are such that dX(x′, x′′) < 1
n . Since

Xm ⊇ Gm, there exist sequences of points (x′k) and (x′′k) in Xm such that
x′k → x and x′′k → x as k → ∞, and dX(x′k, x

′′
k) < 1

n for all numbers
k. We have dY (T t(x′k), T

t(x′′k)) ≤
1
m for every k. Since the function T t

is continuous, passing to the limit as k → ∞ in the last inequality we
obtain dY (T t(x′k), T

t(x′′k)) ≤
1
m , whence t ∈ Hm,n. Therefore, Hm,n = H̃m,n.

Consider the at most countable set

Sm,n =

{
(x′, x′′) ∈ X2

m : dX(x′, x′′) <
1

n

}
.

For (x′, x′′) ∈ Sm,n, we set

Qx′,x′′ =

{
t ∈ E : dY

(
T t(x′), T t(x′′)

)
≤ 1

m

}
.

Since the function (Tx′ , Tx′′) : N → Y 2, where (Tx′ , Tx′′)(t) = (Tx′(t),
Tx′′(t)), is measurable and the function dY : Y 2 → R is continuous, their
composition h = dY ◦ (Tx, Tx) is a measurable function. Hence, the sets
Qx′,x′′ = h−1([0, 1

m ]) are measurable for all (x′, x′′) ∈ Sm,n. On the other
hand, it is clear that Hm,n =

⋂
(x′,x′′)∈Sm,n Qx′,x′′ . Therefore, the set Hm,n =

H̃m,n is also measurable as an at most countable intersection of measurable
sets.

It is clear that the sequence (Hm,n)∞n=1 increases for every m. Therefore,
by virtue of the property of continuity from below, we have γ(Hm,n)→ γ(E)
as t → ∞. Hence, for every m ∈ N, there exists a number nm such that
γ(E\Hm,nm) < ε

2m+2 . The set Q =
⋂∞
m=1Hm,nm is measurable and

γ(N\Q) = γ((N\E)
⋃

(E\Q)) < γ(N\E) + γ(E\Q) <
ε

2
.
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Let us show that the restriction T |Q×X is a continuous function. We take
an arbitrary point z0 = (x0, y0) ∈ Q×X and fix an arbitrary δ > 0. One can
always find numbers m1 and m2 for which 1

m1
< δ

3 and x0 ∈ Gm2 . Denote

m0 = max{m1,m2}. Since x0 ∈ Gm0 and Xm0 ⊇ Gm0 , there exists a number
k0 such that xk0 ∈ Gm0 and dX(xk0 , x0) < 1

2nm0
. The restriction Txk0 |Q is

continuous because Q ⊆ Hk0 . Therefore, there exists a neighborhood Γ of a
point t0 in Q such that, for all t ∈ Γ, the inequality dY (Txk0 (t), Txk0 (t0)) < δ

3
is true. Let

V =

{
x ∈ X : dX(x, x0) <

1

2nm0

}
.

Then W = Γ × V is a neighborhood of a point z0 in the space Q × X.
For an arbitrary point z = (t, x) ∈ W, we have

dX(x, xk0) ≤ dX(x, x0) + dX(x0, xk0) <
1

nm0

, dX(xk0 , x0) <
1

nm0

and t, t0 ∈ Hm0,nm0
. Therefore,

dY ((Tx)(t), (Txk0)(t)) ≤ 1

m0
≤ 1

m1
<
δ

3

and, similarly, dY ((Txk0)(t0), (Tx0)(t0)) ≤ δ
3 . In this case, we have

dY ((Tx)(t), (Tx0)(t0)) ≤ dY ((Tx)(t), (Txk0)(t))

+ dY ((Txk0)(t), (Txk0)(t0))

+ dY ((Txk0)(t0), (Tx0)(t0))

<
δ

3
+
δ

3
+
δ

3
= δ.

Thus, the continuity of the restriction T |Q is proved. It follows from the
regularity of the measure γ that there exists a closed set Nε ⊆ Q such that
γ(Q\Nε) < ε

2 . Then γ(N\Nε) < ε. It is clear that the restriction of the
operator T to the set Nε×X is continuous. Thus, the set Nε is the required
one. �

Theorem 3 ([15]). Let u : R+ × R+ × R → R satisfies Carathéodory
conditions, i.e. it is measurable in (t, s) for any x ∈ R and continuous in x
for almost all (t, s). Assume that

|u(t, s, x)| ≤ k1(t, s),

where the nonnegative function k1 is measurable in (t, s) such that the linear
integral operator K1 with the kernel k1(t, s) maps L1 into L∞. Then the
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operator (Ux)(t) =
∫ t

0 u(t, s, x(s)) ds maps L1 into L∞. Moreover, if for
arbitrary h > 0 and xi ∈ R (i = 1, 2)

lim
δ→0
‖
∫

Ω
max

|xi|≤h,|x1−x2|≤δ
|u(t, s, x1)− u(t, s, x2)| ds‖L∞ = 0,

then U is a continuous operator.

Remark 1. Observe that if Ω is a nonempty and measurable subset of
R+, then we can also consider the linear Volterra integral operator (Kx)(t) =∫ t

0 k(t, s)x(s) ds associated with the Lebesgue space Lp(Ω), 1 ≤ p ≤ ∞.
Namely, if x ∈ Lp(Ω), 1 ≤ p ≤ ∞, then we can extend x to the whole
half axis R+ by putting x(t) = 0 for t ∈ (R+ \ Ω). Then we can treat the
operator K in the usual way.

3. Main result

Rewrite (1) as x = Gx, where

(Gx)(t) = g(t, (T1x)(t), (Ax)(t), (Bx)(t)),

(Ax) = (T2x)(KFx), (Bx) = (T3x)(Ux),

(Kx)(t) =

∫ t

0
k(t, s)x(s)ds, (Ux)(t) =

∫ t

0
u(t, s, x(s))ds, Fx = f(t, x),

and Ti(x), i = 1, 2, 3 are operators which map the space L1 into itself con-
tinuously.

Consider (1) and the following assumptions:
(i) g(t, x, y, z) : R+ × R× R× R→ R is measurable in t and continuous in

x, y and z for almost all t. There exist positive constants bi, i = 4, 5, 6
and a positive function a4 ∈ L1 such that the function

|g(t, x, y, z)| ≤ a4(t) + b4|x|+ b5|y|+ b5|z|

for t ∈ R+ and x, y, z ∈ R.
(ii) f : R+ × R → R satisfies Carathéodory conditions and there are a

positive function a ∈ L1 and a constant b ≥ 0 such that

|f(t, x)| ≤ a(t) + b |x|

for all t ∈ R+ and x ∈ R.
(iii) u(t, s, x) : R+ × R+ × R → R is measurable in t, s and continuous

in x for almost all t. Moreover, for arbitrary fixed (s, x) ∈ R+ × R the
function t→ u(t, s, x) is integrable.
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(iv) There are functions k, k1 : R+ × R+ → R satisfying Carathéodory
conditions such that:

|u(t, s, x)| ≤ k1(t, s)

for all t, s ≥ 0 and x ∈ R. Assume that the linear integral operator
(K1x)(t) =

∫ t
0 k1(t, s)x(s)ds maps L1 into L∞. The linear integral op-

erator (Kx)(t) =
∫ t

0 k(t, s)x(s)ds maps L1 into L∞ and is continuous.
Moreover, assume that for arbitrary h > 0 and xi ∈ R+ (i = 1, 2)

lim
δ→0
‖
∫

Ω
max

|xi|≤h,|x1−x2|≤δ
|u(t, s, x1)− u(t, s, x2)| ds‖L∞ = 0.

(v) The operators (Tix)(t) : R+ × R → R, i = 1, 2, 3 satisfy Carathéodory
conditions and map continuously the space L1 into itself. Moreover,
there are positive functions ai ∈ L1 and positive constants bi, such that

|(Tix)(t)| ≤ ai(t) + bi|x(t)|, i = 1, 2, 3

for each t ∈ R+ and x ∈ R.
(vi) Let

W >

√
4bb2b5‖K‖L∞

[
‖a4‖L1 + b4‖a1‖L1

+ b5‖a2‖L1‖K‖L∞‖a‖L1 + b6‖K1‖L∞‖a3‖L1

] ,
where

W = 1− (b1b4 + b3b6‖K1‖L∞ + b5‖K‖L∞(b‖a2‖L1 + b2‖a‖L1)

and let r denotes a positive solution of the quadratic equation[
‖a4‖L1 + b4‖a1‖L1 + b5‖a2‖L1‖K‖L∞‖a‖L1

+ b6‖K1‖L∞‖a3‖L1

]
−Wr + bb2b5‖K‖L∞r

2 = 0.

Then we can prove the following theorem.

Theorem 4. Let the assumptions (i)–(vi) be satisfied. If

q = (b1b4 + b2b5‖K‖L∞

[
‖a‖L1 + br

]
+ b3b6‖K1‖L∞) < 1,

then equation (1) has at least one integrable solution on R+.

Proof. The proof will be given in six steps.

— Step 1. The operator G : L1 → L1 and is continuous.
— Step 2. We will construct the ball Br, where r will be determined later.
— Step 3. We will proof that µ(GX) ≤ qµ(X) for all bounded subset X

of Br.
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— Step 4. We will construct a nonempty closed convex weakly compact
set M which we will need in the next steps.

— Step 5. B(M) is relatively strongly compact in L1.
— Step 6. We will check out the conditions needed in Schauder fixed point

theorem [10] are fulfilled.

Step 1. First of all observe that by assumption (ii) and Theorem 1 we
have that F is continuous mappings from L1 into itself. By assumption (iv)
and Theorem 3 we can deduce that the operators U and K map continu-
ously the space L1 into L∞. Moreover, the operators Ti, i = 1, 2, 3 map
continuously the space L1 into itself (thanks for assumption (v)). From the
Hölder inequality the operators A and B map L1 into itself continuously.
Finally, for a given x ∈ L1 and by assumption (i) we infer that (Gx) belongs
to L1 and is continuous.

Step 2. In view of our assumptions we get:

‖Gx‖L1 =

∫ ∞
0

∣∣∣∣g(t, (T1x)(t), (T2x)(t)

∫ t

0
k(t, s)f(s, x(s))ds,

(T3x)(t)

∫ t

0
u(t, s, x(s))ds

)∣∣∣∣ dt
≤ ‖a4‖L1 + b4

∫ ∞
0

[a1(t) + b1|x(t)|]dt

+ b5

∫ ∞
0

[a2(t) + b2|x(t)|]
∫ ∞

0
k(t, s)[a(s) + b|x(s)|]dsdt

+ b6

∫ ∞
0

[a3(t) + b3|x(t)|]
∫ ∞

0
k1(t, s)dsdt

≤
[
‖a4‖L1 + b4‖a1‖L1 + b5‖a2‖L1‖K‖L∞‖a‖L1

+ b6‖K1‖L∞‖a3‖L1

]
+ r[b1b4 + b3b6‖K1‖L∞

+ b5‖K‖L∞(b‖a2‖L1 + b2‖a‖L1)] + bb2b5‖K‖L∞r
2 ≤ r,

where ‖K‖L∞ and ‖K1‖L∞ denote the norm of the Volterra integral opera-
tors K and K1 respectively acting from L1 to L∞. From the above estimate,
we have that G(Br) ⊆ Br with

r =
W

2bb2b5‖K‖L∞

−

√
W 2 − 4bb2b5‖K‖L∞

[
‖a4‖L1 + b4‖a1‖L1

+ b5‖a2‖L1‖K‖L∞‖a‖L1 + b6‖K1‖L∞‖a3‖L1

]
2bb2b5‖K‖L∞

> 0.

Assumption (vi) implies thatW is positive and hence r is a positive constant.
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Step 3. In what follows let us fix a nonempty subset X of the ball Br.
Take an arbitrary number ε > 0 and a set D ⊂ R+ such that meas(D) ≤ ε.
Then, fixing arbitrary x ∈ X, we have∫

D
|(Gx)(t)|dt ≤

∫
D
a4(t)dt+ b4

[∫
D
a1(t)dt+ b1

∫
D
|x(t)|dt

]
+ b5

[∫
D
a2(t)dt+ b2

∫
D
|x(t)|dt

]
‖K‖L∞ [‖a‖L1 + br]

+ b6

[∫
D
a3(t)dt+ b3

∫
D
|x(t)|dt

]
‖K1‖L∞ ,

where ‖K‖L∞(D) and ‖K1‖L∞(D) denote the norm of the Volterra integral
operators K and K1 respectively acting from L1(D) to L∞(D).

Now, using the fact that

lim
ε→∞

sup

[∫
D
ai(t)dt : D ⊂ R+,meas(D) ≤ ε

]
= 0, for i = 1, 2, 3, 4.

From equation (2) it follows that

(6) c(GX) ≤ q = (b1b4 + b2b5‖K‖L∞ [‖a‖L1 + br] + b3b6‖K1‖L∞)c(X).

For fixed arbitrary number τ > 0 and any x ∈ X, we have∫ ∞
τ
|(Gx)(t)|dt ≤

∫ ∞
τ

a4(t)dt+ b4

[∫ ∞
τ

a1(t)dt+ b1

∫ ∞
τ
|x(t)|dt

]
+ b5

[∫ ∞
τ

a2(t)dt+ b2

∫ ∞
τ
|x(t)|dt

] [
‖K‖L∞ [‖a‖L1 + br

]
+ b6

[∫ ∞
τ

a3(t)dt+ b3

∫ ∞
τ
|x(t)|dt

]
‖K1‖L∞ .

Then as τ →∞ and by equation (3) we get

(7) d(GX) ≤ q = (b1b4 + b2b5‖K‖L∞ [‖a‖L1 + br] + b3b6‖K1‖L∞)d(X).

By combining equation (6) and (7) and using equation (4), we have

µ(GX) ≤ q = (b1b4 + b2b5‖K‖L∞ [‖a‖L1 + br] + b3b6‖K1‖L∞)µ(X).

Step 4. is similar as in [2].

Step 5. Let {xn} ⊂ M be an arbitrary sequence. Since µ(M) = 0, ∃τ ,
∀n, the following inequality is satisfied:

(8)

∫ ∞
τ
|xn(t)|dt ≤ ε

4
.
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Considering the functions g(t, x, y, z) on [0, τ ]×R×R×R, f(t, x) on [0, τ ]×
R, Tix(t), i = 1, 2, 3 on [0, τ ] × R, u(t, s, x) on [0, τ ] × R+ × R, k(t, s) on
[0, τ ]× [0, τ ] and k1(t, s) on [0, τ ]× [0, τ ] in view of Theorem 2 and Lemma 1
we can find a closed subset Dε of the interval [0, τ ], such that meas(Dc

ε) ≤ ε,
such that g |Dε×R×R×R, f |Dε×R, Ti |Dε×R i = 1, 2, 3, u |Dε×R+×R, k |Dε×[0,τ ]

and k1 |Dε×[0,τ ] are continuous. Especially k |Dε×[0,τ ] and k1 |Dε×[0,τ ] are
uniformly continuous.

Let us take arbitrary t1, t2 ∈ Dε and assume t1 < t2 without loss of
generality. For an arbitrary fixed n ∈ N and denoting

T1n(t) = (T1xn)(t), An(t) = (T2xn)(KFxn)(t),

Bn(t) = (T3xn)(Uxn)(t),

we obtain

|An(t2)−An(t1)| = |(T2xn)(t2)

∫ t2

0
k(t2, s)f(s, xn(s))ds

− (T2xn)(t1)

∫ t1

0
k(t1, s)f(s, xn(s))ds|

≤ |(T2xn)(t2)− (T2xn)(t1)|
∫ t2

0
|k(t2, s)f(s, xn(s))|ds

+ |(T2xn)(t1)

∫ t2

0
k(t2, s)f(s, xn(s))ds

− (T2xn)(t1)

∫ t1

0
k(t1, s)f(s, xn(s))ds|

≤ |(T2xn)(t2)− (T2xn)(t1)|
∫ t2

0
k(t2, s)[a(s) + b|xn(s)|]ds

+ [a2(t1) + b2|xn(t1)|]
[∫ t2

t1

k(t2, s)[a(s) + b|xn(s)|]ds

+

∫ t1

0
|k(t2, s)− k(t1, s)|[a(s) + b|xn(s)|]ds

]
.

Then we have

|An(t2)−An(t1)| ≤ ωτ (T2, |t2 − t1|)k̃
∫ t2

0
[a(s) + b|xn(s)|]ds

+ [a2(t1) + b2|xn(t1)|]
[
k̃

∫ t2

t1

[a(s) + b|xn(s)|]ds

+ ωτ (k, |t2 − t1|)
∫ t1

0
[a(s) + b|xn(s)]ds

]
,

where ωτ (T2, ·) and ωτ (k, ·) denotes the modulus continuity of the func-
tions T2 and k on the sets Dε × R and Dε × [0, τ ], respectively and k̃ =
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max{|k(t, s)| : (t, s) ∈ Dε × [0, τ ]}. The last inequality (9) is obtained since
M ⊂ Br.

Taking into account the fact that µ({xn}) ≤ µ(M) = 0, we infer that the

terms of the sequence {
∫ t2
t1
|xn(s)|ds} are arbitrary small provided that the

number t2 − t1 is small enough.
Since

∫ t2
t1
a(s)ds is also arbitrary small provided the number t2 − t1 is

small enough, the right hand side of (9) tends to zero independently on xn
as t2 − t1 tends to zero. We then have {An} is equicontinuous in the space
C(Dε). Moreover,

|An(t)| ≤ |T2(t)|
∫ t

0
k(t, s)|f(s, xn(s))|ds

≤ [|a2(t)|+ b2|xn(t)|]
∫ t

0
k(t, s)[a(s) + b|xn(s)|]ds

≤ k̃[d1 + b2d2][‖a‖L1 + b · r],

where |a2(t)| ≤ d1, |xn(t)| ≤ d2 for t ∈ Dε. From the above inequality, we
have that {An} is equibounded in the space C(Dε). In a similar way we can
show that

|Bn(t2)−Bn(t1)| ≤ ωτ (T3, |t2 − t1|)τ k̃1(9)

+ [a3(t1) + b3|xn(t1)|](t2 − t1)k̃1

+ [a3(t1) + b3|xn(t1)|]τωτ (u, |t2 − t1|),

where ωτ (T3, ·) and ωτ (u, ·) denotes the modulus continuity of the functions
T3 and u on the sets Dε × R and Dε × [0, τ ] × R, respectively and k̃1 =
max{|k1(t, s)| : (t, s) ∈ Dε × [0, τ ]}. We have {Bn} is equicontinuous in the
space C(Dε). Moreover,

|Bn(t)| ≤ k̃1τ [d3 + b3d2],

where |a3(t)| ≤ d3 for t ∈ Dε. From the above estimation, we have that {Bn}
is equibounded in the space C(Dε). Furthermore, {T1n} is equicontinuous
and equibounded in the space C(Dε) (due to assumption (v)).

Put

Y1 = sup{|T1n(t)| : t ∈ Dε, n ∈ N}, Y2 = sup{|An(t)| : t ∈ Dε, n ∈ N}

and Y3 = sup{|Bn(t)| : t ∈ Dε, n ∈ N}.

Obviously Y1, Y2, Y3 are finite in view of the choice of Dε. Assumption (i)
concludes that the function g|Dε×[−Y1,Y1]×[−Y2,Y2]×[−Y3,Y3] is uniformly con-
tinuous. So the sequence {Gxn} is equibounded and equicontinuous in the
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space C(Dε). Hence, by the Ascoli-Arzéla theorem [10], we obtain that the
sequence {Gxn} forms a relatively compact set in the space C(Dε).

Further observe that the above reasoning does not depend on the choice
of ε. Thus we can construct a sequence Dl of closed subsets of the inter-
val [0, τ ] such that meas(Dc

l ) → 0 as l → ∞ and such that the sequence
{Gxn} is relatively compact in every space C(Dl). Passing to subsequences
if necessary we can assume that {Gxn} is a Cauchy sequence in each space
C(Dl), for l = 1, 2, · · · .

In what follows, utilizing the fact that the set G(M) is weakly compact,
let us choose a number δ > 0 such that for each closed subset Dδ of the
interval [0, τ ] such that meas(Dc

δ) ≤ δ, we have

(10)

∫
Dcδ

|(Gx)(t)|dt ≤ ε

4

for any x ∈M .
Keeping in mind the fact that the sequence {Gxn} is a Cauchy sequence in

each space C(Dl) we can choose a natural number l0 such that meas(Dc
l0

) ≤
δ and meas(Dl0) > 0, and for arbitrary natural numbers n,m ≥ l0 the
following inequality holds

(11) |(Gxn)(t)− (Gxm)(t)| ≤ ε

4meas(Dl0)

for any t ∈ Dl0 . Now use the above facts together with (8), (10) and (11)
we obtain∫ ∞

0
|(Gxn)(t)− (Gxm)(t)|dt =

∫ ∞
τ
|(Gxn)(t)− (Gxm)(t)|dt

+

∫
Dl0

|(Gxn)(t)− (Gxm)(t)|dt+

∫
Dcl0

|(Gxn)(t)− (Gxm)(t)|dt ≤ ε,

which means that {G(xn)} is a Cauchy sequence in the space L1. Hence we
conclude that the set G(M) is relatively strongly compact in the space L1.

Step 6. Let us consider the setM0 = Conv(G(M)). In view of the Mazur
theorem we infer that the set M0 is compact in the space L1. Moreover, we
have that the operator G transforms continuously the set M0 into itself.
Thus, we can apply the Schauder fixed point theorem and conclude that
equation (1) has at least one integrable solution in R+. �

Remark 2. It is easy to see that the operators Tix = 1, Tix = x,
Tix = f(t, x) are examples of the operators Ti, i = 1, 2, 3, which satisfy
assumption (v) of Theorem 4. Moreover, Tix can be also considered as the
linear, nonlinear, Hammerstein or Urysohn integral operators.
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Furthermore, assume that

f(t, x) =
1

1 + t2
+

t

2t+ 1
sin(x), k(t, s) = se−5(t2+s2)

and

u(t, s, x) =
t cos(ts)

1 + x2
.

One can easily prove that:∫ t

0
k(t, s)ds ≤

∫ ∞
0

se−5(t2+s2) ds ≤
∫ ∞

0
se−5s2 ds =

1

10
.

Since
∫ t

0 u(t, s, x(s))ds ≤
∫ t

0 t cos(ts) ds = sin t2, we get |
∫ t

0 k1(t, s) ds| ≤ 1,
which implies that ‖K1‖L∞ ≤ 1 and ‖K‖L∞ ≤ 1

10 . Moreover, given arbitrary
h > 0 and |x2 − x1| ≤ δ we have

|u(t, s, x1)− u(t, s, x2)| ≤ |t cos(ts)|| x2
2 − x2

1

(1 + x2
1)(1 + x2

2)
|

≤ 2thδ

(1 + x2
1)(1 + x2

2)
.

All assumption (ii)-(iv) of Theorem 4 are satisfied.
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