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p-Bernoulli polynomials Bn,p(x) are generalized to (p, q)-Bernoulli
numbers Bn,p,q and (p, q)-Bernoulli polynomials Bn,p,q(x), respec-
tively. Some properties, generating functions and Laplace hy-
pergeometric integral representations of (p, q)-Bernoulli numbers
Bn,p,q and (p, q)-Bernoulli polynomials Bn,p,q(x), are established.
Unified (p, q)-Bernoulli-Hermite polynomials are defined by a gen-
erating function which aid in proving the generalizations of the
results of Khan et al [8], Kargin and Rahmani [7], Dattoli [4]
and Pathan [9]. Some explicit summation formulas and some re-
lationships between Appell’s function F1, Gauss hypergeomtric
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1. Introduction

The Pochhammer’s symbol or Appell’s symbol or shifted factorial or ris-
ing factorial or generalized factorial function [13] is defined by

(b, k) = (b)k =
Γ(b+ k)

Γ(b)

where b is neither zero nor negative integer and the notation Γ stands
for Gamma function. Generalized Gaussian hypergeometric function AFB
[15,p.42(1)] of one variable is defined by

AFB

[
a1, a2, · · · , aA ;
b1, b2, · · · , bB ;

z

]
= AFB(a1, a2, · · · , aA; b1, b2, · · · , bB; z)(1)
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=
∞∑
k=0

(a1)k(a2)k · · · (aA)kz
k

(b1)k(b2)k · · · (bB)kk!

where denominator parameters b1, b2, · · · , bB are neither zero nor negative
integers and A, B are non-negative integers and we assume that variable z
takes on complex values. The Appell function F1 of two variables is defined
by [14]

(2) F1 = F1(a, b1, b2; c; z1, z2) =

∞∑
m,n=0

(a)m+n(b1)m(b2)nz
m
1 z

n
2

(c)m+nm!n!

(3) F1 =
∞∑
m=0

(a)m(b1)m
(c)m

2F1(a+m, b2; c+m; z2)
zm1
m!

,

max{|z1|, |z2|} < 1, and is represented by a single integral of Euler’s type
(see [14] and [15])

(4) F1 =
1

B(a, c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− tz1)−b1(1− tz2)−b2dt,

where <(c) > <(a) > 0 and B(a, c− a) is beta function [13].
The generalized Hermite polynomials (known as Gould-Hopper polyno-

mials) Hr
n(x, y) defined by

(5) ext+yt
r

=

∞∑
n=0

Hr
n(x, y)

tn

n!

are 2-variable Kampe. de Fe,riet generalization of the Hermite polynomials
[1] and [4]

(6) Hn(x, y) = n!

[n
2
]∑

r=0

yrxn−2r

r!(n− 2r)!

These polynomials usually defined by the generating function

(7) ext+yt
2

=
∞∑
n=0

Hn(x, y)
tn

n!
, Hn(x, 0) = xn

reduce to the ordinary Hermite polynomials Hn(x) (see [13]) when y = −1
and x is replaced by 2x
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We recall that the Hermite numbers Hn are the values of the Hermite
polynomials Hn(x) at zero argument, that is, Hn(0).
A closed formula for Hn is given by

(8) Hn =

{
0, if n is odd ,
(−1)n/2n!

(n
2
)! , if n is even .

2. Preliminaries

Observe that there are three independent linear transformations of Ap-
pell’s function F1.The number of z variables is diminished by one if (i) one
of the b parameters equal to zero, (ii) one of the z variables equals zero, (iii)
one of the z variables equals unity, or (iv) two z variables are equal. One
of the reduction formula out of these four cases is considered by Rahmani
[12] in the form of p-Bernoulli numbers Bn,p by constructing an infinite
matrix.The situation z1 = z2 = 1− et in (2) leads to a generating function

(9) 2F1(1, 1; p+ 2; 1− et) =
∞∑
n=0

Bn,p
tn

n!
,

where 2F1 denotes the Gauss hypergeometric function given by (1), for the
p-Bernoulli numbers Bn,p which are closely related to Bernoulli numbers Bn
by the formula

(10) Bn,p =
p+ 1

p

p∑
j=0

(−1)j
[
p

j

]
Bn+j ,

where
[
p
j

]
is the Stirling number of the first kind [6].

Utilizing the fact that for z1 = z2 = 1 − et in (2),we have a reduction
formula

F1(1, 1, q; p+ 2; 1− et, 1− et) = 2F1(1, q + 1; p+ 2; 1− et)

which is an immediate consequence of the familiar formula [15, p. 54(14)]

F1(a, a, b; c;x, x) = 2F1(a, b+ 1; c;x).

In particular,we have the following definition of the generalized p-Bernoulli
numbers.
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Definition 1. (p, q)-Bernoulli numbers Bn,p,q are given by the generating
function

∞∑
n=0

Bn,p,q
tn

n!
= F1(1, 1, q; p+ 2; 1− et, 1− et)(11)

= 2F1(1, q + 1; p+ 2; 1− et)

for every integer p ≥ −1.

Equation (11) provides the equivalent definition to the Rahmani’s original
one given by (9). For q = 0, (11) reduces to (9).Thus we have Bn,p,0 = Bn,p
and Bn,0,0 = Bn. (p, q)-Bernoulli numbers Bn,p,q have a series representation
involving Stirling numbers of second kind [6]

(12) Bn,p,q =
n∑
k=0

(−1)k
(q + 1)k
(p+ 2)k

{
n
k

}
k! ,

where Stirling numbers of second kind are defined by the generating function

∞∑
n=0

{
n
k

}
tn

n!
=

(et − 1)k

k!
.

For q = 0,(12) reduces to Kargin and Rahmani[ 7, p. 2(1.1)]

Bn,p =
n∑
k=0

(−1)k
{
n
k

}(
k + p+ 1
k

)−1
k! .

The first generating function for (p, q)-Bernoulli numbers Bn,p,q for p = 1,
q = 0 is

∞∑
n=0

Bn,1,0
tn

n!
=

2[(t− 1)et + 1]

(et − 1)2

and for p = q = 1, we have

∞∑
n=0

Bn,1,1
tn

n!
= 2

(et − 1− t)
(1− et)2

= 2

∞∑
k=0

(1− et)k

2 + k
,

where (1− et)k is given by

(1− et)k = k!(−1)k
∞∑
n=0

{
n
k

}
tn

n!
.

Furthermore
∞∑
n=0

Bn,1,2
tn

n!
=

∞∑
n=0

Bn,2,1
tn

n!
=

3

(1− et)3
[(1− et)(1 + et) + 2tet].
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Since [5, eqn. (2.11.34)]

2F1(a, b+ 1; a− b; z) = (1 + z)−a2F1(a/2, a/2 + 1/2; a− b; 4z

(1 + z)2
),

the special case of (11) when a = 1, p = −q − 1 and z = 1− et yields

(13)
∞∑
n=0

Bn,−q−1,q
tn

n!
= (2− et)−12F1(1/2, 1; 1− q; 4(1− et)

(2− et)2
) .

From (4), we obtain an integral representation of Euler’s type

(14)

∞∑
n=0

Bn,p,q
tn

n!
=

1

B(1 + q, p− q + 1)

∫ 1

0

tq(1− t)p−q

(1− t(1− et))
dt

where <(p− q) > −1.
Integral representations of Laplace type stem from the well-known results

of Appell’s F1 [see, for example, 14, p. 282(26) and(27)]

(15)
∞∑
n=0

Bn,p,q
tn

n!
=

1

Γ(q)

∫ ∞
0

e−ttq−1Φ1(1, 1; p+ 2; 1− et, (1− et)t)dt,

Re(q) > 0

∞∑
n=0

Bn,p,q
tn

n!
=

∫ ∞
0

e−tΦ2(1, q; p+ 2; (1− et)t, (1− et)t)dt ,(16)

where Φ1 and Φ2 are confluent forms of Appell’s series defined by Humbert
[14, p. 25].

One can notice an interesting reduction of (p, q)-Bernoulli polynomials

(17) 2F1(1, b; b+ 1; 1− et) = bζ(1− et, 1, b), b 6= 0,−1,−2, . . . ,

where Hurwitz zeta function ζ is defined as [11]

ζ(z, s, b) =

∞∑
m=0

zk

(b+ k)s
.

3. A generating function for (p, q)-Bernoulli numbers

Kargin and Rahmani [7] derived a generating function for the p-Bernoulli
numbersBn,p. To this end they used the generating function of the geometric
polynomials. Their result is

(18)
∞∑
0

Bn,p
tn

n!
= (p+ 1)[

(t−Hp)e
pt

(et − 1)p+1
+

p∑
k=1

p!

k!(p− k)

Hk

(et − 1)k+1
] ,
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where Hn is the n− th harmonic number defined by [6, p. 258]

Hn =

n∑
j=1

1

j
.

It may be remarked that the above result of Kargin and Rahmani is a direct
consequence of the following known result [11, p. 462(128)]

2F1(1, n;m; z) =
(m− 1)!

(m− n− 1)!z
{
m−n−1∑
k=1

(m− n− k − 1)!

(m− k − 1)!
(
z − 1

z
)k−1

− z

(n− 1)!
(
z − 1

z
)m−n−1[

n−1∑
k=1

z−k

n− k
+ z−n ln(1− z)]}, m > n.

Substitution of z = 1−et, n = q+1 and m = p+2 in the above result provide
us a more general result belonging to (p, q)-Bernoulli numbers considered in
the preceding section.Thus we can write after a certain amount of algebra
that

∞∑
n=0

Bn,p,q
tn

n!
=

(p+ 1)!

(1− et)(p− q)!
[

p−q∑
k=1

(p+ q − k)!

(p+ 1− k)!
(

et

et − 1
)k−1(19)

+
(et − 1)

q!
(

et

et − 1
)p−q(

q∑
k=1

(1− et)−k

(q − k + 1)
+

t

(1− et)q+1
)],

p > q − 1. For q = 0, (19) reduces to

(20)
∞∑
n=0

Bn,p
tn

n!
= (p+ 1)[

tept

(et − 1)p+1
+

p∑
k=1

e(k−1)t

(p− k)(et − 1)k
]

and for q = 0 and p = m− 2 where m = 2, 3, 4, . . ., we have

(21)
∞∑
n=0

Bn,m−2
tn

n!
= (m− 1)e−2t[

m−1∑
k=2

1

m− k
(

et

et − 1
)k − t( et

et − 1
)m]

Also a calculation shows that,for q = p = m− 1

∞∑
n=0

Bn,m−1,m−1
tn

n!
= − m

(1− et)m
[t+

m−1∑
k=1

(1− et)k

k
], m = 1, 2, 3, . . . .
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4. Unified (p, q)-Bernoulli polynomials

This section is devoted to (p, q)-Bernoulli polynomials and their repre-
sentations involving Euler polynomials En(x) [11].

Definition 2 ((p, q)-Bernoulli polynomials). An explicit formula for
(p,q)-Bernoulli polynomials is given by the generating function

(22) ext2F1(1, q + 1; p+ 2; 1− et) =
∞∑
n=0

Bn,p,q(x)
tn

n!

for every integer p ≥ −1.

For x = 0 in (22),we get

(23) 2F1(1, q + 1; p+ 2; 1− et) =

∞∑
n=0

Bn,p,q
tn

n!
.

Since this reduces to Bernoulli number Bn for special values of p and q,
we shall call Bn,p,q, a (p, q)-Bernoulli number represented by the generating
function (23). Since we have

2F1(1, q + 1; p+ 2; 1− et) = e−xt
∞∑
n=0

Bn,p,q(x)
tn

n!
(24)

=
∞∑
m=0

(−x)m

m!

∞∑
n=0

Bn,p,q(x)
tn+m

n!
.

Therefore comparing (25) and (23),we have

Bn,p,q = n!

n∑
m=0

(−x)m

m!(n−m)!
Bn−m,p,q(x).

Similarly, when x = −1, (22) implies

(25) Bn,p,q(−1) = n!

n∑
m=0

(−1)mBn−m,p,q
m!(n−m)!

.

Theorem 1. Let p ≥ 1. Then following representation for (p, q)- Bernoulli
polynomials Bn,p,q(x) involving Euler polynomials En(x) holds true:

(26) Bn,p,q(x) =
n!

2
[

n∑
m=0

m∑
k=0

Bm−k,p,qEn−m(x)

(m− k)!k!(n−m)!
+

n∑
m=0

Bm,p,qEn−m(x)

m!(n−m)!
]
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Proof.The generating function for the Euler polynomials En(x) gives

(27) ext =
et + 1

2

∞∑
n=0

En(x)
tn

n!
.

Substituting this value of ext in (22) gives

(28)
et + 1

2

∞∑
n=0

En(x)
tn

n!
2F1(1, q + 1; p+ 2; 1− et) =

∞∑
n=0

Bn,p,q(x)
tn

n!
.

Now using

et2F1(1, q + 1; p+ 2; 1− et) =
∞∑
m=0

tm
m∑
k=0

Bm−k,p,q
(m− k)!k!

and

∞∑
n=0

En(x)
tn

n!
2F1(1, q + 1; p+ 2; 1− et)(29)

=

∞∑
n=0

En(x)

∞∑
m=0

Bm,p,q
tm

m!
=

∞∑
n=0

tn
n∑

m=0

En−m(x)Bm,p,q
(n−m)!m!

in the left hand side of (28),we get

1

2
[
∞∑
m=0

tm
m∑
k=0

Bm−k,p,q
(m− k)!k!

∞∑
n=0

En(x)
tn

n!
(30)

+

∞∑
n=0

tn
n∑

m=0

En−m(x)Bm,p,q
(n−m)!m!

] =

∞∑
n=0

Bn,p,q(x)
tn

n!
.

Finally, replacing n by n −m and comparing the coefficients of tn, we get
the required result. �

Using the following result [11, p. 766]

(31) En(x) =
2

n+ 1
(Bn+1(x)− 2n+1Bn+1(x/2)),

in (26), we have

Corollary 1.

Bn,p,q(x) = n!
n∑

m=0

{
m∑
k=0

Bm−k,p,q
(m− k)!k!(n−m)!

(32)

+
Bm,p,q

m!(n−m)!
}(Bn−m+1(x)− 2n−m+1Bn−m+1(x/2))

n−m+ 1



Unified (p, q)-Bernoulli-Hermite . . . 133

Setting x = 0 in (32), we have the following result

Corollary 2.

Bn,p,q = n!

n∑
m=0

{
m∑
k=0

Bm−k,p,q
(m− k)!k!(n−m)!

+
Bm,p,q

m!(n−m)!
}(33)

(1− 2n−m+1)Bn−m+1

n−m+ 1
.

5. Unified (p, q)-Bernoulli-Hermite polynomials

In this section, we define (p, q)-Bernoulli-Hermite polynomials and give
some explicit formulas for these generalized polynomials.

Definition 3 ((p, q)-Bernoulli-Hermite polynomials). Given integer p ≥−1
and integer q, a (p, q)-Bernoulli-Hermite polynomials, denoted by HB

r
n,p,q(x, y)

are defined by the generating function

(34) ext+yt
r

2F1(1, q + 1; p+ 2; 1− et) =
∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!
.

Using (5) and (11) in (34),we can write

∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!
=

∞∑
n=0

Hr
n(x, y)

tn

n!

∞∑
m=0

Bm,p,q
tm

m!

which on replacing n by n −m and comparing the coefficients of tn yields
the representation

HB
r
n,p,q(x, y) = n!

n∑
m=0

Hr
n−m(x, y)Bm,p,q
(n−m)!m!

.

With x replaced by 2x, r = 2 and y = −1 it turns to the equality

(35) HBn,p,q(2x,−1) = n!
n∑

m=0

Hn−m(x)Bm,p,q
(n−m)!m!

.

To obtain (p, q)-Bernoulli-Hermite numbers denoted by HBn,p,q, we take
in (34), r = 2, y = −1 and replace x by 2x. Once this has been done then
we take x = 0 and use (8) to get

HBn,p,q(0,−1) = HBn,p,q = n!

n∑
m=0

Hn−mBm,p,q
(n−m)!m!

(36)

= n!
n∑

m=0

Bm,p,q
(n−m)!m!

{
0, if n−m is odd
(−1)(n−m)/2

(n−m)! (n−m2 )!, if n−m is even,
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where Hermite number Hn is given by (8).

Theorem 2. The following summation formulae for (p, q)-Bernoulli-Hermite
polynomials HBn,p,q holds true:

HB
r
n,p,q(z, u)(37)

= n!
n∑

m=0

HB
r
n−m,p,q(x− α, y − β)Hr

m(α− x+ z, β − y + u)

(n−m)!m!
,

or, in its equivalent form

HB
r
n,p,q(z − α+ x, u− β + y)(38)

= n!

n∑
m=0

HB
r
n−m,p,q(x− α, y − β)Hr

m(z, u)

(n−m)!m!
.

Proof. By exploiting the generating function (34), we can write

ftyHB
r
n,p,q(z, u)

tn

n!
= ezt+ut

r

2F1(1, q + 1; p+ 2; 1− et)

= e−(x−z−α)t−(y−u−β)t
r
e(x−α)t+(y−β)tr

2F1(1, q + 1; p+ 2; 1− et)

= e−(x−z−α)t−(y−u−β)t
r
∞∑
n=0

HB
r
n,p,q(x− α, y − β)

tn

n!

which readily yields

∞∑
n=0

HB
r
n,p,q(z, u)

tn

n!

=

∞∑
m=0

Hr
m(α− x+ z, β − y + u)

tm

m!

∞∑
n=0

HB
r
n,p,q(x− α, y − β)

tn

n!
,

and thus by replacing n by n −m and comparing the coefficients of tn, we
get (37). On replacing z by z − α − x and u by u − β + y in (37), we get
(38).

Setting z = u = 0 in (37) and noting that HB
r
n,p,q(0, 0) = HB

r
n,p,q, we

have the following result for (p, q)-Bernoulli polynomials Bn,p,q �

Corollary 3.

Br
n,p,q = n!

n∑
m=0

HB
r
n−m,p,q(x− α, y − β)Hr

m(α− x, β − y)

(n−m)!m!
.

Setting z = u = q = 0 in (37) and noting that HB
r
n,p,0(0, 0) = Br

n,p, we have
the following result for p-Bernoulli polynomials.
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Corollary 4.

Br
n,p = n!

n∑
m=0

HB
r
n−m,p(x− α, y − β)Hr

m(α− x, β − y)

(n−m)!m!
.

Theorem 3. The following summation formulae connecting Gauss hy-
pergeometric functions 2F1 and (p, q)-Bernoulli-Hermite polynomials HB

r
m,p,q

holds true:

2F1(1, p+ 1− q; p+ 2; 1− e−t) =

∞∑
n=0

Pn,p.q(x, y)
tn

n!
(39)

2F1(p+ 1, q + 1; p+ 2; 1− e−t) =

∞∑
n=0

Qn,p,q(x, y)
tn

n!

2F1(p+ 1, p+ 1− q; p+ 2; 1− et) =
∞∑
n=0

Rn,p,q(x, y)
tn

n!
,

where Pn,p,q, Qn,p,q and Rn,p.q are given by

Pn,p,q(x, y) = n!
n∑

m=0

Hr
n−m(1− x,−y)HB

r
m,p,q(x, y)

(n−m)!m!
(40)

Qn,p,q(x, y) = n!
n∑

m=0

Hr
n−m(1− x+ q,−y)HB

r
m,p,q(x, y)

(n−m)!m!

Rn,p,q(x, y) = n!
n∑

m=0

Hr
n−m(q − x− p,−y)HB

r
m,p,q(x, y)

(n−m)!m!
.

Proof. It is easy to use the linear transformations (also known as Euler’s
transformations) [see, S and M p. 33(19), (20), (21)]of Gauss hypergeomet-
ric functions to prove that

2F1(1, q + 1; p+ 2; 1− et) = e−t2F1(1, p+ 1− q; p+ 2; 1− e−t)
= e−qt−t2F1(p+ 1, q + 1; p+ 2; 1− e−t)
= ept−qt2F1(p+ 1, p+ 1− q; p+ 2; 1− et).

We further rewrite these relations in the form

2F1(1, p+ 1− q; p+ 2; 1− e−t)
= et−xt−yt

r
[ext+yt

r

2F1(1, q + 1; p+ 2; 1− et)]
2F1(p+ 1, q + 1; p+ 2; 1− e−t)

= eqt+t−xt−yt
r
[ext+yt

r

2F1(1, q + 1; p+ 2; 1− et)]
2F1(p+ 1, p+ 1− q; p+ 2; 1− et)

= e−pt+qt−xt−yt∗r[ext+yt
r

2F1(1, q + 1; p+ 2; 1− et)]
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We may split right hand sides of these relations into product of the gen-
erating functions of the polynomials Hr

n(x, y) and (p, q)-Bernoulli-Hermite
polynomials HB

r
m,p,q(x, y). Finally, replacement of n by n −m and use of

series arrangement technique prove the result (39). �

Remark 1. An important application comes from the reduction of (39)
for q = 0. Within such a context, we use (17) and the first two equations of
(39) to get a series representation of Hurwitz zeta function

(p+ 1)ζ(1− e−t, 1, p+ 1) =
∞∑
n=0

Pn,p(x, y)
tn

n!
=
∞∑
n=0

Qn,p(x, y)
tn

n!
,

where

(41) Pn,p(x, y) = Qn,p(x, y) = n!

n∑
m=0

Hr
n−m(1− x,−y)HB

r
m,p(x, y)

(n−m)!m!
.

On the other hand,we use (11) with q = p in the last equation of (39). Then
we have

(42) Bn,p,p = Rn,p,p(x, y) = n!

n∑
m=0

Hr
n−m(−x,−y)HB

r
m,p,p(x, y)

(n−m)!m!
,

where

Bn,p,p = (p+ 1)
n∑

m=0

(−1)mm!

p+ 1 +m

{
n
m

}
.

6. Implicit formulae involving (p, q)-Bernoulli-Hermite
polynomials

This section of the paper is devoted to employing the definition of the

Hermite-Bernoulli polynomials HB
[α,m−1]
n (x, y) in proving the generaliza-

tions of the results of Khan et al [8], Dattoli [4, p. 386(1.7)] and Pathan
[9] (see also [10]). For the derivation of implicit formulae involving the

Hermite-Bernoulli polynomials HB
[α,m−1]
n (x, y), the same considerations as

developed for the ordinary Hermite and related polynomials in Khan et al
[8]and Dattoli et al [2] and [3] hold as well. First we prove the following

results involving Hermite-Bernoulli polynomials HB
[α,m−1]
n (x, y).

Theorem 4. The following summation formulae for (p, q) Bernoulli-
Hermite polynomials HB

r
n,p,q(x, y) holds true:

(43) HB
r
n,p,q(x, y) = n!

n∑
k=0

Bn−k,p(x− z)Hr
k(z, y)

(n− k)!k!
.
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Proof. By exploiting the generating function (22), we can write equation
(34) as

(44)
∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!
= e(x−z)t2F1(1, q + 1; p+ 2; 1− et)ezt+ytr ,

(45)
∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!
=
∞∑
n=0

Bn,p(x− z)
tn

n!

∞∑
k=0

Hr
k(z, y)

tk

k!
.

Now replacing n by n − k using the Lemma 3 [15, p. 101(1)] in the right
hand side of equation (46), we get

(46)
∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!
=
∞∑
n=0

n∑
k=0

Bn−k,p(x− z)Hr
k(z, y)

tn

(n− k)!k!

On equating the coefficients of the like powers of t, we get (43). �

Remark 2. Letting z = x in (43) gives an equivalent form of (5.3). For
p = q = 0 in (43), we get a known result of Pathan [10] which further for
r = 2 gives a known result of Dattoli [4, p. 386(1.7)]. Again taking y = 0
in formula (43), we obtain

(47) HB
r
n,p,q(x) = n!

n∑
k=0

znBn−k,p(x− z)
(n− k)!k!

.

Theorem 5. The following summation formulae for (p, q) Bernoulli-Hermite
polynomials HB

r
n,p,q(x, y) and (p, q) Bernoulli polynomials Br

n,p,q holds true:

(48)

[n
r
]∑

m=0

Br
n−mr,p,q(x)Bm,p,q(y)

(n−mr)!m!
=

[n
r
]∑

m=0

HB
r
n−mr,p,q(x, y)Bm,p,q

(n−mr)!m!
,

(49)

[n
r
]∑

m=0

Br
n−mr,p,q(x)Bm,p,q(y)

(n−mr)!m!
=

n∑
k=0

n−k∑
m=0

Hr
n−k(x, y)Bn−m−k,p,qBm,p,q

k!(n−m− k)!m!
.

Proof. Consider the definition of (p, q) Bernoulli-polynomials HB
r
n,p,q

(50)

∞∑
m=0

Br
m,p,q(y)

tmr

m!
= eyt

r

2F1(1, q + 1; p+ 2; 1− etr),
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where x is replaced by y and t is replaced by tr in (22). On multiplying (22)
and (49),we have

∞∑
m=0

Br
m,p,q(y)

tmr

m!

∞∑
n=0

Bn,p,q(x)
tn

n!
(51)

= ext+yt
r

2F1(1, q + 1; p+ 2; 1− et)2F1(1, q + 1; p+ 2; 1− etr)

=

∞∑
n=0

HB
r
n,p,q(x, y)

tn

n!

∞∑
m=0

Bm,p,q
tmr

m!
.

Now replacing n by n − rm, using the Lemma 3 [15, p. 101(1)] in the
right hand side of equation (46) and then equating the coefficients of the
like powers of t, we get (48). Another way of defining the right hand side of
(51) is suggested by replacing ext+yt

r
by its series representation

∞∑
m=0

Br
m,p,q(y)

tmr

m!

∞∑
n=0

Bn,p,q(x)
tn

n!

=
∞∑
k=0

Hr
n(x, y)

∞∑
n=0

Bn,p,q
tn

n!

∞∑
m=0

Bm,p,q
tmr

m!
.

Next,we rearrange the order of summation and then equating the coeffi-
cients of the like powers of t, we get (49). �

Setting r = 2 and y = 0 in the above theorem,we have the following
result for (p, q)-Bernoulli polynomials

Corollary 5.

(52)

[n
2
]∑

m=0

Bn−2r,p,q(x)Bm,p,q
(n− 2m)!m!

=

n∑
k=0

n−k∑
m=0

Hn(x)Bn−m−k,p,qBm,p,q
k!(n−m− k)!m!

.

Theorem 6. The following summation formulae for (p, q)-Bernoulli-
Hermite polynomials HB

k
n,p,q(x, y) and (p, q)-Bernoulli polynomials Bk

n,p,q

holds true:

n∑
m=0

[n−m
k

]∑
r=0

(
x

yk
− y

xk
)r

HB
k
n−kr−m,p,q(x, y)Bm,p,q

r!m!(n−m− kr)!ymxn−m−kr
(53)

=
n∑

m=0

HB
k
n−m,p,q(y, x)Bm,p,q

(n−m)!m!xmyn−m
.

Proof. On replacing t by t/x and r by k, we can write equation (34) as

(54)

∞∑
n=0

HB
k
n,p,q(x, y)

tn

xnn!
= e

t+y tk

xk 2F1(1, q + 1; p+ 2; 1− et/x).
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Now interchanging x and y, we have

(55)
∞∑
n=0

HB
k
n,p,q(y, x)

tn

ynn!
= e

t+x tk

yk 2F1(1, q + 1; p+ 2; 1− et/y)

Comparison of (54) and (55) yields

e
x tk

yk
−y tk

xk 2F1(1, q + 1; p+ 2; 1− et/y)
∞∑
n=0

HB
k
n,p,q(x, y)

tn

xnn!
(56)

= 2F1(1, q + 1; p+ 2; 1− et/x)

∞∑
n=0

HB
k
n,p,q(y, x)

tn

ynn!

Using (36), we get

∞∑
r=0

( x
yk
− y

xk
)rtkr

r!

∞∑
m=0

Bm,p,q
tm

ymm!

∞∑
n=0

HB
k
n,p,q(x, y)

tn

xnn!
(57)

=

∞∑
m=0

Bm,p,q
tm

xmm!

∞∑
n=0

HB
k
n,p,q(y, x)

tn

ynn!
.

�

Next, we rearrange the order of summation and then equating the coef-
ficients of the like powers of t, we get (53).

Setting p = 0 and q = 0 in the above theorem,we have the following
result for Bernoulli polynomials

Corollary 6.

n∑
m=0

[n−m
k

]∑
r=0

(
x

yk
− y

xk
)r

HB
k
n−kr−m(x, y)Bm

r!m!(n−m− kr)!ymxn−m−kr
(58)

=

n∑
m=0

HB
k
n−m(y, x)Bm

(n−m)!m!xmyn−m

7. Concluding remarks

The formulae we have provided in previous sections illustrate how proper-
ties of Appell’s function F1 can sometimes be established or understood more
easily by using generalized hypergeometric series of several variables.Gauss’s
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function 2F1 and Appell’s function F1 are both special cases of Lauricella
hypergeometric function FnD [15, p. 60] defined by the power series

FnD[a, b1, . . . , bn; c;x1, . . . , xn](59)

=
∞∑

m1,...,mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn

(c)m1+...+mn

zm1
m1!

. . .
zmn
n

mn!
,

where for convergence |zm| < 1, m = 1, 2, . . .. The following reduction of
FnD will be useful

(60) FnD[a, b1, . . . , bn; c;x, . . . , x] = 2F1(a, b1 + . . .+ bn; c;x),

because it allows one to conclude that for (p, q)-Bernoulli numbers given by
(11) for every p ≥ −1, we can write

FnD[1, q, 1, 0, 0, . . . , 0; p+ 2; 1− et, . . . , 1− et]
= FnD[1, q, b2, . . . , bn; c; 1− et, . . . , 1− et]
= 2F1(1, q + 1; p+ 2; 1− et)

where b2 + b3 + . . .+ bn = 1.
Our speculations for Lauricella hypergeometric function FnD [15,p.60] and

their reduction cases will yield perhaps a further feeling on the usefulness of
the series. This process of using different analytical means on their respective
generating functions can be extended to drive new relations for conventional
and generalized Bernoulli numbers and polynomials.
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