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1. Introduction

Differential equations of fractional order have recently proved to be a
valuable tools in the modelling of many phenomena in various fields of sci-
ence and engineering. These models have been applied successfully, e.g., in
physics [22], mechanics (theory of viscoelasticity and viscoplasticity) [15],
(bio-)chemistry (modelling of polymers and proteins) [20], [26], electrical
engineering (transmission of ultrasound waves), bio-engineering [17], con-
trol theory, movement through porous media [28], electromagnetics, and
electrochemistry [31].

The history, definitions, theory, and applications of fractional calculus
are well laid out in the books by Miller and Ross [29], Oldham and Spanier
[32] , Samko, Kilbas, and Marichev [33].

In recent years, the study of positive solutions for fractional differential
equation boundary value problems (FBVPs for short) has attracted con-
siderable attention, and abundance of papers treating this subject attest on
that. For a small example of such work, we refer the reader to [2], [3], [4], [5],
[6], [9], [11], [12], [16], [18], [13], [30], [34], [40], [42], [43] and the references
therein.
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Many researchers have investigated FBVPs where the nonlinear term is
positive with nonlocal boundary conditions. This kind of conditions appears
for example in the study of population dynamics [8] and cellular systems [1].

Their results are based on different methods: the application of fixed
point theorems [3] (alternative of Leray-Schauder), [13] ( Leggett-Williams),
[9], [10], [11], [43] (Krasnoselskii), the theory of fixed point index [7], the
method of upper-lower solutions [24], variational methods [35], [36] and so
on.

When the nonlinearity is allowed to change sign, a number of papers
have been carried out whether concerning integer or fractional order dif-
ferential equations. For ordinary differential equations, by using the fixed
point theorem in double cones [19], Guo in [21] showed the existence of
positive solutions for second-order three point BVP and Chen [14] consid-
ered an m-point BVP associated to the second order differential equation.
In [27], we showed the existence of at least two positive solutions for BVP
with integral conditions. For fractional differential equation, some authors
establish the same result by investigating the properties of the associated
Green function and utilizing a topological approach, we refer the reader to
[38], [39].

Motivated by the works mentioned above, we shall improve the results in
[27], [11], and obtain a new one.

In this paper, using a fixed point theorem in double cones we prove the
existence of multiple positive solutions of FBVP, when the nonlinear term
is allowed to change sign.

(1) cDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2

(2) u′(0) = 0, u(1) = λ

∫ 1

0
u(s)ds,

where 0 ≤ λ < 1, cDα
0+ is the Caputo’s differential operator of order α and

the nonlinear term f satisfies
(H1) (i) f : [0, 1]× [0,+∞)→ R is continuous, and can changing sign,

(ii) f(t, 0) ≥ 0(6≡ 0) for all t in [0, 1] (i.e; there exists an interval J0 of
[0, 1] such that f(t, 0) > 0 for all t in J0).

The paper is organized as follows: Section 2 contains the basic prelim-
inaries. The main result is given in Section 3. An example is given in
Section 4.

2. Preliminaries

We present the necessary definitions and some basic results from frac-
tional calculs theory.
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Definition 1 ([23]). The Riemann-Liouville fractional integral operator
of order Re(α) > 0 of a continuous function h : [0, 1]→ R is defined as

Iα0+h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds.

Lemma 1 ([23]). The relation

Iα0+I
β
0+
h(t) = Iα+β

0+
h(t)

is valid in the following case

Reβ > 0, Re(α+ β) > 0, h ∈ C0[0, 1].

Definition 2 ([23]). The Caputo’s fractional derivative of order Re(α >
0) for a function h ∈ Cn[0, 1] (n ≥ 1) is defined as

cDα
0+h(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1hn(s)ds,

where n− 1 < α ≤ n.

Lemma 2 ([23]). Let n− 1 < α ≤ n, h ∈ Cn[0, 1]. Then

Iα0+
cDα

0+h(t) = h(t)− c1 − c2t− · · · − cntn−1,

where ci ∈ R, i = 1, 2, · · · , n.

Definition 3. Let X be a Banach space, and K be a closed nonempty
subset of X. K is said to be a cone of X if it satisfies the following condi-
tions:

(i) x ∈ K and λ ≥ 0 implies λx ∈ K,
(ii) x ∈ K and −x ∈ K implies x = 0.

Now, we introduce some notations.
1. For some cone K in a Banach space (X, ||.||) and a constant r > 0, we

define the following sets:

Kr = {x ∈ K : ||x|| < r} ,

∂Kr = {x ∈ K : ||x|| = r} ,
and if θ : K → R+ is a continuous functional such that θ(λx) ≤ θ(x) for
λ ∈ (0, 1), we define:

K(b) = {x ∈ K : θ(x) < b} ,

∂K(b) = {x ∈ K : θ(x) = b} ,
and

Ka(b) = {x ∈ K : a < ||x||, θ(x) < b} ,
where a, b are two positive constants.
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2. For u ∈ X, we define ψ : X → K such that ψ(u) = u+ = max {u, 0}.
The following well-known result, Krasnoselskii fixed point theorem, is

crucial in our arguments.

Theorem 1. Let X be a real Banach space with norm ||.|| and K,K ′ ⊂ X
two cones with K ′ ⊂ K. Suppose T : K → K and T ∗ : K ′ → K ′ are two
completely continuous operators and θ : K ′ → R+ is a continuous functional
satisfying θ(x) ≤ ||x|| ≤ Mθ(x) for all x ∈ K ′, where M is a constant such
that M ≥ 1. If there are constants b > a > 0 such that

(C1) ||Tx|| < a for x ∈ ∂Ka;
(C2) ||T ∗x|| < a for x ∈ ∂K ′a and θ(T ∗x) > b for x ∈ ∂K ′(b);
(C3) Tx = T ∗x, for x ∈ K ′a(b) ∩ {u : T ∗u = u}.
Then T has at least two fixed points y1 and y2 in K, such that

0 ≤ ||y1|| < a < ||y2||, θ(y2) < b.

Proof. For the proof of this result, we refer the reader to [41]. �

Now, we present some lemmas. Let I be the interval [0, 1], and ‖u‖ =
sup {|u(t)|, t ∈ I} denote the norm of u ∈ C(I), (C(I) is the space of
real-valued continuous functions on I). We put X = C(I).

Lemma 3. Let 0 < λ < 1, y ∈ X. Then the boundary value problem

(3) cDα
0+u(t) + y(t) = 0, 0 < t < 1, 1 < α ≤ 2

(4) u′(0) = 0, u(1) = λ

∫ 1

0
u(s)ds,

is equivalent to the following integral equation

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =

{
(1−s)α−1(α−λ+λs)−(1−λ)α(t−s)α−1

(1−λ)Γ(α+1) if 0 ≤ s ≤ t ≤ 1,
(1−s)α−1(α−λ+λs)

(1−λ)Γ(α+1) if 0 ≤ t ≤ s ≤ 1.

Here G is called the Green’s function boundary value problem.

Proof. Applying the operator Iα0+ to the equation (3) and using Lemma 2,
we obtain the following integral equation

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ c1 + c2t.
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Now, (4) imply that c2 = 0, and,

c1 = u(1) +

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds.

Therefore, we obtain,

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ u(1) +

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds.

Let put η =
∫ 1

0 u(t)dt, then, from the previous equality, using that u(1) =
λη, we deduce that

η = −
∫ 1

0

∫ t

0

(t− s)α−1

Γ(α)
y(s)dsdt+

∫ 1

0
u(1)dt

+

∫ 1

0

∫ 1

0

(1− s)α−1

Γ(α)
y(s)dsdt,

by changing the order of integration, we obtain

η = −
∫ 1

0

∫ 1

s

(t− s)α−1

Γ(α)
y(s)dtds+

∫ 1

0
u(1)dt

+

∫ 1

0

∫ 1

0

(1− s)α−1

Γ(α)
y(s)dsdt

= −
∫ 1

0

(1− s)α

αΓ(α)
y(s)ds+ λη +

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds.

Thus,

η =
1

1− λ

∫ 1

0

(1− s)α−1(α− 1 + s)

αΓ(α)
y(s)ds,

which implies that

c1 =
λ

1− λ

∫ 1

0

(1− s)α−1(α− 1 + s)

αΓ(α)
y(s)ds+

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds.

Finally,

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+

∫ 1

0

(1− s)α−1(α− λ+ λs)

(1− λ)αΓ(α)
y(s)ds.

So

u(t) =

∫ t

0

(1− s)α−1(α− λ+ λs)− (1− λ)α(t− s)α−1

(1− λ)Γ(α+ 1)
y(s)ds

+

∫ 1

t

(1− s)α−1(α− λ+ λs)

(1− λ)Γ(α+ 1)
y(s)ds.
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Thus

u(t) =

∫ t

0
G(t, s)y(s)ds.

�

Lemma 4. Assume that 0 < λ < 1. Then the Green’s function G
satisfies the following properties:

1) G(t, s) ≥ 0 for all s, t ∈ [0, 1];
2) G(1, s) ≤ G(t, s) ≤ α

λ(α−1)G(1, s) for all s, t ∈ [0, 1];

3) G(t, s) is continuous function for all s, t ∈ [0, 1];
4) maxt,s∈[0,1]G(t, s) ≤ 1

(1−λ)Γ(α)

Proof.
1. It is not difficult to verify that for 0 ≤ s ≤ t the following inequalities

hold

G(t, s) =
(1− s)α−1(α− λ+ λs)− (1− λ)α(t− s)α−1

(1− λ)Γ(α+ 1)

≥ (1− s)α−1λ(α+ s− 1)

(1− λ)Γ(α+ 1)
≥ 0,

using 1 < α ≤ 2 and s ≥ 0, we get

G(t, s) ≥ 0.

Also, for t < s we have

G(t, s) =
(1− s)α−1(α− λ+ λs)

(1− λ)Γ(α+ 1)
≥ 0.

2. We consider two cases:
— If 0 ≤ s ≤ t ≤ 1, then we have

G(t, s) ≥ (1− s)α−1(α− λ+ λs)− (1− λ)α(1− s)α−1 = G(1, s)

and
G(t, s)

G(1, s)
≤ α− λ+ λs

λ(s+ α− 1)
≤ α

λ(α− 1)
.

— If 0 ≤ t ≤ s ≤ 1, the following inequalities hold

1 ≤
s− 1 + α

λ

s− 1 + α
≤ G(t, s)

G(1, s)
≤ α

λ(α− 1)
.

3. It is obvious from the definition of the function G.
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4. For all t, s ∈ [0, 1] we have that

G(t, s) ≤ (1− s)α−1(α− λ+ λs)

(1− λ)Γ(α+ 1)
≤ 1

(1− λ)Γ(α)
.

�

Consider the subsets K, K ′ of X, defined by,

K = {u ∈ X : u(t) ≥ 0, t ∈ I} ,

and

K ′ =

{
u ∈ X : min

0≤t≤1
u(t) ≥ γ||u||

}
,

where

0 < γ =
λ(α− 1)

α
< 1.

Clearly, K,K ′ ⊂ X are cones with K ′ ⊂ K.
For all u ∈ K, we define

θ(u) = min
0≤t≤1

u(t),

and the operators T , A, T ∗ by: T : K → K, A : K → X and T ∗ : K ′ → K ′,
such that:

Tu(t) =

[∫ 1

0
G(t, s)f(s, u(s))ds

]+

, for all t ∈ I,

Au(t) =

∫ 1

0
G(t, s)f(s, u(s))ds, for all t ∈ I,

T ∗u(t) =

∫ 1

0
G(t, s)f+(s, u(s))ds, for all t ∈ I.

By the above notation we have that:

T = ψ ◦A.

Lemma 5. T ∗ : K ′ → K ′ is completely continuous.

Proof. Let u ∈ K ′. For all t ∈ [0, 1], we have

T ∗u(t) ≥
∫ 1

0
G(1, s)f(s, u(s))ds

≥ λ(α− 1)

α

∫ 1

0

{
max
0≤t≤1

G(t, s)

}
f(s, u(s))ds.

≥ λ(α− 1)

α
max
0≤t≤1

{∫ 1

0
G(t, s)f(s, u(s))ds

}
=
λ(α− 1)

α
‖T ∗u‖ = γ ‖T ∗u‖ .
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Hence, T ∗u : K ′ → K ′. By using the Arzela-Ascoli Theorem, we can prove
that T ∗ is completely continuous operator (for the proof see [10]). �

Lemma 6. A function u(t) is a solution of BVP (1)-(2) if and only if
u(t) is a fixed point of the operator A.

Lemma 7. If A : K → X is completely continuous, then T = ψ ◦ A :
K → K is also completely continuous.

Proof. The complete continuity of A implies that A is continous and
applies each bounded subset of K on a relatively compact set of X. Given
a function h ∈ X, for each ε > 0 there is σ > 0 such that

||Ah−Ak|| < ε for k ∈ X, ||h− k|| < σ.

Since

|(ψAh)(t)− (ψAk)(t)| = |max {(Ah)(t), 0} −max {(Ak)(t), 0}|
≤ |(Ah)(t)− (Ak)(t)| < ε,

we have
‖(ψA)h− (ψA)k‖ < ε for k ∈ X, ||h− k|| < σ,

and so ψA is continuous.
For any arbitrary bounded set D ⊂ X and for all ε > 0, there are yi,

i = 1, . . . ,m such that

AD ⊂
m⋃
i=1

β(yi, ε),

where β(yi, ε) = {x ∈ X : ‖x− yi‖ < ε}. Then, if we denote ψy by ȳ, for all
ȳ ∈ (ψoA)(D), there is y ∈ AD such that ȳ(t) = max {y(t), 0}. We choose
yi ∈ {y1, .., ym} such that

max
t∈[0,1]

|y(t)− yi(t)| < ε.

Thus
max
t∈[0,1]

|ȳ(t)− ȳi(t)| ≤ max
t∈[0,1]

|y(t)− yi(t)| < ε,

which implies
ȳ ∈ B(ȳi, ε),

and therefore (ψoA)(D) is relatively compact. �

Lemma 8. If u is a fixed point of operator T , then u is also a fixed point
of operator A.
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Proof. Let u be a fixed point of operator T . We claim that u is also a
fixed point of A in Ka. Suppose on the contrary, that there exists a t∗ ∈ [0, 1]
such that

Au(t∗) 6= u(t∗) = Tu(t∗) = max {Au(t∗), 0} ,

and so, this forces
Au(t∗) < 0 = u(t∗).

Let (t1, t2) be the maximal interval which contain t∗ and shuch that Au(t) <
0 for all t ∈ (t1, t2), and Au(t1) = Au(t2) = 0. Note that

u(t) = Tu(t) = max {Au(t), 0} = 0, for all t ∈ [t1, t2].

Obviously, (t1, t2) 6= [0, 1], by the assumption (H1)(ii). So we should have
either t2 < 1 or t1 > 0. By definition of A and lemma (3) we have

cDα
0+Au(t) = −f(t, u), t ∈ [0, 1].

For each t ∈ [t1, t2], by (H1)(ii), we have, cDα
0+Au(t) = −f(t, 0) ≤ 0 (1 <

α ≤ 2). So 0 ≥ D2
0+Au(t) = A′′u(t), in particular, this implies that A′u(t)

is decreasing on [t1, t2].
• If t2 < 1, since Au(t) < 0 for t ∈ (t1, t2), and Au(t2) = 0, we have

A′u(t2) ≥ 0. We obtain t1 = 0, and A′u(t) > 0, for t ∈ [0, t2) which
contradicts with the first condition of (1.1),(1.2) (A′u(0) = 0).

• If t1 > 0, we have u(t) = 0 for t ∈ [t1, t2], Au(t) < 0 for t ∈ (t1, t2) and
(Au)(t1) = 0. Thus (Au)′(t1) ≤ 0. From (H1)(ii) we have (Au)′′(t) ≤ 0
for t ∈ [t1, t2]. So t2 = 1. By the concavity of Au(t) on [t1, 1], we have

|(Au)(s)|
s− t1

≤ |(Au)(1)|
1− t1

.

This implies that

|(Au)(s)| ≤ s− t1
1− t1

|(Au)(1)| < s|(Au)(1)|,

From the above inequalities, we obtain∫ 1

0
|Au(s)|ds ≤

∫ 1

0
s|(Au)(1)|ds < |(Au)(1)|

which contradicts

|(Au)(1)| = λ

∣∣∣∣∫ 1

0
Au(s)ds

∣∣∣∣ ≤ ∫ 1

0
|Au(s)|ds.

�
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3. Main result

In this section, we show the existence of two positive solutions for the
BVP (1)-(2). We denote

m =
(α− 1)λ

α(1− λ)Γ(α+ 1)
, M =

1

(1− λ)Γ(α)
> 0.

From Lemma 3 and Lemma 4, we have∫ 1

0
max
t∈I

G(t, s)ds ≤M

and ∫ 1

0
min
t∈I

G(t, s)ds ≥ m.

Theorem 2. Suppose that condition (H1) hold. If there exist positive
numbers a, b, d such that

0 <
1

γ
d < a < γb < b,

and that f satisfies the following assumptions:
(H2) f(t, u) ≥ 0 for (t, u) ∈ [0, 1]× [d, b].
(H3) f(t, u) < a

M for (t, u) ∈ [0, 1]× [0, a].

(H4) f(t, u) ≥ b
m for (t, u) ∈ [0, 1]× [γb, b].

Then, (1)-(2) has at least two positive solutions u1 and u2 such that

0 ≤ ||u1|| < a < ||u2||, θ(u2) < b.

Proof. From (H3), for all u ∈ ∂Ka; i.e., ||u|| = a, we have

||Tu|| = max
t∈I

[∫ 1

0
G(t, s)f(s, u(s))ds

]+

≤ max
t∈I

max

{∫ 1

0
G(t, s)f(s, u(s))ds, 0

}
≤ a

M

∫ 1

0
max
t∈I

G(t, s)ds

<
a

M
M = a.

So, (C1) of Theorem (1) is satisfied. For u ∈ ∂K ′a, from (H3) we have

||T ∗u|| = max
t∈I

∫ 1

0
G(t, s)f+(s, u(s))ds

≤ a

M

∫ 1

0
max
t∈I

G(t, s)ds

<
a

M
M = a.
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Let u ∈ ∂K ′(γb); i.e., u ∈ K ′ and θ(u) = γb, we have

γb = θ(u) = min
t∈[0,1]

u(t) ≥ γ||u||,

hence
||u|| ≤ b.

On the other hand

u(t) ≥ min
t∈[0,1]

u(t) = θ(u) = γb, for t ∈ [0, 1],

so
γb ≤ u(t) ≤ ||u|| ≤ b.

From (H4),

(5) f(s, u(s)) ≥ b

m
, for s ∈ [0, 1].

So

||T ∗u|| = max
t∈I

∫ 1

0
G(t, s)f+(s, u(s))ds

≥ b

m

∫ 1

0
max
t∈I

G(t, s)ds

≥ b

m

∫ 1

0
min
t∈I

G(t, s)ds

≥ b

m
m = b.

Thus
b < ‖T ∗u‖ .

On the other hand
(θT ∗u) ≥ γ ‖T ∗u‖ > γb.

So, (C2) of Theorem (1) is satisfied. Finally, we show that (C3) of
Theorem (1) is also satisfied.

Let u ∈ K ′a(γb) ∩ {u : T ∗u = u}, then

||u|| > a >
1

γ
d,

and for all t ∈ [0, 1],

u(t) ≥ min
t∈[0,1]

u(t) ≥ γ||u|| > γ
1

γ
d = d.
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Therefore, for u ∈ K ′a(γb) ∩ {u : T ∗u = u}, we have

d ≤ u(t) ≤ ||u|| ≤ b.

From (H2),

f+(s, u(s)) = f(s, u(s)).

Which implies that

Tu = T ∗u.

Then, the conditions of Theorem (1) are satisfied and, T has two fixed points
u1 and u2 in K satisfying

(6) 0 ≤ ||u1|| < a < ||u2||, θ(u2) < γb.

�

4. Example

In this section, we present an example to illustrate our result. Consider
the fractional differential equation boundary value problems

(7) cDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

(8) u′(0) = 0, u(1) = λ

∫ 1

0
u(s)ds,

where λ = 1
2 , α = 3

2 and

f(t, u) =
1

12


(t2 + 1)

√
u2 + 9, 0 ≤ u ≤ 4,

(t2 + 1)(u+ 1)eu−4 4 ≤ u ≤ 48,

49(t2 + 1)e
11
12
u(49− u) u ≥ 48.

Clearly f is allowed to change sign. We can let γ = 1
6 , m = 0.25, M = 2.25

d = 1
2 , a = 4, and b = 48, then

f(t, u) > 0 for all u ∈ [d, b],

f(t, u) >
a

M
for all u ∈ [0, a],

f(t, u) ≥ b

m
for all u ∈ [γb, b].

So the conditions of Theorem (2) hold. Then (7)-(8) has at least two positive
solutions.
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