Nr 62

2019 DOI: 10.21008/j.0044-4413.2019.0001

YUSUF BECEREN AND TAKASHI NOIRI

ON $p\delta s$ -**IRRESOLUTE FUNCTIONS**

ABSTRACT. The object of the present paper is to define and investigate the concepts of $p\delta s$ -irresolute functions in topological spaces. And we obtain some characterizations and fundamental properties of such functions.

KEY WORDS: α -open set, semi open set, preopen set, δ -semi open set and $p\delta s$ -irresolute function.

AMS Mathematics Subject Classification: 54C08, 54C10, 54A05.

1. Preliminaries

Throughout this paper, spaces always mean topological spaces and $f : X \to Y$ denotes a single valued function from a space (X, τ) into a space (Y, v). Let S be a subset of a space (X, τ) . The closure and the interior of S are denoted by Cl(S) and Int(S), respectively. We recall some known definitions and properties.

Definition 1. A subset S of a space (X, τ) is said to be α -open [16] (resp. semi open [10], preopen [12]) if $S \subset Int(Cl(Int(S)))$ (resp. $S \subset Cl(Int(S))$, $S \subset Int(Cl(S))$).

A point $x \in X$ is called the δ -cluster point of A if $A \cap Int(Cl(U)) \neq \emptyset$ for every open set U of X containing x. The set of all δ -cluster points of Ais called the δ -closure [17] of A and is denoted by $Cl_{\delta}(A)$. A subset A of Xis called δ -closed [22] if $A = Cl_{\delta}(A)$. The complement of a δ -closed set is called δ -open [22]. A subset A of X is said to be δ -semi open [18] if there exists a δ -open set U of X such that $U \subset A \subset Cl(U)$. The complement of a δ -semi open set is called δ -semi closed [18]. A point $x \in X$ is called the δ -semicluster point of A if $A \cap U \neq \emptyset$ for every δ -semi open set Uof X containing x. The set of all δ -semicluster points of A is called the δ -semiclosure [18] of A and is denoted by $sCl_{\delta}(A)$.

The family of all α -open (resp. semi open, preopen, δ -semi open) sets in a space (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), $\delta SO(X)$). It is shown in [16] that $\alpha(X)$ is a topology for X. Moreover, $\tau \subset \alpha(X) = PO(X) \cap SO(X) \subset PO(X) \cup SO(X)$. The complement of a preopen set is said to be preclosed [12]. The intersection of all preclosed sets in (X, τ) containing a subset A is called the preclosure [7] of A and is denoted by pCl(A). The union of all δ -semi open sets of X contained in A is called the δ -semiinterior [18] of A and is denoted by $slnt_{\delta}(A)$.

2. Some properties of $p\delta s$ -irresolute functions

Definition 2. A function $f: (X, \tau) \to (Y, \upsilon)$ is said to be p δ s-irresolute [1] (resp. $\alpha\delta$ s-irresolute [1], semi δ s-irresolute [3]) if $f^{-1}(V)$ is preopen (resp. α -open, semi open) in X for every δ -semi open subset V of Y.

Remark 1 ([1]). It is obvious that

 $p\delta s$ -irresoluteness $\Leftarrow \alpha \delta s$ -irresoluteness \Rightarrow semi δs -irresoluteness.

The above implications are not reversible in general. It is shown in Examples 2.1 and 2.2 of [1] that $p\delta s$ -irresoluteness and semi δs -irresoluteness are independent of each other.

Here, we obtain the following characterizations of $p\delta s$ -irresolute functions.

Theorem 1. For a function $f : (X, \tau) \to (Y, \upsilon)$, the following are equivalent:

(1) f is $p\delta s$ -irresolute,

(2) For each $x \in X$ and each δ -semi open subset V of Y containing f(x), there exists a preopen set U of X containing x such that $f(U) \subset V$,

(3) $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$ for every δ -semi open subset V of Y,

(4) $f^{-1}(F)$ is preclosed in X for every δ -semi closed subset F of Y,

(5) $Cl(Int(f^{-1}(B))) \subset f^{-1}(sCl_{\delta}(B))$ for every subset B of Y,

(6) $f(Cl(Int(A))) \subset sCl_{\delta}(f(A))$ for every subset A of X.

Proof. (1) \Rightarrow (2). Let $x \in X$ and V be any δ -semi open subset of Y containing f(x). By Definition 2, $f^{-1}(V)$ is preopen in X and contains x. Set $U = f^{-1}(V)$. Then by (1), the set U is a preopen subset of X containing x and $f(U) \subset V$.

 $(2) \Rightarrow (3)$. Let V be any δ -semi open subset of Y and $x \in f^{-1}(V)$. By (2), there exists a preopen set U of X containing x such that $f(U) \subset V$. Therefore, we obtain $x \in U \subset Int(Cl(U)) \subset Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$.

 $(3) \Rightarrow (4)$. Let F be any δ -semi closed subset of Y. Set V = Y - F. Then the set V is δ -semi open in Y. By (3), we have $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(V)$ is preclosed in X. (4) \Rightarrow (5). Let *B* be any subset of *Y*. Since the set $sCl_{\delta}(B)$ is δ -semi closed in *Y*, by (4) $f^{-1}(sCl_{\delta}(B))$ is preclosed in *X* and hence $Cl(Int(f^{-1}(sCl_{\delta}(B))))) \subset f^{-1}(sCl_{\delta}(B))$. Thus, we have $Cl(Int(f^{-1}(B))) \subset f^{-1}(sCl_{\delta}(B))$.

 $(5) \Rightarrow (6)$. Let A be any subset of X. By (5), we obtain $Cl(Int(A)) \subset Cl(Int(f^{-1}(f(A)))) \subset f^{-1}(sCl_{\delta}(f(A)))$. Therefore, we have $f(Cl(Int(Cl(A)))) \subset sCl_{\delta}(f(A))$.

(6) ⇒ (1). Let V be any δ -semi open subset of Y. Since $f^{-1}(Y - V) = X - f^{-1}(V)$ is a subset of X, by (6) we have $f(Cl(Int(f^{-1}(Y - V)))) \subset sCl_{\delta}(f(f^{-1}(Y - V))) \subset sCl_{\delta}(Y - V) = Y - slnt_{\delta}(V) = Y - V$ and hence $X - Int(Cl(f^{-1}(V))) = Cl(Int(X - f^{-1}(V))) = Cl(Int(f^{-1}(Y - V))) \subset f^{-1}(Y - V) = X - f^{-1}(V)$. Thus, we obtain $f^{-1}(V) \subset Int(Cl(f^{-1}(V)))$ and hence $f^{-1}(V)$ is preopen in X.

Lemma 1 ([7], [9]). Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be a family of spaces and U_{λ_i} be a nonempty subset of X_{λ_i} for each i = 1, 2, ..., n. Then $U = \prod_{\lambda \neq \lambda_i} X_{\lambda} \times \prod_{i=1}^{n} U_{\lambda_i}$ is a nonempty preopen [7] (resp. δ -semi open [9]) subset of $\prod X_{\lambda}$ if and only if U_{λ_i} is preopen (resp. δ -semi open) in X_{λ_i} for each i = 1, 2, ..., n.

Theorem 2. A function $f : X \to Y$ is $p\delta s$ -irresolute if the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is $p\delta s$ -irresolute.

Proof. Let $x \in X$ and V be any δ -semi open subset of Y containing f(x). Then, by Lemma 1, $X \times V$ is a δ -semi open set of $X \times Y$ containing g(x). Since g is $p\delta s$ -irresolute, there exists a preopen subset U of X containing xsuch that $g(U) \subset X \times V$ and hence $f(U) \subset V$. Thus f is $p\delta s$ -irresolute.

Theorem 3. If the product function $f : \Pi X_{\lambda} \to \Pi Y_{\lambda}$ is $p\delta s$ -irresolute, then $f_{\lambda} : X_{\lambda} \to Y_{\lambda}$ is $p\delta s$ -irresolute for each $\lambda \in \Lambda$.

Proof. Let $\lambda_0 \in \Lambda$ be an arbitrary fixed index and V_{λ_0} be any δ -semi open subset of Y_{λ_0} . Then, by Lemma 1, $\Pi Y_{\gamma} \times V_{\lambda_0}$ is δ -semi open in ΠY_{λ} , where $\lambda_0 \neq \gamma \in \Lambda$. Since f is $p\delta s$ -irresolute, $f^{-1}(\Pi Y_{\gamma} \times V_{\lambda_0}) = \Pi X_{\gamma} \times f_{\lambda_0}^{-1}(V_{\lambda_0})$ is preopen in ΠX_{λ} and hence $f_{\lambda_0}^{-1}(V_{\lambda_0})$ is preopen in X_{λ_0} by Lemma 1. This shows that f_{λ_0} is $p\delta s$ -irresolute.

Lemma 2 ([13]). If $A \in SO(X)$ and $B \in PO(X)$, then $A \cap B \in PO(A)$.

Theorem 4. If $f : (X, \tau) \to (Y, \upsilon)$ is $p\delta s$ -irresolute and A is a semi open subset of X, then the restriction $f_{/A} : A \to Y$ is $p\delta s$ -irresolute.

Proof. Let V be any δ -semi open subset of Y. Since f is $p\delta s$ -irresolute, $f^{-1}(V)$ is a preopen set in X. Since A is semi open in X, by Lemma 2, $(f_{/A})^{-1}(V) = A \cap f^{-1}(V)$ is preopen in A. Therefore $f_{/A}$ is $p\delta s$ -irresolute.

Lemma 3 ([13]). If $A \subset B \subset X$, $A \in PO(B)$ and $B \in PO(X)$, then $A \in PO(X)$.

Theorem 5. Let $f : (X, \tau) \to (Y, \upsilon)$ be a function and $\{A_{\lambda} : \lambda \in \Lambda\}$ be a cover of X by preopen sets of (X, τ) . Then f is pos-irresolute if $f_{/A_{\lambda}} : A_{\lambda} \to Y$ is pos-irresolute for each $\lambda \in \Lambda$.

Proof. Let V be any δ -semi open subset of Y. Since $f_{A_{\lambda}}$ is $p\delta s$ -irresolute, $(f_{A_{\lambda}})^{-1}(V)$ is preopen in A_{λ} . Since A_{λ} is preopen in X, $(f_{A_{\lambda}})^{-1}(V)$ is preopen in X for each $\lambda \in \Lambda$ by Lemma 3. Thus, we have $f^{-1}(V) = X \cap f^{-1}(V) = \cup \{A_{\lambda} \cap f^{-1}(V) : \lambda \in \Lambda\} = \cup \{(f_{A_{\lambda}})^{-1}(V) : \lambda \in \Lambda\}$ is preopen in X because the union of preopen sets is a preopen set. Therefore, f is $p\delta s$ -irresolute.

We recall that a function $f : (X, \tau) \to (Y, \upsilon)$ is said to be δ -irresolute ([17], [2]) (resp. preirresolute [21]) if $f^{-1}(V)$ is δ -semi open (resp. preopen) in X for every δ -semi open (resp. preopen) set V of Y.

Theorem 6. Let $f : X \to Y$ be a function and $g : Y \to Z$ be a δ -irresolute function. If f is $p\delta s$ -irresolute, then the composition $gof : X \to Z$ is $p\delta s$ -irresolute.

Proof. Let W be any δ -semi open subset of Z. Since g is δ -irresolute, $g^{-1}(W)$ is δ -semi open in Y. Since f is $p\delta s$ -irresolute, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is preopen in X and hence gof is $p\delta s$ -irresolute.

Theorem 7. Let $f : X \to Y$ be a preirresolute function and $g : Y \to Z$ be a function. If g is pos-irresolute, then the composition $gof : X \to Z$ is pos-irresolute.

Proof. Let W be any δ -semi open subset of Z. Since g is $p\delta s$ -irresolute, $g^{-1}(W)$ is preopen in Y. Since f is preirresolute, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is preopen in X and hence gof is $p\delta s$ -irresolute.

We recall that a topological space (X, τ) is said to be pre- T_2 [8] (resp. δ -semi T_2 [2]) if for any two distinct points x and y in X, there exist disjoint preopen (resp. δ -semi open) sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 8. If a function $f : (X, \tau) \to (Y, \upsilon)$ is a pbs-irresolute injection and a space Y is δ -semi T_2 , then X is a pre- T_2 space.

Proof. Let x_1 and x_2 be any two distinct points of X. Then $f(x_1) \neq f(x_2)$. Since Y is δ -semi T_2 , there exist disjoint δ -semi open sets V and W of Y containing $f(x_1)$ and $f(x_2)$, respectively. Since f is $p\delta s$ -irresolute, there exist preopen sets U and G of X containing x_1 and x_2 , respectively such that $f(U) \subset V$ and $f(G) \subset W$. It follows that $U \cap G = \emptyset$. This means that X is a pre- T_2 space.

Theorem 9. If a function $f : (X, \tau) \to (Y, \upsilon)$ is $p\delta s$ -irresolute and a space Y is δ -semi T_2 , then a set $A = \{(x, y) : f(x) = f(y)\}$ is preclosed in $X \times X$.

Proof. Suppose that $(x, y) \notin A$. Then $f(x) \neq f(y)$. Since Y is δ -semi T_2 , there exist disjoint δ -semi open sets V and W of Y containing f(x) and f(y), respectively. Since f is $p\delta s$ -irresolute, there exist preopen sets U and G of X containing x and y, respectively such that $f(U) \subset V$ and $f(G) \subset W$. Set $B = U \times G$. Then, the set B is preopen in $X \times X$ such that $(x, y) \in B$ and $A \cap B = \emptyset$. This shows that $pCl(A) \subset A$ and hence the set A is preclosed in $X \times X$.

Definition 3. For a function $f : (X, \tau) \to (Y, \upsilon)$, the graph $G(f) = \{(x, f(x)) : x \in X\}$ is called $p\delta s$ -closed if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in PO(X)$ containing x and $V \in \delta SO(Y)$ containing y such that $(U \times V) \cap G(f) = \emptyset$.

Theorem 10. If a function $f : (X, \tau) \to (Y, \upsilon)$ is $p\delta s$ -irresolute and Y is δ -semi T_2 , then G(f) is $p\delta s$ -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G(f)$. This implies that $f(x) \neq y$. Since Y is δ -semi T_2 , there exist disjoint δ -semi open sets V and W in Y containing f(x) and y, respectively. Since f is $p\delta s$ -irresolute, there exists a preopen set U of X containing x such that $f(U) \subset V$. Therefore, $f(U) \cap W = \emptyset$ and hence $(U \times W) \cap G(f) = \emptyset$. Thus, G(f) is $p\delta s$ -closed in $X \times Y$.

Theorem 11. If a function $f : (X, \tau) \to (Y, \upsilon)$ is a pos-irresolute injection with a pos-closed graph, then X is a pre- T_2 space.

Proof. Let x and y be any distinct points of X. Then $f(x) \neq f(y)$ and hence $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is $p\delta s$ -closed, there exist $U \epsilon PO(X)$ containing x and $V \epsilon \delta SO(Y)$ containing f(y) such that $f(U) \cap V = \emptyset$. Since f is $p\delta s$ -irresolute, there exists $G \epsilon PO(X)$ containing y such that $f(G) \subset V$. Thus we have $f(U) \cap f(G) = \emptyset$ and hence $U \cap G = \emptyset$. This shows that X is a pre- T_2 space.

Definition 4. A subset A of a topological space (X, τ) is said to be

(1) strongly compact relative to (X, τ) [15] if for every cover $\{V_{\alpha} : \alpha \in \Delta\}$ of A by preopen sets of X, there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup_{\alpha \in \Delta_0} V_{\alpha}$,

(2) s-closed relative to (X, τ) [6] if for every cover $\{V_{\alpha} : \alpha \in \Delta\}$ of A by semi open sets of X, there exists a finite subset Δ_0 of Δ such that $A \subset \bigcup_{\alpha \in \Delta_0} sCl(V_{\alpha})$,

(3) (X, τ) is said to be strongly compact [15] (resp. s-closed [6]) if X is strongly compact (resp. s-closed) relative to (X, τ) .

Recall that the complement of a semi open set is said to be semi closed [5].

Lemma 4. For a subset A of a topological space (X, τ) , the following properties hold:

(1) If A is semi open, then sCl(A) is semi closed and semi open,

(2) If A is semi open and semi closed, then A is δ -semi open,

(3) If A is semi open, then sCl(A) is δ -semi open.

Proof.(1) This follows from Proposition 2.2 of [6].

(2) This follows from Lemma 3.1 of [17].

(3) This is an immediate consequence of (1) and (2).

Theorem 12. Let $f : (X, \tau) \to (Y, v)$ be a pbs-irresolute function. If K is strongly compact relative to X, then f(K) is s-closed relative to Y.

Proof. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be any cover of f(K) by semi open sets of Y. Since V_{α} is semi open, by Lemma $4 \ sCl(V_{\alpha})$ is δ -semi open in Y. Since f is $p\delta s$ -irresolute, $f^{-1}(sCl(V_{\alpha}))$ is preopen in X for each $\alpha \in \Delta$. Since $f(K) \subset \bigcup_{\alpha \in \Delta} V_{\alpha} \subset \bigcup_{\alpha \in \Delta} sCl(V_{\alpha}), K \subset f^{-1}(f(K)) \subset f^{-1}(\bigcup_{\alpha \in \Delta} sCl(V_{\alpha})) = \bigcup_{\alpha \in \Delta} f^{-1}(sCl(V_{\alpha}))$. Since K is strongly compact relative to X, there exists a finite subset Δ_0 of Δ such that $K \subset \bigcup_{\alpha \in \Delta_0} f^{-1}(sCl(V_{\alpha}))$. Therefore, we have $f(K) \subset \bigcup_{\alpha \in \Delta_0} sCl(V_{\alpha})$. This shows that f(K) is s-closed relative to Y.

Corollary 1. Let $f : (X, \tau) \to (Y, \upsilon)$ be a pos-irresolute surjection. If (X, τ) is strongly compact, then (Y, υ) is s-closed.

Definition 5. A topological space (X, τ) is said to be semi-connected [19] (resp. preconnected [20]) if X cannot be expressed as the disjoint union of two nonempty semi open (resp. preopen) sets.

Theorem 13. Let $f : (X, \tau) \to (Y, \upsilon)$ be a pos-irresolute surjection. If (X, τ) is preconnected, then (Y, υ) is semi-connected.

Proof. Suppose that (Y, v) is not semi-connected. Then there exist two nonempty semi open sets U and V such that $U \cap V = \emptyset$ and $U \cup V =$ Y. Since U and V are semi open, by Lemma 4 sCl(U) is semi open and $sCl(U) \cap V = \emptyset$. Hence $sCl(U) \cap sCl(V) = \emptyset$. Moreover, by Lemma 4, sCl(U) and sCl(V) are δ -semi open and $sCl(U) \cup sCl(V) = Y$. Therefore, $X = f^{-1}(sCl(U)) \cup f^{-1}(sCl(V))$ and $f^{-1}(sCl(U)) \cap f^{-1}(sCl(V)) = \emptyset$. Moreover, $f^{-1}(sCl(U))$ and $f^{-1}(sCl(V))$ are nonempty preopen sets. This shows that (X, τ) is not preconnected. This completes the proof.

References

- [1] BECEREN Y., NOIRI T., On $\alpha \delta s$ -irresolute functions, An. Univ. Oradea Fasc. Mat., (to appear).
- [2] CALDAS M., GEORGIOU D.N., JAFARI S., NOIRI T., More on δ-semiopen sets, Note Mat., 22(2)(2003/2004), 113-126.
- [3] CALDAS M., JAFARI S., On semi δs -irresolute functions, Fasc. Math., 58(2017), 47-55.
- [4] CHAE G.I., NOIRI T., LEE D.W., On na-continuous functions, Kyungpook Math. J., 26(1986), 73-79.
- [5] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [6] DI MAIO G., NOIRI T., On s-closed spaces, Indian J. Pure Appl. Math., 18(1987), 226-233.
- [7] EL-DEEB N., HASANEIN I.A., MASHHOUR A.S., NOIRI T., On p-regular spaces, Bull. Math. Soc. Sci. Math. (N.S.), 27(75)(1983), 311-315.
- [8] KAR A., BHATTACHARYYA P., Some weak separation axioms, Bull. Calcutta Math. Soc., 82(1990), 415-422.
- [9] LEE B.Y., SON M.J., PARK J.H., δ-semiopen sets and its applications, Far East J. Math. Sci. (FJMS), 3(2001), 745-759.
- [10] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [11] MAHESHWARI S.N., THAKUR S.S., On α-irresolute mappings, Tamkang J. Math., 11(1980), 209-214.
- [12] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEB S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [13] MASHHOUR A.S., HASANEIN I.A., EL-DEEB S.N., A note on semi-continuity and precontinuity, *Indian J. Pure Appl. Math.*, 13(1982), 1119-1123.
- [14] MASHHOUR A.S., HASANEIN I.A., EL-DEEB S.N., α-continuous and α-open mappings, Acta Math. Hungar, 41(1983), 213-218.
- [15] MASHHOUR A.S., ABD EL-MONSEF M.E., HASANEIN I.A., NOIRI T., Strongly compact spaces, *Delta J. Sci.*, 8(1984), 30-46.
- [16] NJÅSTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [17] NOIRI T., Remarks on δ-semi open sets and δ-preopen sets, Demonstratio Math., 36(2003), 1007-1020.
- [18] PARK J.H., LEE B.Y., SON M.J., On δ-semiopen sets in topological spaces, J. Indian Acad. Math., 19(1997), 59-67.
- [19] PIPITONE V., RUSSO G., Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo (2), 24(1975), 273-285.
- [20] POPA V., Properties of H-almost continuous functions, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 31(79)(1987), 163-168.
- [21] REILLY I.L., VAMANAMURTHY M.K., On α-continuity in topological spaces, Acta Math. Hungar, 45 (1985), 27-32.
- [22] VELIČKO N.V., H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.

YUSUF BECEREN AND TAKASHI NOIRI

Yusuf Beceren Department of Mathematics Faculty of Sciences Selçuk University Selçuklu, Konya, 42130 Turkey *e-mail:* ybeceren@selcuk.edu.tr

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 Japan *e-mail:* t.noiri@nifty.com

Received on 19.02.2019 and, in revised form, on 10.10.2019.