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1. Introduction

In recent years considerable attention has been given to impulsive differ-
ential equations which appear as a natural description of observed evolution
phenomena of several real world problems. The theory of impulsive differ-
ential equations is much richer than the corresponding theory of differential
equations without impulse effects, and have consistent real world applica-
tions, since many models present forces acting abruptly, almost instantly,
and at different times. The theory of impulsive differential equations has its
beginning in [19] by V. Mil’man et.al.

The first investigation on the oscillation theory of impulsive differential
equations was published in 1989 [7]. The first paper on impulsive partial dif-
ferential equations [5] was published in 1991. The authors of [5] have shown
that impulsive partial differential equations provide a natural framework
for mathematical modeling of population growth. In the last two decades
there has been and still is to this day a strong interest in studying the
oscillatory behavior of partial differential equations with or without impulse
[18], [21]-[26], [28], [29]. However very little attention has been given to
systems of partial differential equations [1], [4], [11], [13] - [17] and systems
of impulsive partial differential equations [3, 6, 12].
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For the basic background on the oscillation theory of differential equa-
tions, we refer to the monographs see [2, 9, 10, 28, 29] and the references
there in. It seems that there has been no work published on the oscilla-
tion of systems of impulsive partial differential equations with continuous
distributed deviating arguments.

In this paper, we consider the system of impulsive nonlinear neutral delay
partial differential equations with distributed deviating arguments of the
form
(E)

∂

∂t

[
r(t)

∂

∂t

(
ui(x, t) +

∫ b
a g(t, ξ)ui(x, τ(t, ξ))dη(ξ)

)]
+ p(t)

∂

∂t

(
ui(x, t) +

∫ b
a g(t, ξ)ui(x, τ(t, ξ))dη(ξ)

)
+

m∑
n=1

d∑
j=1

∫ b
a qinj(x, t, ξ)fij(un(x, σj(t, ξ)))dη(ξ) = ai(t)∆ui(x, t)

+
m∑

n=1

l∑
h=1

ainh(t)∆un(x, ρh(t)), for t ̸= tk and (x, t) ∈ Ω× R+

ui(x, t
+
k ) = αki (x, ui(x, tk), tk) ,

∂ui(x, t
+
k )

∂t
= βki

(
x,

∂ui(x, tk)

∂t
, tk

)
, for k > 1,

for i = 1, 2, . . . ,m, where Ω is a bounded domain in RN with a piecewise
smooth boundary ∂Ω and ∆ is the Laplacian in the Euclidean space RN ,
supplemented by the following Dirichlet boundary condition

ui(x, t) = 0 for (x, t) ∈ ∂Ω× R+ and i = 1, 2, . . . ,m.(B)

We denote R+ = [0,+∞), the sequence {tk} is a fixed strictly increasing
sequence of positive real numbers with tk → ∞ as k → ∞, a < b and
η : [a, b] → R is a nondecreasing function.1 Before presenting the hypotheses
and detailed explanation for the terms of equation (E), we need the following
definition.

Definition 1. If U ⊂ Rp for some p > 1 and J ⊂ R we define the
set PC(U × R+, J) as the set of functions U × R+ ∋ (x, t) 7→ f(x, t) ∈ J
which are continuous in the variable x and piecewise continuous in t, with
discontinuities of the first kind in t = tk and left continuous at t = tk.

Also, we consider PC(R+, J) as the set of functions R+ ∋ t 7→ f(t) ∈ J
which are piecewise continuous, with discontinuities of the first kind in t = tk
and left continuous at t = tk.

1 The integral in (E) is a Riemann-Stieltjes integral.
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Now we present a set of conditions that will use throughout the paper.
(H1) p(t) ∈ C(R+,R), r(t) ∈ C1 (R+, (0,+∞)) with r′(t) > 0,∫ +∞

t0

1

R(s)
ds = +∞, where R(t) = exp

(∫ t

t0

r′(s) + p(s)

r(s)
ds

)
,

and g ∈ C2(R+ × [a, b],R+).
(H2) ai, ainh ∈ PC(R+,R+) and for each h = 1, 2, . . . , l we have

Ah(t) = min
16i6m

aiih(t)−
m∑

n=1, n ̸=i

|anih(t)|

 > 0.

(H3) τ, σj ∈ C(R+ × [a, b],R), τ(t, ξ) 6 t and σj(t, ξ) 6 t for ξ ∈ [a, b],
τ(t, ξ) and σj(t, ξ) are nondecreasing with respect to t and with respect
to ξ. Moreover

lim
t→+∞

τ(t, a) = σj(t, a) = +∞.

Also ρh ∈ C(R+,R), ρh(t) 6 t and lim
t→+∞

ρh(t) = +∞ for h = 1, 2, . . . , l.

(H4) There exist functions θj ∈ C1(R+,R+) satisfying θj(t) 6 σj(t, a), with
θ
′
j(t) > 0 and

lim
t→+∞

θj(t) = +∞ for j = 1, 2, · · · , d.

(H5) qinj ∈ C
(
Ω̄× R+ × [a, b],R+

)
, qiij(t, ξ) = min

x∈Ω̄
qiij(x, t, ξ),

q̄inj(t, ξ) = max
x∈Ω̄

|qinj(x, t, ξ)|,

Qj(t, ξ) = min
16i6m

{
qiij(t, ξ)−

m∑
n=1, n ̸=i

|q̄nij(t, ξ)|

}
> 0

for i, n = 1, 2, · · · ,m and j = 1, 2, · · · , d. fij ∈ C(R,R) is convex in R+

and
fij(s)

s
> M > 0, for s ̸= 0; i, n = 1, 2, . . . ,m and j = 1, 2, . . . , d.

(H6) ui,
∂ui
∂t

∈ PC(Ω× R+,R).
(H7) αki , βki ∈ PC(Ω̄× R× R+,R) for k = 1, 2, · · · , i = 1, 2, · · · ,m, and

there exist positive constants aki , a
∗
ki
, bki , b

∗
ki

such that for i = 1, 2, · · · ,m
and k > 1 we have bki 6 a∗ki and

a∗ki 6
αki (x, ui(x, tk), tk)

ui(x, tk)
6 aki , b∗ki 6

βki

(
x, ∂ui(x,tk)

∂t , tk

)
∂ui(x,tk)

∂t

6 bki .

In the next section, we discuss the oscillation of problem (E)-(B) in detail,
and in Section 3, we present one example to illustrate our main result.
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3. Oscillations of problem (E)-(B)

In this section, we establish sufficient conditions for the oscillation of all
solutions of problem (E)-(B). We begin with the definition of a solution of
problem (E)-(B).

Definition 2 ([31]). By a solution of (E)-(B) we mean a vector function
u = (u1, · · · , um) such that ui ∈ C2(Ω×[ω1,+∞),R)∩C1(Ω×[ω2,+∞),R)∩
C(Ω× [ω3,+∞),R) for each i = 1, . . . ,m and ui satisfies (E)-(B) in Ω×R+

for each i = 1, . . . ,m, where

ω1 = min

{
0, min

16h6l

[
inf
t>0

ρh(t)

]}
, ω2 = min

{
0, inf

t>0
τ(t, a)

}
and ω3 = min

{
0, min

16j6d

[
inf
t>0

σj(t, a)

]}
.

Now with this definition of solution, we can precisely define what we
mean by oscillation.

Definition 3 ([31]). A nontrivial component ui(x, t) of a solution u is
said to be oscillatory in Ω×[δ0,+∞) if there is a point (x0, t0) ∈ Ω×[δ,+∞)
such that ui(x0, t0) = 0, for each δ > δ0.

Definition 4 ([31]). A solution u is said to be oscillatory in Ω ×
[δ0,+∞) if at least one of its nontrivial component is oscillatory in Ω ×
[δ0,+∞). Otherwise, the vector solution ui(x, t) is said to be nonoscilla-
tory in Ω× [δ0,+∞).

Definition 5 ([31]). A solution u is said to be strongly oscillatory in
Ω×[δ0,+∞) if each of its nontrivial component is oscillatory in Ω×[δ0,+∞).

Next, we state two lemmas that will help us establish our results.

Lemma 1 ([8]). If x and y are nonnegative, then

xλ − λxyλ−1 + (λ− 1)yλ > 0, if λ > 1

xλ − λxyλ−1 − (1− λ)yλ 6 0, if 0 < λ < 1,

while, in both cases, equality holds if and only if x = y.

Proposition 1 ([27]). Consider the eigenvalue problem{
∆w(x) + λw(x) = 0 in Ω

w(x) = 0 on ∂Ω
(1)

Then its smallest eigenvalue λ0 is positive.
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Now we can begin our study of oscillations for the solutions of (E)-(B) in
detail. We start with the following result, recalling that a function Z : R+ →
R is said to be eventually positive if there exists δ > 0 such that Z(t) > 0
for all t > δ.

Theorem 1. If the functional impulsive differential inequality

(r(t)Z ′(t))′ + p(t)Z ′(t) +
d∑

j=1

∫ b
a MQj(t, ξ)[1−

∫ b
a g(σj(t, ξ), ξ)]

× Z(θj(t))dη(ξ) 6 0, t ̸= tk,

a∗ki 6
Z(t+k )

Z(tk)
6 aki , b∗ki 6

Z ′(t+k )

Z ′(tk)
6 bki

k = 1, 2, · · · , i = 1, 2, · · · ,m,

(2)

has no eventually positive solution, then every solution of the boundary value
problem (E)-(B) is oscillatory in Ω× R+.

Proof. Suppose to the contrary that there is a non-oscillatory solution
u of (E)-(B). We may assume that |ui(x, t)| > 0 for t > t0 for some t0 ∈ R
and i = 1, 2, . . .m. For t > t0, let δi = sgn(ui(x, t)) and zi(x, t) = δiui(x, t).
Then zi(x, t) > 0, for (x, t) ∈ Ω × [t0,+∞) and i = 1, 2, · · ·m. From (H3)
there exists t∗ > t0 such that τ(t, ξ) > t0, σj(t, ξ) > t0 for (t, ξ) ∈ [t∗,+∞)×
[a, b], and ρh(t) > t0 for t > t0, then

zi(x, τ(t, ξ)) > 0, zi(x, σj(t, ξ)) > 0 and zi(x, ρh(t)) > 0,

for x ∈ Ω, t ∈ [t∗,+∞), ξ ∈ [a, b], j = 1, . . . , d and h = 1, . . . , l.
For t > t0 and t ̸= tk for k = 1, 2, · · · , we multiply both sides of the

equation in (E) by δiΦ(x) and integrate with respect to x over the domain
Ω to attain

d

dt

[
r(t)

d

dt

(∫
Ω
δiui(x, t)Φ(x)dx(3)

+

∫
Ω

∫ b

a
δig(t, ξ)ui(x, τ(t, ξ))Φ(x)dη(ξ)dx

)]
+ p(t)

d

dt

(∫
Ω
δiui(x, t)Φ(x)dx

+

∫
Ω

∫ b

a
δig(t, ξ)ui(x, τ(t, ξ))Φ(x)dη(ξ)dx

)
+

m∑
n=1

d∑
j=1

∫
Ω

∫ b

a
δiqinj(x, t, ξ)fij (un(x, σj(t, ξ)))Φ(x)dη(ξ)dx
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= ai(t)

∫
Ω
δi∆ui(x, t)Φ(x)dx

+

m∑
n=1

l∑
h=1

∫
Ω
ainh(t)δi∆un(x, ρh(t))Φ(x)dx,

for i = 1, 2, . . . ,m. It is easy to see that∫
Ω

∫ b

a
δig(t, ξ)ui(x, τ(t, ξ))Φ(x)dη(ξ)dx

=

∫ b

a

∫
Ω
δig(t, ξ)ui(x, τ(t, ξ))Φ(x)dxdη(ξ),

and ∫
Ω

∫ b

a
δiqinj(x, t, ξ)fij (un(x, σj(t, ξ)))Φ(x)dη(ξ)dx

=

∫ b

a

∫
Ω
δiqinj(x, t, ξ)fij (un(x, σj(t, ξ)))Φ(x)dxdη(ξ).

Therefore we obtain

d

dt

[
r(t)

d

dt

(∫
Ω
zi(x, t)Φ(x)dx(4)

+

∫ b

a

∫
Ω
g(t, ξ)zi(x, τ(t, ξ))Φ(x)dxdη(ξ)

)]
+ p(t)

d

dt

(∫
Ω
zi(x, t)Φ(x)dx

+

∫ b

a

∫
Ω
g(t, ξ)zi(x, τ(t, ξ))Φ(x)dxdη(ξ)

)
+

d∑
j=1

[ ∫ b

a

∫
Ω
qiij(x, t, ξ)fii (zi(x, σj(t, ξ)))Φ(x)dxdη(ξ)

+

m∑
n=1, n ̸=i

δiδn

∫ b

a

∫
Ω
qinj(x, t, ξ)fin (zn(x, σj(t, ξ)))Φ(x)dxdη(ξ)

]

= ai(t)

∫
Ω
∆zi(x, t)Φ(x)dx+

l∑
h=1

[ ∫
Ω
aiih(t)∆zi(x, ρh(t))Φ(x)dx

+

m∑
n=1, n ̸=i

∫
Ω
ainh(t)δiδn∆zn(x, ρh(t))Φ(x)dx

]
.
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From Green’s formula and boundary condition (B), it follows that∫
Ω
∆zi(x, t)Φ(x)dx =

∫
Ω
zi(x, t)∆Φ(x)dx(5)

+

∫
∂Ω

[
Φ(x)

∂zi(x, t)

∂γ
− zi(x, t)

∂Φ(x)

∂γ

]
dS

= −λ0

∫
Ω
zi(x, t)Φ(x)dx 6 0,

and ∫
Ω
∆zn(x, ρh(t))Φ(x)dx =

∫
Ω
zn(x, ρh(t))∆Φ(x)dx(6)

+

∫
∂Ω

[
Φ(x)

∂zn(x, ρh(t))

∂γ
− zi(x, ρh(t))

∂Φ(x)

∂γ

]
dS

= −λ0

∫
Ω
zn(x, ρh(t))Φ(x)dx,

where h = 1, 2, . . . , l and dS is the surface element on ∂Ω. Furthermore with
Jensen’s inequality and (H5) we obtain∫ b

a

∫
Ω
qiij(x, t, ξ)fii (zi(x, σj(t, ξ)))Φ(x)dxdη(ξ)(7)

>
∫ b

a

∫
Ω
qiij(x, t, ξ)Mzi(x, σj(t, ξ))Φ(x)dxdη(ξ)

and ∫ b

a

∫
Ω
qinj(x, t, ξ)fin (zn(x, σj(t, ξ)))Φ(x)dxdη(ξ)(8)

>
∫ b

a

∫
Ω
qinj(x, t, ξ)Mzn(x, σj(t, ξ))Φ(x)dxdη(ξ).

Combining (4)-(8) we get

d

dt

[
r(t)

d

dt

(∫
Ω

zi(x, t)Φ(x)dx+

∫ b

a

∫
Ω

g(t, ξ)zi(x, τ(t, ξ))Φ(x)dxdη(ξ)

)]

+ p(t)
d

dt

(∫
Ω

zi(x, t)Φ(x)dx+

∫ b

a

∫
Ω

g(t, ξ)zi(x, τ(t, ξ))Φ(x)dxdη(ξ)

)

+

d∑
j=1

[ ∫ b

a

∫
Ω

qiij(t, ξ)Mzi(x, σj(t, ξ))Φ(x)dxdη(ξ)

−
m∑

n=1, n ̸=i

∫ b

a

∫
Ω

q̄inj(t, ξ)Mzn(x, σj(t, ξ))Φ(x)dxdη(ξ)
]
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6
l∑

h=1

[
− λ0

∫
Ω

aiih(t)zi(x, ρh(t))Φ(x)dx

+ λ0

m∑
n=1, n ̸=i

∫
Ω

|ainh(t)| zn(x, ρh(t))Φ(x)dx
]
.

Setting vi(t) =
∫
Ω zi(x, t)Φ(x)dx, we obtain

d

dt

[
r(t)

d

dt

(
vi(t) +

∫ b

a
g(t, ξ)vi(τ(t, ξ))dη(ξ)

)]
(9)

+ p(t)
d

dt

(
vi(t) +

∫ b

a
g(t, ξ)vi(τ(t, ξ))dη(ξ)

)
+

d∑
j=1

[ ∫ b

a
Mqiij(t, ξ)vi(σj(t, ξ))dη(ξ)

−
m∑

n=1, n ̸=i

∫ b

a
Mq̄inj(t, ξ)vn(σj(t, ξ))dη(ξ)

]

6
l∑

h=1

[
− λ0aiih(t)vi(ρh(t)) + λ0

m∑
n=1, n ̸=i

|ainh(t)| vn(ρh(t))
]
.

Let V (t) =
m∑
i=1

vi(t). It follows from (9) that

d

dt

[
r(t)

d

dt

(
V (t) +

∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

)]
(10)

+ p(t)
d

dt

(
V (t) +

∫ b

a
V (τ(t, ξ))dη(ξ)

)
+

d∑
j=1

M
[ m∑

i=1

(∫ b

a
qiij(t, ξ)vi(σj(t, ξ))dη(ξ)

−
m∑

n=1, n ̸=i

∫ b

a
q̄inj(t, ξ)vn(σj(t, ξ))dη(ξ)

)]

+

l∑
h=1

λ0

[ m∑
i=1

(∫ b

a
aiih(t)vi(ρh(t))

−
m∑

n=1, n ̸=i

∫ b

a
|ainh(t)| vn(ρh(t))

)]
6 0.
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Noting that
m∑
i=1

∫ b

a

(
qiij(t, ξ)vi(σj(t, ξ))−

m∑
n=1, n ̸=i

q̄inj(t, ξ)vn(σj(t, ξ))
)
dη(ξ)

=

∫ b

a

(
q11j(t, ξ)v1(σj(t, ξ))−

m∑
n=1, n ̸=1

q̄1nj(t, ξ)vn(σj(t, ξ))
)
dη(ξ)

+

∫ b

a

(
q22j(t, ξ)v2(σj(t, ξ))−

m∑
n=1, n ̸=2

q̄2nj(t, ξ)vn(σj(t, ξ))
)
dη(ξ)

+ · · ·+
∫ b

a

(
qmmj(t, ξ)vm(σj(t, ξ))

−
m∑

n=1, n ̸=m

q̄mnj(t, ξ)vn(σj(t, ξ))
)
dη(ξ)

=

∫ b

a

(
q11j(t, ξ)−

m∑
n=1, n ̸=1

q̄n1j(t, ξ)
)
v1(σj(t, ξ))dη(ξ)

+

∫ b

a

(
q22j(t, ξ)−

m∑
n=1, n ̸=2

q̄n2j(t, ξ)
)
v2(σj(t, ξ))dη(ξ)

+ · · ·+
∫ b

a

(
qmmj(t, ξ)−

m∑
n=1, n ̸=m

q̄nmj(t, ξ)
)
vm(σj(t, ξ))dη(ξ)

>
∫ b

a

min
16i6m

(
qiij(t, ξ)−

m∑
n=1, n ̸=i

q̄nij(t, ξ)
) m∑

i=1

vi(σj(t, ξ))dη(ξ)

=

∫ b

a

Qj(t, ξ)V (σj(t, ξ))dη(ξ),

and similarly

m∑
i=1

(
aiih(t)vi(ρh(t))−

m∑
n=1, n ̸=i

|ainh(t)| vn(ρh(t))
)

> min
16i6m

(
aiih(t)−

m∑
n=1, n ̸=i

|anih(t)|
) m∑

i=1

vi(ρh(t)) = Ah(t)V (ρh(t)).

From (10), we have

d

dt

[
r(t)

d

dt

(
V (t) +

∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

)]
+ p(t)

d

dt

(
V (t) +

∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

)
+

d∑
j=1

M

∫ b

a
Qj(t, ξ)V (σj(t, ξ))dη(ξ) +

l∑
h=1

λ0Ah(t)V (ρh(t)) 6 0.
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It is easy to see that V (ρh(t)) =
m∑
i=1

vi(ρh(t)) > 0, and therefore

d

dt

[
r(t)

d

dt

(
V (t) +

∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

)]
+ p(t)

d

dt

(
V (t) +

∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

)
+

d∑
j=1

M

∫ b

a
Qj(t, ξ)V (σj(t, ξ))dη(ξ) 6 0.

Setting Z(t) = V (t) +
∫ b
a g(t, ξ)V (τ(t, ξ))dη(ξ), we have

(11)
(
r(t)Z ′(t)

)′
+ p(t)Z ′(t) +

d∑
j=1

M

∫ b

a
Qj(t, ξ)V (σj(t, ξ))dη(ξ) 6 0.

Clearly Z(t) > 0 for t > t∗. Next, we show that Z ′(t) > 0 for t > t∗. In fact
assume that there exists T > t∗ such that Z ′(T ) 6 0. Then we have

(12) r(t)Z ′′(t) +
(
r′(t) + p(t)

)
Z ′(t) ≤ 0.

From (H1), it follows that R
′(t) = R(t)

(
r′(t)+p(t)

r(t)

)
, R(t) > 0 and R′(t) > 0

for t > t∗. Multiplying both sides of (12) by R(t)
r(t) , we obtain

(13) R(t)Z ′′(t) +R′(t)Z ′(t) =
(
R(t)Z ′(t)

)′ 6 0.

From (13) we have R(t)Z ′(t) ≤ R(T )Z ′(T ) 6 0, t > T . Thus

Z(t) 6 Z(T ) +R(T )Z ′(T )

∫ t

T

ds

R(s)
for t > T.

Again from (H1) we have lim
t→∞

Z(t) = −∞ which contradicts Z(t) > 0 for

t > t∗. Hence Z ′(t) > 0 and since τ(t, ξ) 6 t, we have

V (t) = Z(t)−
∫ b

a
g(t, ξ)V (τ(t, ξ))dη(ξ)

> Z(t)−
∫ b

a
g(t, ξ)Z(τ(t, ξ))dη(ξ)

> Z(t)

(
1−

∫ b

a
g(t, ξ)dη(ξ)

)
and

V (σj(t, ξ)) > Z(σj(t, ξ))

(
1−

∫ b

a
g(σj(t, ξ), ξ)dη(ξ)

)
.
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Therefore from (11), we have(
r(t)Z ′(t)

)′
+ p(t)Z ′(t)

+
d∑

j=1

∫ b

a
MQj(t, ξ)

(
1−

∫ b

a
g(σj(t, ξ), ξ)dη(ξ)

)
Z(σj(t, ξ))dη(ξ) 6 0.

From (H3) and (H4), we have

Z(σj(t, ξ)) > Z(σj(t, a)) > 0, ξ ∈ [a, b] and θj(t) 6 σj(t, a) 6 t,

thus Z(θj(t)) 6 Z(σj(t, a)) and therefore(
r(t)Z ′(t)

)′
+ p(t)Z ′(t)

+

d∑
j=1

M

∫ b

a
Qj(t, ξ)

(
1−

∫ b

a
g(σj(t, ξ), ξ)dη(ξ)

)
Z(θj(t))dη(ξ) 6 0.

For t > t0, t = tk, k = 1, 2, · · · , multiplying both sides of equation (E)
by δiΦ(x), integrating with respect to x over the domain Ω, and using (H7),
we obtain

a∗ki 6
ui(x, t

+
k )

ui(x, tk)
6 aki , b∗ki 6

∂ui(x,t
+
k )

∂t
∂ui(x,tk)

∂t

6 bki .

Since zi(t) = δi
∫
Ω ui(x, tk)Φ(x)dx, we have

a∗ki 6
V (t+k )

V (tk)
6 aki , b∗ki 6

V ′(t+k )

V ′(tk)
6 bki ,

and since Z(t) = V (t) +
∫ b
a g(t, ξ)V (τ(t, ξ))dη(ξ), we obtain

a∗ki 6
Z(t+k )

Z(tk)
6 aki , b∗ki 6

Z ′(t+k )

Z ′(tk)
6 bki .

Therefore Z(t) is an eventually positive solution of (2), which contradicts
the hypothesis and completes the pf. �

Theorem 2. Assume that if there exists j0 ∈ {1, 2, · · · , d} and a function
φ(t) ∈ C1(R+, (0,+∞)) which is nondecreasing with respect to t and such
that

(14)

∫ +∞

t0

∏
t06tk<s

(
bki
a∗ki

)−1 [
φ(s)B(s)− A2(s)

4C(s)

]
ds = +∞,
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where

A(t) =
φ′(t)

φ(t)
− p(t)

r(t)
,

B(t) = M

∫ b

a
Qj0(t, ξ)

(
1−

∫ b

a
g(σj0(t, ξ), ξ)dη(ξ)

)
dη(ξ)

and E(t) =
θ′j0(t)

φ(θj0(t))r(θj0(t))
.

Then every solution of the boundary value problem (E)-(B) is oscillatory
in Ω× R+.

Proof. We prove that the inequality (2) has no eventually positive solu-
tion if the conditions of Theorem 2 hold. Suppose that Z(t) is an eventually
positive solution of inequality (2). Then there exists a number t∗ > t0 such
that Z(θj0(t)) > 0, j = 1, 2, · · · , d for t > t∗. Thus we have(

r(t)Z ′(t)
)′
+ p(t)Z ′(t)(15)

+ M

∫ b

a
Qj0(t, ξ)

(
1−

∫ b

a
g(σj0(t, ξ), ξ)dη(ξ)

)
Z(θj0(t))dη(ξ) 6 0.

Define

W (t) := φ(t)
r(t)Z ′(t)

Z(θj0(t))
,

then W (t) > 0 and

W ′(t) 6
(
φ′(t)

φ(t)
− p(t)

r(t)

)
W (t)

− Mφ(t)

∫ b

a
Qj0(t, ξ)

(
1−

∫ b

a
g(σj0(t, ξ), ξ)dη(ξ)

)
dη(ξ)

− W 2(t)

φ(θj0(t))

θ′j0(t)

r(θj0(t))
.

Thus W ′(t) 6 A(t)W (t) − B(t)φ(t) −W 2(t)C(t) and W (t+k ) 6
bki
a∗ki

W (tk).

Define

U(t) =
∏

t06tk<t

(
bki
a∗ki

)−1

W (t).

It is clear that W (t) is continuous on every interval (tk, tk+1] and since

W (t+k ) ≤
bki
a∗ki

W (tk), it follows that

U(t+k ) =
∏

t06tj6tk

(
bki
a∗ki

)−1

W (t+k ) 6
∏

t06tj<tk

(
bki
a∗ki

)−1

W (tk) = U(tk)
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and for all t > t0,

U(t−k ) =
∏

t06tj6tk−1

(
bki
a∗ki

)−1

W (t−k ) ≤
∏

t06tj<tk

(
bki
a∗ki

)−1

W (tk) = U(tk)

which implies that U(t) is continuous on [t0,+∞).

U ′(t) +
∏

t06tk<t

(
bki
a∗ki

)
U2(t)C(t) +

∏
t06tk<t

(
bki
a∗ki

)−1

B(t)φ(t)−A(t)U(t)

=
∏

t06tk<t

(
bki
a∗ki

)−1

W ′(t) +
∏

t06tk<t

(
bki
a∗ki

) ∏
t06tk<t

(
bki
a∗ki

)−2

C(t)W 2(t)

+
∏

t06tk<t

(
bki
a∗ki

)−1

B(t)φ(t)−
∏

t06tk<t

(
bki
a∗ki

)−1

A(t)W (t)

=
∏

t06tk<t

(
bki
a∗ki

)−1 [
W ′(t) +W 2(t)C(t)−W (t)A(t) +B(t)φ(t)

]
6 0,

that is

U ′(t) 6 −
∏

t06tk<t

(
bki
a∗ki

)
C(t)U2(t)(16)

+ A(t)U(t)−
∏

t06tk<t

(
bki
a∗ki

)−1

B(t)φ(t).

Taking

x(t) =

( ∏
t06tk<t

(
bki
a∗ki

)
C(t)

)1
2

U(t)

and y(t) =
A(t)

2

 ∏
t0≤tk<t

(
bki
a∗ki

)−1
1

C(t)


1
2

and using Lemma 1, we have

A(t)U(t)−
∏

t06tk<t

(
bki
a∗ki

)
C(t)U2(t) 6 A2(t)

4C(t)

∏
t06tk<t

(
bki
a∗ki

)−1

.
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Thus

U ′(t) 6 −
∏

t06tk<t

(
bki
a∗ki

)−1 [
B(t)φ(t)− A2(t)

4C(t)

]
.

Integrating both sides from t0 to t, we have

U(t) 6 U(t0)−
∫ t

t0

∏
t06tk<s

(
bki
a∗ki

)−1 [
B(s)φ(s)− A2(s)

4C(s)

]
ds.

Letting t → ∞ and using (14) we have lim
t→∞

U(t) = −∞, which contradicts

U(t) > 0. The pf of the theorem is complete. �
We assume that there exist two functions H(t, s), h(t, s) ∈ C1(D,R), in

which D = {(t, s)|t ≥ s ≥ t0 > 0}, such that

(H8) H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0,
(H9) H

′
t(t, s) ≥ 0, H

′
s(t, s) ≤ 0,

(H10) − ∂

∂s
H(t, s)ϕ(s)−A(s)H(t, s)ϕ(s) = h(t, s).

Theorem 3 ([31]). Assume that there exist functions φ(t) and ϕ(s) ∈
C1(R+, (0,+∞)) such that φ(t) is nondecreasing. If there exist two functions
H(t, s), h(t, s) ∈ C1(D,R) satisfying (H8)− (H10) and

(17) lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t06tk<s

(
bki
a∗ki

)−1

Π(s)ds = +∞,

where

Π(s) = B(s)φ(s)H(t, s)ϕ(s)− 1

4

|h(t, s)|2

C(s)H(t, s)ϕ(s)
,

then every solution of the boundary value problem (E) − (B) is oscillatory
in Ω× R+.

Choosing ϕ(s) = φ(s) ≡ 1, in Theorem 3, we establish the following
corollary.

Corollary 1. Assume that the conditions of Theorem 3 hold, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
bki
a∗ki

)−1

Γ(s)ds = ∞,

where

Γ(s) = B(s)H(t, s)− 1

4

|h(t, s)|2

C(s)H(t, s)
,

then every solution of the boundary value problem (E) − (B) is oscillatory
in Ω× R+.
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Remark 1. Using Theorem 3 and Corollary 1, we can obtain various
oscillatory criteria by different choices of the weighted function H(t, s). For
example, choosing H(t, s) = (t − s)λ−1, t ≥ s ≥ t0, in which λ > 2 is

an integer, then h(t, s) = (t − s)λ−1

(
λ− 1

t− s
−A(s)

)
, t ≥ s ≥ t0. From

Corollary 1, we have the following Kamenev type result.

Corollary 2. If there exists an integer λ > 2 such that

lim sup
t→+∞

1

(t− t0)λ−1

∫ t

t0

∏
t0≤tk<s

(
bki
a∗ki

)−1

(t− s)λ−1(18)

×

{
B(s)− 1

4C(s)

(
(λ− 1)2

(t− s)2
+A2(s)− 2A(s)

λ− 1

t− s

)}
ds = +∞,

then every solution of the boundary value problem (E) − (B) is oscillatory
in Ω× R+.

Theorem 4. Let the functions H(t, s), h(t, s), φ(s) and ϕ(s) be as de-

fined in Theorem 3. Additionally, suppose that 0 < inf
s≥t0

{
lim inf
t→+∞

H(t, s)

H(t, t0)

}
≤

+∞, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
bki
a∗ki

)−1
|h(t, s)|2

C(s)H(t, s)ϕ(s)
ds < +∞.

If there exists a function A(t) ∈ C([t0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
bki
aki

)
C(s)(A+(s))

2

ϕ(s)
ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
bki
a∗ki

)−1

×

[
B(s)H(t, s)φ(s)ϕ(s)− 1

4

|h(t, s)|2

C(s)H(t, s)ϕ(s)

]
ds ≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value
problem (E)− (B) is oscillatory in Ω× R+.

Choosing ϕ(s) = φ(s) ≡ 1, in Theorem 4, we establish the following
corollary.
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Corollary 3. Assume that the conditions of Theorem 4 hold and assume
that ϕ(s) = φ(s) ≡ 1. If

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
bki
a∗ki

)−1

×

[
B(s)H(t, s)− 1

4

|h(t, s)|2

C(s)H(t, s)

]
ds ≥ A(T ),

for every T ≥ t0, where A+(s) = max{A(s), 0}, then every solution of the
boundary value problem (E)− (B) is oscillatory in Ω× R+.

As with Corollaries 1 and 2, we can obtain the following corollary from
Corollary 3.

Corollary 4. Assume that the conditions of Theorem 4 hold, and

lim sup
t→+∞

1

(t− t0)λ−1

∫ t

t0

∏
t0≤tk<s

(
bki
a∗ki

)−1
(t− s)λ−1

C(s)

×
[
(λ− 1)2

(t− s)2
+A2(s)− 2A(s)

λ− 1

t− s

]
ds < +∞.

If there exists an integer λ > 2 and a function A(t) ∈ C([t0,+∞),R)
such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
bki
a∗ki

)
C(s)(A+(s))

2ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

(t− t0)λ−1

∫ t

T

∏
t0≤tk<s

(
bki
a∗ki

)−1

(t− s)λ−1

×

{
B(s)− 1

4C(s)

(
(λ− 1)2

(t− s)2
+A2(s)− 2A(s)

λ− 1

t− s

)}
ds ≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value
problem (E)− (B) is oscillatory in Ω× R+.



Oscillations in systems of impulsive . . . 29

4. Example

In this section we present an example to illustrate the results established
in Section 2. To this end, consider the following equation



∂

∂t

[
4
∂

∂t

(
u1(x, t) +

1

2

∫ π/2
π/4 u1(x, t− 2ξ)dξ

)]
+

(
−4

5

)
∂

∂t

(
u1(x, t) +

1

2

∫ π/2
π/4 u1(x, t− 2ξ)dξ

)
+ 6

∫ π/2
π/4 u1(x, t− 2ξ)dξ + 4

∫ π/2
π/4 u2(x, t− 2ξ)dξ = 5∆u1(x, t)

+
23

5
∆u1(x, t− 3π

2 ) +
4

5
∆u2(x, t− 3π

2 ), t ̸= tk, k = 1, 2, · · · ,

∂

∂t

[
4
∂

∂t

(
u2(x, t) +

1

2

∫ π/2
π/4 u2(x, t− 2ξ)dξ

)]
+

(
−4

5

)
∂

∂t

(
u2(x, t) +

1

2

∫ π/2
π/4 u2(x, t− 2ξ)dξ

)
+ 4

∫ π/2
π/4 u1(x, t− 2ξ)dξ + 6

∫ π/2
π/4 u2(x, t− 2ξ)dξ = 7∆u2(x, t)

+
6

5
∆u1(x, t− 3π

2 ) +
3

5
∆u2(x, t− 3π

2 ), t ̸= tk, k = 1, 2, · · · ,

ui(x, t
+
k ) =

k + 1

k
ui(x, tk),

∂

∂t
ui(x, t

+
k ) =

∂

∂t
ui(x, tk), k = 1, 2, · · · , i = 1, 2, · · · ,m

(19)

for (x, t) ∈ (0, π)× R+, with the boundary condition

(20) ui(0, t) = ui(π, t) = 0, t ̸= tk, i = 1, 2, · · · ,m.

Here Ω = (0, π), N = 1, m = 2, d = 1, l = 1, aki = a∗ki =
k + 1

k
,

bki = b∗ki = 1, i = 1, 2, r(t) = 4, g(t, ξ) =
1

2
, τ(t, ξ) = t − 2ξ, p(t) =

−4

5
, σ1(t, ξ) = t − 2ξ, η(ξ) = ξ, fij(un) = un, M = 1, q111(x, t, ξ) = 6,

q121(x, t, ξ) = 4, a1(t) = 5, a111(t) =
23

5
, a121(t) =

4

5
, q211(x, t, ξ) = 4,

q221(x, t, ξ) = 6, a2(t) = 7, a211(t) =
6

5
, a221(t) =

3

5
, ρ1(t) = t − 3π

2 ,

Q1(t, ξ) = 2, [a, b] = [π/4, π/2], λ = 3, θ1(t) = t, θ′1(t) = 1. Since t0 = 1,

tk = 2k, A(s) =
1

5
, B(s) =

8π − π2

16
, C(s) = 1

4 .Then hypotheses (H1)− (H7)
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hold, and moreover

lim
t→+∞

∫ t

t0

∏
t06tk<s

b∗ki
aki

ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds

+

∫ t3

t+2

∏
1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 + · · ·

=

∞∑
n=0

2n

n+ 1
= +∞.

Thus

lim sup
t→+∞

1

(t− 1)2

{∫ t

1

∏
1<tk<s

k + 1

k
(t− s)2

×

[
8π − π2

16
− 1

25
+

4

5(t− s)
− 4

(t− s)2

]
ds

}
= +∞.

Therefore all the conditions of the Corollary 2 are satisfied and hence every
solution of equation (19)-(20) is oscillatory in Ω × R+. In fact u1(x, t) =
sinx sin t, u2(x, t) = sinx cos t is such a solution.

Conclusion: In this paper, we have established some new oscillation
criteria for systems of impulsive nonlinear partial differential equations with
distributed deviating arguments. Through four theorems and correspond-
ing corollaries, in the main results section, we have established sufficient
conditions for the oscillation of a system of such equations, constrained by
the Dirichlet boundary condition. Through an example, we have shown the
effectiveness of Corollary 2. The present results complement and extend
those derived for problems without impulses.
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[8] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, Cambridge Uni-
versity Press, Cambridge, UK, 1988.

[9] Ladde G.S., Lakshmikantham V., Zhang B.G., Oscillation Theory of
Differential Equations with Deviating Arguments, Marcl Dekker, Inc, New
York, 1987.

[10] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive
Differential Equations, World Scientific Publishers, Singapore, 1989.

[11] Li Y.K., Oscillation of systems of hyperbolic differential equations with de-
viating arguments, Acta Math. Sinica, 40(1997), 100-105, (in Chinese).

[12] Li W.N., On the forced oscillation of solutions for systems of impulsive
parabolic differential equations with several delays, J. Comput. Appl. Math.,
181(2005), 46-57.

[13] Li W.N., Cui B.T., Oscillation for systems of neutral delay hyperbolic dif-
ferential equations, Indian J. Pure Appl. Math., 31(8)(2000), 933-948.

[14] Li W.N., Cui B.T., Debnath L., Oscillation of systems of certain neutral
delay parabolic differential equations, Journal of Applied Mathematics and
Stochastic Analysis, 16(1)(2003), 83-94.

[15] Li W.N., Debnath L., Oscillation of a systems of delay hyperbolic differen-
tial equations, Int. J. Appl. Math., 2(2000), 417-431.

[16] Li W.N., Meng F., On the forced oscillation of systems of neutral
parabolic differential equations with deviating arguments, J. Math. Anal.
Appl., 288(1)(2003), 20-27.

[17] Lin W.X., Some oscillation theorems for systems of partial equations with
deviating arguments, Journal of Biomathematics, 18(4)(2003), 400-407.

[18] Liu G., Wang C., Forced oscillation of neutral impulsive parabolic partial
differential equations with continuous distributed deviating arguments, Open
Access Library Journal, 1(2014), 1-8.

[19] Mil’Man V.D., Myshkis A.D., On the stability of motion in the presence
of impulse, Siberian Math. J., 1(2)(1960), 233-237.

[20] Philos Ch.G., A new criterion for the oscillatory and asymptotic behav-
ior of delay differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math.,
39(1981),61-64.

[21] Sadhasivam V., Kavitha J., Raja T., Forced oscillation of nonlinear im-



32 M.C. Bortolan et al. . . .

pulsive hyperbolic partial differential equation with several delays, Journal of
Applied Mathematics and Physics, 3(2015), 1491-1505.

[22] Sadhasivam V., Kavitha J., Raja T., Forced oscillation of impulsive neu-
tral hyperbolic differential equations, International Journal of Applied Engi-
neering Research, 11(1)(2016), 58-63.

[23] Sadhasivam V., Raja T., Kalaimani T., Oscillation of nonlinear impulsive
neutral functional hyperbolic equations with damping, International Journal
of Pure and Applied Mathematics, 106(8)(2016), 187-197.

[24] Sadhasivam V., Raja T., Kalaimani T., Oscillation of impulsive neutral
hyperbolic equations with continuous distributed deviating arguments, Global
Journal of Pure and Applied Mathematics, 12(3)(2016), 163-167.

[25] Tao T., Yoshida N., Oscillation of nonlinear hyperbolic equations with
distributed deviating arguments, Toyama Math. J., 28(2005), 27-40.

[26] Tao T., Yoshida N., Oscillation criteria for hyperbolic equations with
distributed deviating arguments, Indian J. Pure Appl. Math., 37(5)(2006),
291-305.

[27] Vladimirov V.S., Equations of Mathematics Physics, Nauka, Moscow, 1981.
[28] Wang P.G., Wang M., Ge W., Further results on oscillation of hy-

perbolic differential equations of neutral type, Journal of Applied Analysis,
10(1)(2004), 117-129.

[29] Wang P.G., Zhao J., Ge W., Oscillation criteria of nonlinear hyper-
bolic equations with functional arguments, Comput. Math. Appl., 40(2000),
513-521.

[30] Wu J., Theory and Applications of Partial Functional Differential Equations,
Springer-Verlag, New York, 1996.

[31] Yoshida N., Oscillation Theory of Partial Differential Equations, World Sci-
entific, Singapore, 2008.

M.C. Bortolan
Department of Mathematics

Universidade Federal de Santa Catarina
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