F A S C I C U L I M A T H E M A T I C I

S. S. Dragomir

SOME REVERSES OF HÖLDER VECTOR OPERATOR INEQUALITY

Abstract.In this paper we obtain some new reverses of Hölder vector inequality for positive operators on Hilbert spaces.
KEY words: Young's inequality, Hölder operator inequality, arithmetic mean-geometric mean inequality.
AMS Mathematics Subject Classification: 47A63, 47A30, 26D15, 26D10, 15A60.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. We use the following notation

$$
A \not \sharp_{\nu} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\nu} A^{1 / 2},
$$

the weighted geometric mean. When $\nu=\frac{1}{2}$ we write $A \sharp B$ for brevity.
In [6] the authors obtained the following result:

$$
\begin{align*}
\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle & \leq\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \tag{1}\\
& \leq \lambda^{1 / p}\left(p ; \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)\left\langle B_{\sharp_{1 / p}} A^{p} x, x\right\rangle
\end{align*}
$$

for any $x \in H$, where $0<m_{1} I \leq A \leq M_{1} I, 0<m_{2} I \leq B \leq M_{2} I, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1, I$ is the identity operator and

$$
\lambda(p ; m, M):=\left[\frac{1}{p^{1 / p} q^{1 / q}} \frac{M^{p}-m^{p}}{(M-m)^{1 / p}\left(m M^{p}-M m^{p}\right)^{1 / q}}\right]^{p}
$$

for $0<m<M$.
In particular, one can obtain from (1) the following noncommutative version of Greub-Rheinboldt inequality
(2) $\left\langle A^{2} \sharp B^{2} x, x\right\rangle \leq\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \frac{m_{1} m_{2}+M_{1} M_{2}}{2 \sqrt{m_{1} m_{2} M_{1} M_{2}}}\left\langle A^{2} \sharp B^{2} x, x\right\rangle$
for any $x \in H$.
Moreover, if A and B are replaced by $C^{1 / 2}$ and $C^{-1 / 2}$ in (2), then we get the Kantorovich inequality [20]

$$
\langle C x, x\rangle^{1 / 2}\left\langle C^{-1} x, x\right\rangle^{1 / 2} \leq \frac{m+M}{2 \sqrt{m M}}, x \in H \text { with }\|x\|=1
$$

provided $m I \leq C \leq M I$ for some $0<m<M$.
For various related inequalities, see [5]-[12] and [16]- [17].
In this paper, by making use of some recent Young's type inequalities outlined below, we establish some reverses and a refinement of Hölder's inequality for the positive operators A, B

$$
\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle \leq\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q}, x \in H
$$

where $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
The famous Young inequality for scalars says that if $a, b>0$ and $\nu \in[0,1]$, then

$$
\begin{equation*}
a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \tag{3}
\end{equation*}
$$

with equality if and only if $a=b$. The inequality (3) is also called ν-weighted arithmetic-geometric mean inequality.

We recall that Specht's ratio is defined by [21]

$$
S(h):=\left\{\begin{array}{l}
\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} \text { if } h \in(0,1) \cup(1, \infty) \tag{4}\\
1 \text { if } h=1 .
\end{array}\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$
\begin{equation*}
S\left(\left(\frac{a}{b}\right)^{r}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq S\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{5}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$.
The second inequality in (5) is due to Tominaga [22] while the first one is due to Furuichi [7].

We consider the Kantorovich's constant defined by

$$
\begin{equation*}
K(h):=\frac{(h+1)^{2}}{4 h}, \quad h>0 \tag{6}
\end{equation*}
$$

The function K is decreasing on $(0,1)$ and increasing on $[1, \infty), K(h) \geq 1$ for any $h>0$ and $K(h)=K\left(\frac{1}{h}\right)$ for any $h>0$.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

$$
\begin{equation*}
K^{r}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq K^{R}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{7}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$.
The first inequality in (7) was obtained by Zou et al. in [23] while the second by Liao et al. [19].

Kittaneh and Manasrah [14], [15] provided a refinement and an additive reverse for Young inequality as follows:

$$
\begin{equation*}
r(\sqrt{a}-\sqrt{b})^{2} \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq R(\sqrt{a}-\sqrt{b})^{2} \tag{8}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$. The case $\nu=\frac{1}{2}$ reduces (8) to an identity.

In the recent paper [1] we obtained the following reverses of Young's inequality as well:

$$
\begin{equation*}
0 \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq \nu(1-\nu)(a-b)(\ln a-\ln b) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \leq \exp \left[4 \nu(1-\nu)\left(K\left(\frac{a}{b}\right)-1\right)\right] \tag{10}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1]$.
In [2] we obtained the following inequalities that improve the corresponding results of Furuichi and Minculete from [9]

$$
\begin{gather*}
\frac{1}{2} \nu(1-\nu)(\ln a-\ln b)^{2} \min \{a, b\} \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \tag{11}\\
\leq \frac{1}{2} \nu(1-\nu)(\ln a-\ln b)^{2} \max \{a, b\}
\end{gather*}
$$

and

$$
\begin{array}{r}
\exp \left[\frac{1}{2} \nu(1-\nu)\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \tag{12}\\
\quad \leq \exp \left[\frac{1}{2} \nu(1-\nu)\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right]
\end{array}
$$

for any $a, b>0$ and $\nu \in[0,1]$.

2. Some reverse inequalities

We have the following reverse of Hölder's inequality:
Theorem 1. Let A and B be two positive invertible operators, $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $m, M>0$ such that

$$
\begin{equation*}
m^{p} B^{q} \leq A^{p} \leq M^{p} B^{q} \tag{13}
\end{equation*}
$$

Then for any $x \in H$ we have the inequality

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq S\left(\left(\frac{M}{m}\right)^{p}\right)\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle . \tag{14}
\end{equation*}
$$

Proof. Assume that $\nu \in(0,1)$. Let $a, b \in[t, T] \subset(0, \infty)$, then $\frac{t}{T} \leq$ $\frac{a}{b} \leq \frac{T}{t}$ with $\frac{t}{T}<1<\frac{T}{t}$. If $\frac{a}{b} \in\left[\frac{t}{T}, 1\right)$ then $S\left(\frac{a}{b}\right) \leq S\left(\frac{t}{T}\right)=S\left(\frac{T}{t}\right)$. If $\frac{a}{b} \in\left(1, \frac{T}{t}\right]$ then also $S\left(\frac{a}{b}\right) \leq S\left(\frac{T}{t}\right)$. Therefore for any $a, b \in[t, T]$ we have by Tominaga's inequality (5) that

$$
\begin{equation*}
(1-\nu) a+\nu b \leq S\left(\frac{T}{t}\right) a^{1-\nu} b^{\nu} \tag{15}
\end{equation*}
$$

Now, if C is an operator with $t I \leq C \leq T I$ then for $p>1$ we have $t^{p} I \leq$ $C^{p} \leq T^{p} I$. Using the functional calculus we get from (15) for $\nu=\frac{1}{p}$ that

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p} C^{p} \leq S\left(\left(\frac{T}{t}\right)^{p}\right) d^{1-\frac{1}{p}} C
$$

namely, the vector inequality,

$$
\begin{equation*}
\left(1-\frac{1}{p}\right) d+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \leq S\left(\left(\frac{T}{t}\right)^{p}\right) d^{1-\frac{1}{p}}\langle C y, y\rangle \tag{16}
\end{equation*}
$$

for any $y \in H,\|y\|=1$ and $d \in\left[t^{p}, T^{p}\right]$.
Since $d:=\left\langle C^{p} y, y\right\rangle \in\left[t^{p}, T^{p}\right]$ for any $y \in H,\|y\|=1$, hence by (16) we have

$$
\left(1-\frac{1}{p}\right)\left\langle C^{p} y, y\right\rangle+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \leq S\left(\left(\frac{T}{t}\right)^{p}\right)\left\langle C^{p} y, y\right\rangle^{1-\frac{1}{p}}\langle C y, y\rangle
$$

that is equivalent to

$$
\left\langle C^{p} y, y\right\rangle \leq S\left(\left(\frac{T}{t}\right)^{p}\right)\left\langle C^{p} y, y\right\rangle^{1-\frac{1}{p}}\langle C y, y\rangle
$$

and to

$$
\begin{equation*}
\left\langle C^{p} y, y\right\rangle \leq S^{p}\left(\left(\frac{T}{t}\right)^{p}\right)\langle C y, y\rangle^{p} \tag{17}
\end{equation*}
$$

for any $y \in H,\|y\|=1$.
If $z \in H$ with $z \neq 0$, then by taking $y=\frac{z}{\|z\|}$ in (17) we get

$$
\left\langle C^{p} z, z\right\rangle\|z\|^{2 p-2} \leq S^{p}\left(\left(\frac{T}{t}\right)^{p}\right)\langle C z, z\rangle^{p}
$$

for any $z \in H$, and by taking the power $\frac{1}{p}$ we get

$$
\begin{equation*}
\left\langle C^{p} z, z\right\rangle^{1 / p}\langle z, z\rangle^{1 / q} \leq S\left(\left(\frac{T}{t}\right)^{p}\right)\langle C z, z\rangle \tag{18}
\end{equation*}
$$

for any $z \in H$.
Now, from (13) by multiplying both sides with $B^{-\frac{q}{2}}$ we have $m^{p} I \leq$ $B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} \leq M^{p} I$ and by taking the power $\frac{1}{p}$ we get $m I \leq\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}}$ $\leq M I$.

By writing the inequality (18) for $C=\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}}, t=m, T=M$ and $z=B^{\frac{q}{2}} x$, with $x \in H$, we have

$$
\begin{aligned}
& \left\langle B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle^{1 / p}\left\langle B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle^{1 / q} \\
& \quad \leq S\left(\left(\frac{M}{m}\right)^{p}\right)\left\langle\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle
\end{aligned}
$$

namely

$$
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq S\left(\left(\frac{M}{m}\right)^{p}\right)\left\langle B^{\frac{q}{2}}\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} B^{\frac{q}{2}} x, x\right\rangle
$$

for any $x \in H$, and the inequality (14) is proved.
Remark 1. We observe, for A and B two positive invertible operators, that the condition (13) is equivalent to following condition

$$
\begin{equation*}
m I \leq\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \leq M I \tag{19}
\end{equation*}
$$

If we assume that

$$
\begin{equation*}
r B^{q} \leq A^{p} \leq R B^{q} \tag{20}
\end{equation*}
$$

for $r, R>0$, then by (14) we have the inequality

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq S\left(\frac{R}{r}\right)\left\langle B^{q} \not \sharp_{1 / p} A^{p} x, x\right\rangle \tag{21}
\end{equation*}
$$

for any $x \in H$.

Corollary 1. Let A and B be two positive invertible operators and m, $M>0$ such that

$$
\begin{equation*}
m I \leq\left(B^{-1} A^{2} B^{-1}\right)^{\frac{1}{2}} \leq M I \tag{22}
\end{equation*}
$$

Then for any $x \in H$ we have the inequality

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq S\left(\left(\frac{M}{m}\right)^{2}\right)\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{23}
\end{equation*}
$$

where

$$
A^{2} \sharp B^{2}=A\left(A^{-1} B^{2} A^{-1}\right)^{1 / 2} A=B^{2} \sharp A^{2} .
$$

Now, by taking $A=C^{1 / 2}$ and $B=C^{-1 / 2}$, then the condition (22) becomes

$$
\begin{equation*}
m I \leq C \leq M I \tag{24}
\end{equation*}
$$

and by (23) we get

$$
\langle C x, x\rangle^{1 / 2}\left\langle C^{-1} x, x\right\rangle^{1 / 2} \leq S\left(\left(\frac{M}{m}\right)^{2}\right)
$$

for any $x \in H$ with $\|x\|=1$.
Corollary 2. Assume that A and B satisfy the conditions

$$
\begin{equation*}
m_{1} I \leq A \leq M_{1} I, \quad m_{2} I \leq B \leq M_{2} I \tag{25}
\end{equation*}
$$

for some $0<m_{1}<M_{1}$ and $0<m_{2}<M_{2}$. Then we have
(26) $\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, B^{q} x\right\rangle^{1 / q} \leq S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle$,
for any $x \in H$.
In particular, we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq S\left(\left(\frac{M_{1} M_{2}}{m_{1} m_{2}}\right)^{2}\right)\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{27}
\end{equation*}
$$

for any $x \in H$.
Proof. We have from (25) that

$$
m_{1}^{p} I \leq A^{p} \leq M_{1}^{p} I
$$

Then

$$
m_{1}^{p} M_{2}^{-q} I \leq m_{1}^{p} B^{-q} \leq B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} \leq M_{1}^{p} B^{-q} \leq M_{1}^{p} m_{2}^{-q} I
$$

which implies that

$$
m_{1} M_{2}^{-\frac{q}{p}} I \leq\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \leq M_{1} m_{2}^{-\frac{q}{p}} I
$$

Now, on using the inequality (14) for $m=m_{1} M_{2}^{-\frac{q}{p}}$ and $M=M_{1} m_{2}^{-\frac{q}{p}}$, we get the desired result (26).

Using Kantorovich's constant (6) we also have:
Theorem 2. With the assumptions of Theorem 1 we have the inequality

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq K^{\max \left\{\frac{1}{p}, \frac{1}{q}\right\}}\left(\left(\frac{M}{m}\right)^{p}\right)\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle \tag{28}
\end{equation*}
$$

for any $x \in H$.
Proof. Assume that $\nu \in(0,1)$ and $R=\max \{1-\nu, \nu\}$. Let $a, b \in$ $[t, T] \subset(0, \infty)$, then $\frac{t}{T} \leq \frac{a}{b} \leq \frac{T}{t}$ with $\frac{t}{T}<1<\frac{T}{t}$. If $\frac{a}{b} \in\left[\frac{t}{T}, 1\right)$ then $K^{R}\left(\frac{a}{b}\right) \leq K^{R}\left(\frac{t}{T}\right)=K^{R}\left(\frac{T}{t}\right)$. If $\frac{a}{b} \in\left(1, \frac{T}{t}\right]$ then also $K^{R}\left(\frac{a}{b}\right) \leq K^{R}\left(\frac{T}{t}\right)$. Therefore for any $a, b \in[t, T]$ we have by inequality (7) that

$$
\begin{equation*}
(1-\nu) a+\nu b \leq K^{R}\left(\frac{T}{t}\right) a^{1-\nu} b^{\nu} \tag{29}
\end{equation*}
$$

Now, if C is an operator with $t I \leq C \leq T I$ then for $p>1$ we have $t^{p} I \leq$ $C^{p} \leq T^{p} I$. Using the functional calculus we get from (29) for $\nu=\frac{1}{p}$ that

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p} C^{p} \leq K^{\max \left\{\frac{1}{p}, \frac{1}{q}\right\}}\left(\left(\frac{T}{t}\right)^{p}\right) d^{1-\frac{1}{p}} C
$$

namely, the vector inequality,

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \leq K^{\max \left\{\frac{1}{p}, \frac{1}{q}\right\}}\left(\left(\frac{T}{t}\right)^{p}\right) d^{1-\frac{1}{p}}\langle C y, y\rangle
$$

for any $y \in H,\|y\|=1$ and $d \in\left[t^{p}, T^{p}\right]$.
Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (28). The details are omitted.

Corollary 3. With the assumptions of Corollary 1 we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq\left[K\left(\left(\frac{M}{m}\right)^{2}\right)\right]^{1 / 2}\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{30}
\end{equation*}
$$

for any $x \in H$.

We also have:
Corollary 4. With the assumptions of Corollary 2 we have

$$
\begin{align*}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, B^{q} x\right\rangle^{1 / q} \tag{31}\\
& \quad \leq K^{\max \left\{\frac{1}{p}, \frac{1}{q}\right\}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\left\langle B_{\sharp / p}^{q} A_{1} x, x\right\rangle,
\end{align*}
$$

for any $x \in H$.
In particular, we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq\left[K\left(\left(\frac{M_{1} M_{2}}{m_{1} m_{2}}\right)^{2}\right)\right]^{1 / 2}\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{32}
\end{equation*}
$$

for any $x \in H$.

3. Exponential reverses

We have:
Theorem 3. With the assumptions of Theorem 1 we have the inequality

$$
\begin{align*}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \tag{33}\\
& \quad \leq \exp \left[\frac{4}{p q}\left(K\left[\left(\frac{M}{m}\right)^{p}\right]-1\right)\right]\left\langle B_{\sharp}^{q_{\sharp}} A^{p} x, x\right\rangle
\end{align*}
$$

for any $x \in H$.
Proof. Assume that $\nu \in(0,1)$. Let $a, b \in[t, T] \subset(0, \infty)$, then by the inequality (10) we have

$$
\begin{equation*}
(1-\nu) a+\nu b \leq a^{1-\nu} b^{\nu} \exp \left[4 \nu(1-\nu)\left(K\left(\frac{T}{t}\right)-1\right)\right] \tag{34}
\end{equation*}
$$

Now, if C is an operator with $t I \leq C \leq T I$ then for $p>1$ we have $t^{p} I \leq$ $C^{p} \leq T^{p} I$. Using the functional calculus we get from (34) for $\nu=\frac{1}{p}$ that

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p} C^{p} \leq \exp \left[\frac{4}{p q}\left(K\left[\left(\frac{T}{t}\right)^{p}\right]-1\right)\right] d^{1-\frac{1}{p}} C
$$

namely, the vector inequality,

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \leq \exp \left[\frac{4}{p q}\left(K\left[\left(\frac{T}{t}\right)^{p}\right]-1\right)\right] d^{1-\frac{1}{p}}\langle C y, y\rangle
$$

for any $y \in H,\|y\|=1$ and $d \in\left[t^{p}, T^{p}\right]$.
Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (33). The details are omitted.

We have:
Corollary 5. With the assumptions of Corollary 1 we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \exp \left(K\left[\left(\frac{M}{m}\right)^{2}\right]-1\right)\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{35}
\end{equation*}
$$

for any $x \in H$.
Corollary 6. With the assumptions of Corollary 2 we have

$$
\begin{align*}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, B^{q} x\right\rangle^{1 / q} \tag{36}\\
& \quad \leq \exp \left[\frac{4}{p q}\left(K\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]-1\right)\right]\left\langle B_{\sharp_{1 / p}} A^{p} x, x\right\rangle,
\end{align*}
$$

for any $x \in H$.
In particular, we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \exp \left(K\left[\left(\frac{M_{1} M_{2}}{m_{1} m_{2}}\right)^{2}\right]-1\right)\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{37}
\end{equation*}
$$

for any $x \in H$.
Finally, we have the following reverse of Hölder's inequality as well:
Theorem 4. With the assumptions of Theorem 1 we have the inequality
(38) $\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M}{m}\right)^{p}-1\right)^{2}\right]\left\langle B_{\#_{1 / p}} A^{p} x, x\right\rangle$
for any $x \in H$.
Proof. If $a, b \in[t, T] \subset(0, \infty)$ and since

$$
0<\frac{\max \{a, b\}}{\min \{a, b\}}-1 \leq \frac{T}{t}-1
$$

hence

$$
\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2} \leq\left(\frac{T}{t}-1\right)^{2}
$$

Therefore, by (12) we get

$$
\begin{equation*}
(1-\nu) a+\nu b \leq a^{1-\nu} b^{\nu} \exp \left[\frac{1}{2} \nu(1-\nu)\left(\frac{T}{t}-1\right)^{2}\right] \tag{39}
\end{equation*}
$$

for any $a, b \in[t, T]$ and $\nu \in(0,1)$.

Now, if C is an operator with $t I \leq C \leq T I$ then for $p>1$ we have $t^{p} I \leq C^{p} \leq T^{p} I$. Using the functional calculus we get from (34) for $\nu=\frac{1}{p}$ that

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p} C^{p} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right] d^{1-\frac{1}{p}} C
$$

namely, the vector inequality,

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right] d^{1-\frac{1}{p}}\langle C y, y\rangle
$$

for any $y \in H,\|y\|=1$ and $d \in\left[t^{p}, T^{p}\right]$.
Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (39). The details are omitted.

We have:
Corollary 7. With the assumptions of Corollary 1 we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \exp \left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^{2}-1\right)^{2}\right]\left\langle A^{2} \sharp B^{2} x, x\right\rangle \tag{40}
\end{equation*}
$$

for any $x \in H$.
If $m I \leq C \leq M I$ for some m, M with $0<m<M$, then by (40) we get

$$
\begin{equation*}
\langle C x, x\rangle^{1 / 2}\left\langle C^{-1} x, x\right\rangle^{1 / 2} \leq \exp \left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^{2}-1\right)^{2}\right]\|x\|^{2} \tag{41}
\end{equation*}
$$

for any $x \in H$.
Corollary 8. With the assumptions of Corollary 2 we have

$$
\begin{aligned}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \\
& \quad \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}-1\right)^{2}\right]\left\langle B_{\sharp \sharp_{1 / p}} A^{p} x, x\right\rangle,
\end{aligned}
$$

for any $x \in H$.
In particular, we have

$$
\begin{align*}
& \left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \tag{42}\\
& \quad \leq \exp \left[\frac{1}{8}\left(\left(\frac{M_{1} M_{2}}{m_{1} m_{2}}\right)^{2}-1\right)^{2}\right]\left\langle A^{2} \sharp B^{2} x, x\right\rangle,
\end{align*}
$$

for any $x \in H$.

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

[1] Dragomir S.S., A note on Young's inequality, Preprint RGMIA Res. Rep. Coll., 18(2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
[2] Dragomir S.S., A note on new refinements and reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll., 18(2015). [http://rgmia.org/ papers/v1].
[3] Dragomir S.S., Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Inequal. \& Appl., Vol. 2010, Article ID 496821, 15 pages doi:10.1155/2010/496821Preprint RGMIA Res. Rep. Coll., 11(2008), Supliment. Art. 15. [Online http://rgmia.org /papers/v11e/RevJensenOp.pdf].
[4] Dragomir S.S., Operator Inequalities of the Jensen, Cebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, 2012.
[5] Fujii M.,, Izumino S., Nakamoto R., Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, Nihonkai Math. J., 5(1)(1994), 61-67.
[6] Fuji M., Izumino S., Nakamoto R., Seo Y., Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8(1997), 117-122.
[7] Furuichi S., Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc., 20(2012), 46-49.
[8] Furuichi S., On refined Young inequalities and reverse inequalities, J. Math. Inequal., 5(2011), 21-31.
[9] Furuichi S., Minculete N., Alternative reverse inequalities for Young's inequality, J. Math Inequal., 5(4)(2011), 595-600.
[10] Furuta T., Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications, Proc. Japan Acad. Ser. A Math. Sci., 73(3)(1997), 38-41.
[11] Furuta T., Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2(2)(1998), 137-148.
[12] Furuta T., The Hölder-McCarthy and the Young inequalities are equivalent for Hilbert space operators, Amer. Math. Monthly, 108(1)(2001), 68-69.
[13] Greub W., Rheinboldt W., On a generalization of an inequaJity of L.V. Kantorovich, Proc. Amer. Math., 10(1959), 407-415.
[14] Kittaneh F., Manasrah Y., Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(2010), 262-269.
[15] Kittaneh F., Manasrah Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59(2011), 1031-1037.
[16] Lin C.-S., Cho Y.J., On Hölder-McCarthy-type inequalities with powers, J. Korean Math. Soc., 39(3)(2002), 351-361.
[17] Lin C.-S., Cho Y.J., On Kantorovich inequality and Hölder-McCarthy inequalities, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11(4) (2004), 481-490.
[18] McCarthy C.A., c_{p}, Israel J. Math., 5(1967), 249-271.
[19] Liao W., Wu J., Zhao J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19(2)(2015), 467-479.
[20] Nakamoto R., Nakamura M., Operator mean and the Kantorovich inequality, Math. Japonica, 44(1966), 495-498.
[21] Specht W., Zer Theorie der elementaren Mittel, Math. Z., 74(1960), 91-98.
[22] Tominaga M., Specht's ratio in the Young inequality, Sci. Math. Japon., 55(2002), 583-588.
[23] Zuo G., Shi G., Fujir M., Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5(2011), 551-556.

S. S. Dragomir
Mathematics, College of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia
OR
School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au

Received on 08.10.2019 and, in revised form, on 29.10.2019.

