Nr 62

2019 DOI: 10.21008/j.0044-4413.2019.0003

S. S. DRAGOMIR

SOME REVERSES OF HÖLDER VECTOR OPERATOR INEQUALITY

ABSTRACT.In this paper we obtain some new reverses of Hölder vector inequality for positive operators on Hilbert spaces.

KEY WORDS: Young's inequality, Hölder operator inequality, arithmetic mean-geometric mean inequality.

AMS Mathematics Subject Classification: 47A63, 47A30, 26D15, 26D10, 15A60.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. We use the following notation

$$A\sharp_{\nu}B := A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^{\nu} A^{1/2},$$

the weighted geometric mean. When $\nu = \frac{1}{2}$ we write $A \sharp B$ for brevity.

In [6] the authors obtained the following result:

(1)
$$\langle B^{q}\sharp_{1/p}A^{p}x,x\rangle \leq \langle A^{p}x,x\rangle^{1/p} \langle B^{q}x,x\rangle^{1/q}$$

 $\leq \lambda^{1/p} \left(p;\frac{m_{1}}{M_{2}^{q-1}},\frac{M_{1}}{m_{2}^{q-1}}\right) \langle B^{q}\sharp_{1/p}A^{p}x,x\rangle$

for any $x \in H$, where $0 < m_1 I \le A \le M_1 I$, $0 < m_2 I \le B \le M_2 I$, p, q > 1with $\frac{1}{p} + \frac{1}{q} = 1$, I is the identity operator and

$$\lambda(p;m,M) := \left[\frac{1}{p^{1/p}q^{1/q}} \frac{M^p - m^p}{(M-m)^{1/p} (mM^p - Mm^p)^{1/q}}\right]^p$$

for 0 < m < M.

In particular, one can obtain from (1) the following noncommutative version of *Greub-Rheinboldt inequality*

(2)
$$\langle A^2 \sharp B^2 x, x \rangle \leq \langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \leq \frac{m_1 m_2 + M_1 M_2}{2\sqrt{m_1 m_2 M_1 M_2}} \langle A^2 \sharp B^2 x, x \rangle$$

for any $x \in H$.

Moreover, if A and B are replaced by $C^{1/2}$ and $C^{-1/2}$ in (2), then we get the Kantorovich inequality [20]

$$\langle Cx, x \rangle^{1/2} \langle C^{-1}x, x \rangle^{1/2} \le \frac{m+M}{2\sqrt{mM}}, \ x \in H \text{ with } \|x\| = 1,$$

provided $mI \leq C \leq MI$ for some 0 < m < M.

For various related inequalities, see [5]-[12] and [16]- [17].

In this paper, by making use of some recent Young's type inequalities outlined below, we establish some reverses and a refinement of Hölder's inequality for the positive operators A, B

$$\left\langle B^{q}\sharp_{1/p}A^{p}x,x\right\rangle \leq\left\langle A^{p}x,x\right\rangle ^{1/p}\left\langle B^{q}x,x\right\rangle ^{1/q},\ x\in H$$

where p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

The famous Young inequality for scalars says that if a, b > 0 and $\nu \in [0, 1]$, then

(3)
$$a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b$$

with equality if and only if a = b. The inequality (3) is also called ν -weighted arithmetic-geometric mean inequality.

We recall that *Specht's ratio* is defined by [21]

(4)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty) \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0, 1) and increasing on $(1, \infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

(5)
$$S\left(\left(\frac{a}{b}\right)^r\right)a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b \le S\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu},$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}.$

The second inequality in (5) is due to Tominaga [22] while the first one is due to Furuichi [7].

We consider the Kantorovich's constant defined by

(6)
$$K(h) := \frac{(h+1)^2}{4h}, \ h > 0.$$

The function K is decreasing on (0, 1) and increasing on $[1, \infty)$, $K(h) \ge 1$ for any h > 0 and $K(h) = K\left(\frac{1}{h}\right)$ for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds

(7)
$$K^r\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b \le K^R\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu}$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

The first inequality in (7) was obtained by Zou et al. in [23] while the second by Liao et al. [19].

Kittaneh and Manasrah [14], [15] provided a refinement and an additive reverse for Young inequality as follows:

(8)
$$r\left(\sqrt{a}-\sqrt{b}\right)^2 \le (1-\nu)a+\nu b-a^{1-\nu}b^{\nu} \le R\left(\sqrt{a}-\sqrt{b}\right)^2$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$. The case $\nu = \frac{1}{2}$ reduces (8) to an identity.

In the recent paper [1] we obtained the following reverses of Young's inequality as well:

(9)
$$0 \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu} \le \nu (1-\nu)(a-b)(\ln a - \ln b)$$

and

(10)
$$1 \leq \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}} \leq \exp\left[4\nu\left(1-\nu\right)\left(K\left(\frac{a}{b}\right)-1\right)\right],$$

where $a, b > 0, \nu \in [0, 1]$.

In [2] we obtained the following inequalities that improve the corresponding results of Furuichi and Minculete from [9]

(11)
$$\frac{1}{2}\nu(1-\nu)(\ln a - \ln b)^{2}\min\{a,b\} \le (1-\nu)a + \nu b - a^{1-\nu}b^{\nu}$$
$$\le \frac{1}{2}\nu(1-\nu)(\ln a - \ln b)^{2}\max\{a,b\}$$

and

(12)
$$\exp\left[\frac{1}{2}\nu(1-\nu)\left(1-\frac{\min\{a,b\}}{\max\{a,b\}}\right)^{2}\right] \le \frac{(1-\nu)a+\nu b}{a^{1-\nu}b^{\nu}}$$
$$\le \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{\max\{a,b\}}{\min\{a,b\}}-1\right)^{2}\right]$$

for any a, b > 0 and $\nu \in [0, 1]$.

2. Some reverse inequalities

We have the following reverse of Hölder's inequality:

Theorem 1. Let A and B be two positive invertible operators, p, q > 1with $\frac{1}{p} + \frac{1}{q} = 1$ and m, M > 0 such that

(13)
$$m^p B^q \le A^p \le M^p B^q.$$

Then for any $x \in H$ we have the inequality

(14)
$$\langle A^p x, x \rangle^{1/p} \langle B^q x, x \rangle^{1/q} \leq S\left(\left(\frac{M}{m}\right)^p\right) \langle B^q \sharp_{1/p} A^p x, x \rangle.$$

Proof. Assume that $\nu \in (0,1)$. Let $a, b \in [t,T] \subset (0,\infty)$, then $\frac{t}{T} \leq \frac{a}{b} \leq \frac{T}{t}$ with $\frac{t}{T} < 1 < \frac{T}{t}$. If $\frac{a}{b} \in [\frac{t}{T}, 1)$ then $S(\frac{a}{b}) \leq S(\frac{t}{T}) = S(\frac{T}{t})$. If $\frac{a}{b} \in (1, \frac{T}{t}]$ then also $S(\frac{a}{b}) \leq S(\frac{T}{t})$. Therefore for any $a, b \in [t,T]$ we have by Tominaga's inequality (5) that

(15)
$$(1-\nu)a + \nu b \le S\left(\frac{T}{t}\right)a^{1-\nu}b^{\nu}.$$

Now, if C is an operator with $tI \leq C \leq TI$ then for p > 1 we have $t^pI \leq C^p \leq T^pI$. Using the functional calculus we get from (15) for $\nu = \frac{1}{p}$ that

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}C^{p} \leq S\left(\left(\frac{T}{t}\right)^{p}\right)d^{1-\frac{1}{p}}C,$$

namely, the vector inequality,

(16)
$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}\left\langle C^{p}y,y\right\rangle \leq S\left(\left(\frac{T}{t}\right)^{p}\right)d^{1-\frac{1}{p}}\left\langle Cy,y\right\rangle,$$

for any $y \in H$, ||y|| = 1 and $d \in [t^p, T^p]$.

Since $d := \langle C^p y, y \rangle \in [t^p, T^p]$ for any $y \in H$, ||y|| = 1, hence by (16) we have

$$\left(1-\frac{1}{p}\right)\langle C^{p}y,y\rangle+\frac{1}{p}\langle C^{p}y,y\rangle\leq S\left(\left(\frac{T}{t}\right)^{p}\right)\langle C^{p}y,y\rangle^{1-\frac{1}{p}}\langle Cy,y\rangle,$$

that is equivalent to

$$\langle C^p y, y \rangle \leq S\left(\left(\frac{T}{t}\right)^p\right) \langle C^p y, y \rangle^{1-\frac{1}{p}} \langle Cy, y \rangle$$

and to

(17)
$$\langle C^p y, y \rangle \leq S^p \left(\left(\frac{T}{t} \right)^p \right) \langle Cy, y \rangle^p$$

for any $y \in H$, ||y|| = 1.

If $z \in H$ with $z \neq 0$, then by taking $y = \frac{z}{\|z\|}$ in (17) we get

$$\langle C^{p}z,z\rangle \left\|z\right\|^{2p-2} \leq S^{p}\left(\left(\frac{T}{t}\right)^{p}\right) \langle Cz,z\rangle^{p}$$

for any $z \in H$, and by taking the power $\frac{1}{p}$ we get

(18)
$$\langle C^p z, z \rangle^{1/p} \langle z, z \rangle^{1/q} \le S\left(\left(\frac{T}{t}\right)^p\right) \langle Cz, z \rangle$$

for any $z \in H$.

Now, from (13) by multiplying both sides with $B^{-\frac{q}{2}}$ we have $m^{p}I \leq B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}} \leq M^{p}I$ and by taking the power $\frac{1}{p}$ we get $mI \leq \left(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \leq MI$.

By writing the inequality (18) for $C = \left(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}}\right)^{\frac{1}{p}}$, t = m, T = Mand $z = B^{\frac{q}{2}}x$, with $x \in H$, we have

$$\left\langle B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x \right\rangle^{1/p} \left\langle B^{\frac{q}{2}} x, B^{\frac{q}{2}} x \right\rangle^{1/q}$$

$$\leq S \left(\left(\frac{M}{m} \right)^{p} \right) \left\langle \left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} \right)^{\frac{1}{p}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x \right\rangle,$$

namely

$$\left\langle A^{p}x,x\right\rangle^{1/p}\left\langle B^{q}x,x\right\rangle^{1/q} \leq S\left(\left(\frac{M}{m}\right)^{p}\right)\left\langle B^{\frac{q}{2}}\left(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}}\right)^{\frac{1}{p}}B^{\frac{q}{2}}x,x\right\rangle$$

for any $x \in H$, and the inequality (14) is proved.

Remark 1. We observe, for A and B two positive invertible operators, that the condition (13) is equivalent to following condition

(19)
$$mI \le \left(B^{-\frac{q}{2}}A^{p}B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \le MI.$$

If we assume that

(20)
$$rB^q \le A^p \le RB^q,$$

for r, R > 0, then by (14) we have the inequality

(21)
$$\langle A^p x, x \rangle^{1/p} \langle B^q x, x \rangle^{1/q} \leq S\left(\frac{R}{r}\right) \langle B^q \sharp_{1/p} A^p x, x \rangle$$

for any $x \in H$.

S. S. DRAGOMIR

Corollary 1. Let A and B be two positive invertible operators and m, M > 0 such that

(22)
$$mI \le (B^{-1}A^2B^{-1})^{\frac{1}{2}} \le MI.$$

Then for any $x \in H$ we have the inequality

(23)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \leq S\left(\left(\frac{M}{m}\right)^2\right) \langle A^2 \sharp B^2 x, x \rangle,$$

where

$$A^{2} \sharp B^{2} = A \left(A^{-1} B^{2} A^{-1} \right)^{1/2} A = B^{2} \sharp A^{2}$$

Now, by taking $A = C^{1/2}$ and $B = C^{-1/2}$, then the condition (22) becomes

$$mI \le C \le MI$$

and by (23) we get

$$\langle Cx, x \rangle^{1/2} \left\langle C^{-1}x, x \right\rangle^{1/2} \le S\left(\left(\frac{M}{m}\right)^2\right),$$

for any $x \in H$ with ||x|| = 1.

Corollary 2. Assume that A and B satisfy the conditions

$$(25) mtextbf{m}_1 I \le A \le M_1 I, mtextbf{m}_2 I \le B \le M_2 I$$

for some $0 < m_1 < M_1$ and $0 < m_2 < M_2$. Then we have

(26)
$$\langle A^p x, x \rangle^{1/p} \langle B^q x, B^q x \rangle^{1/q} \leq S\left(\left(\frac{M_1}{m_1}\right)^p \left(\frac{M_2}{m_2}\right)^q\right) \langle B^q \sharp_{1/p} A^p x, x \rangle,$$

for any $x \in H$.

In particular, we have

(27)
$$\left\langle A^2 x, x \right\rangle^{1/2} \left\langle B^2 x, x \right\rangle^{1/2} \leq S\left(\left(\frac{M_1 M_2}{m_1 m_2}\right)^2\right) \left\langle A^2 \sharp B^2 x, x \right\rangle,$$

for any $x \in H$.

Proof. We have from (25) that

$$m_1^p I \le A^p \le M_1^p I.$$

Then

$$m_1^p M_2^{-q} I \le m_1^p B^{-q} \le B^{-\frac{q}{2}} A^p B^{-\frac{q}{2}} \le M_1^p B^{-q} \le M_1^p m_2^{-q} I,$$

which implies that

$$m_1 M_2^{-\frac{q}{p}} I \le \left(B^{-\frac{q}{2}} A^p B^{-\frac{q}{2}} \right)^{\frac{1}{p}} \le M_1 m_2^{-\frac{q}{p}} I$$

Now, on using the inequality (14) for $m = m_1 M_2^{-\frac{q}{p}}$ and $M = M_1 m_2^{-\frac{q}{p}}$, we get the desired result (26).

Using Kantorovich's constant (6) we also have:

Theorem 2. With the assumptions of Theorem 1 we have the inequality

(28)
$$\langle A^p x, x \rangle^{1/p} \langle B^q x, x \rangle^{1/q} \leq K^{\max\left\{\frac{1}{p}, \frac{1}{q}\right\}} \left(\left(\frac{M}{m}\right)^p \right) \langle B^q \sharp_{1/p} A^p x, x \rangle$$

for any $x \in H$.

Proof. Assume that $\nu \in (0,1)$ and $R = \max\{1-\nu,\nu\}$. Let $a,b \in [t,T] \subset (0,\infty)$, then $\frac{t}{T} \leq \frac{a}{b} \leq \frac{T}{t}$ with $\frac{t}{T} < 1 < \frac{T}{t}$. If $\frac{a}{b} \in [\frac{t}{T},1)$ then $K^R\left(\frac{a}{b}\right) \leq K^R\left(\frac{t}{T}\right) = K^R\left(\frac{T}{t}\right)$. If $\frac{a}{b} \in (1,\frac{T}{t}]$ then also $K^R\left(\frac{a}{b}\right) \leq K^R\left(\frac{T}{t}\right)$. Therefore for any $a, b \in [t,T]$ we have by inequality (7) that

(29)
$$(1-\nu)a+\nu b \le K^R\left(\frac{T}{t}\right)a^{1-\nu}b^{\nu}.$$

Now, if C is an operator with $tI \leq C \leq TI$ then for p > 1 we have $t^pI \leq C^p \leq T^pI$. Using the functional calculus we get from (29) for $\nu = \frac{1}{p}$ that

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}C^{p} \leq K^{\max\left\{\frac{1}{p},\frac{1}{q}\right\}}\left(\left(\frac{T}{t}\right)^{p}\right)d^{1-\frac{1}{p}}C,$$

namely, the vector inequality,

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}\left\langle C^{p}y,y\right\rangle \leq K^{\max\left\{\frac{1}{p},\frac{1}{q}\right\}}\left(\left(\frac{T}{t}\right)^{p}\right)d^{1-\frac{1}{p}}\left\langle Cy,y\right\rangle,$$

for any $y \in H$, ||y|| = 1 and $d \in [t^p, T^p]$.

Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (28). The details are omitted. \blacksquare

Corollary 3. With the assumptions of Corollary 1 we have

(30)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \leq \left[K \left(\left(\frac{M}{m} \right)^2 \right) \right]^{1/2} \langle A^2 \sharp B^2 x, x \rangle,$$

for any $x \in H$.

We also have:

Corollary 4. With the assumptions of Corollary 2 we have

(31)
$$\langle A^{p}x, x \rangle^{1/p} \langle B^{q}x, B^{q}x \rangle^{1/q}$$
$$\leq K^{\max\left\{\frac{1}{p}, \frac{1}{q}\right\}} \left(\left(\frac{M_{1}}{m_{1}}\right)^{p} \left(\frac{M_{2}}{m_{2}}\right)^{q} \right) \left\langle B^{q} \sharp_{1/p} A^{p}x, x \right\rangle,$$

for any $x \in H$.

In particular, we have

(32)
$$\left\langle A^2 x, x \right\rangle^{1/2} \left\langle B^2 x, x \right\rangle^{1/2} \leq \left[K \left(\left(\frac{M_1 M_2}{m_1 m_2} \right)^2 \right) \right]^{1/2} \left\langle A^2 \sharp B^2 x, x \right\rangle,$$

for any $x \in H$.

3. Exponential reverses

We have:

Theorem 3. With the assumptions of Theorem 1 we have the inequality

(33)
$$\langle A^{p}x, x \rangle^{1/p} \langle B^{q}x, x \rangle^{1/q} \\ \leq \exp\left[\frac{4}{pq} \left(K\left[\left(\frac{M}{m}\right)^{p}\right] - 1\right)\right] \langle B^{q}\sharp_{1/p}A^{p}x, x \rangle$$

for any $x \in H$.

Proof. Assume that $\nu \in (0, 1)$. Let $a, b \in [t, T] \subset (0, \infty)$, then by the inequality (10) we have

(34)
$$(1-\nu)a + \nu b \le a^{1-\nu}b^{\nu}\exp\left[4\nu(1-\nu)\left(K\left(\frac{T}{t}\right) - 1\right)\right].$$

Now, if C is an operator with $tI \leq C \leq TI$ then for p > 1 we have $t^pI \leq C^p \leq T^pI$. Using the functional calculus we get from (34) for $\nu = \frac{1}{p}$ that

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}C^{p} \leq \exp\left[\frac{4}{pq}\left(K\left[\left(\frac{T}{t}\right)^{p}\right]-1\right)\right]d^{1-\frac{1}{p}}C,$$

namely, the vector inequality,

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}\left\langle C^{p}y,y\right\rangle \leq \exp\left[\frac{4}{pq}\left(K\left[\left(\frac{T}{t}\right)^{p}\right]-1\right)\right]d^{1-\frac{1}{p}}\left\langle Cy,y\right\rangle,$$

for any $y \in H$, ||y|| = 1 and $d \in [t^p, T^p]$.

Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (33). The details are omitted. $\hfill\blacksquare$

We have:

Corollary 5. With the assumptions of Corollary 1 we have

(35)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \le \exp\left(K\left[\left(\frac{M}{m}\right)^2\right] - 1\right) \langle A^2 \sharp B^2 x, x \rangle,$$

for any $x \in H$.

Corollary 6. With the assumptions of Corollary 2 we have

(36)
$$\langle A^{p}x,x\rangle^{1/p} \langle B^{q}x,B^{q}x\rangle^{1/q}$$

 $\leq \exp\left[\frac{4}{pq}\left(K\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]-1\right)\right] \langle B^{q}\sharp_{1/p}A^{p}x,x\rangle,$

for any $x \in H$.

In particular, we have

(37)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \le \exp\left(K\left[\left(\frac{M_1 M_2}{m_1 m_2}\right)^2\right] - 1\right) \langle A^2 \sharp B^2 x, x \rangle,$$

for any $x \in H$.

Finally, we have the following reverse of Hölder's inequality as well:

Theorem 4. With the assumptions of Theorem 1 we have the inequality

(38)
$$\langle A^p x, x \rangle^{1/p} \langle B^q x, x \rangle^{1/q} \le \exp\left[\frac{1}{2pq} \left(\left(\frac{M}{m}\right)^p - 1\right)^2\right] \langle B^q \sharp_{1/p} A^p x, x \rangle$$

for any $x \in H$.

Proof. If $a, b \in [t, T] \subset (0, \infty)$ and since

$$0 < \frac{\max\{a, b\}}{\min\{a, b\}} - 1 \le \frac{T}{t} - 1,$$

hence

$$\left(\frac{\max\left\{a,b\right\}}{\min\left\{a,b\right\}}-1\right)^2 \le \left(\frac{T}{t}-1\right)^2.$$

Therefore, by (12) we get

(39)
$$(1-\nu)a + \nu b \le a^{1-\nu}b^{\nu} \exp\left[\frac{1}{2}\nu(1-\nu)\left(\frac{T}{t}-1\right)^2\right],$$

for any $a, b \in [t, T]$ and $\nu \in (0, 1)$.

S. S. DRAGOMIR

Now, if C is an operator with $tI \leq C \leq TI$ then for p > 1 we have $t^pI \leq C^p \leq T^pI$. Using the functional calculus we get from (34) for $\nu = \frac{1}{p}$ that

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}C^{p} \leq \exp\left[\frac{1}{2pq}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]d^{1-\frac{1}{p}}C,$$

namely, the vector inequality,

$$\left(1-\frac{1}{p}\right)d+\frac{1}{p}\left\langle C^{p}y,y\right\rangle \leq \exp\left[\frac{1}{2pq}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]d^{1-\frac{1}{p}}\left\langle Cy,y\right\rangle,$$

for any $y \in H$, ||y|| = 1 and $d \in [t^p, T^p]$.

Now, by employing a similar argument to the one in the proof of Theorem 1 we deduce the desired result (39). The details are omitted. $\hfill\blacksquare$

We have:

Corollary 7. With the assumptions of Corollary 1 we have

(40)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2} \le \exp\left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^2 - 1\right)^2\right] \langle A^2 \sharp B^2 x, x \rangle$$

for any $x \in H$.

If $mI \leq C \leq MI$ for some m, M with 0 < m < M, then by (40) we get

(41)
$$\langle Cx, x \rangle^{1/2} \langle C^{-1}x, x \rangle^{1/2} \le \exp\left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^2 - 1\right)^2\right] \|x\|^2,$$

for any $x \in H$.

Corollary 8. With the assumptions of Corollary 2 we have

$$\begin{split} \langle A^{p}x,x\rangle^{1/p} \langle B^{q}x,x\rangle^{1/q} \\ &\leq \exp\left[\frac{1}{2pq}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}-1\right)^{2}\right] \left\langle B^{q}\sharp_{1/p}A^{p}x,x\right\rangle, \end{split}$$

for any $x \in H$.

In particular, we have

(42)
$$\langle A^2 x, x \rangle^{1/2} \langle B^2 x, x \rangle^{1/2}$$

 $\leq \exp\left[\frac{1}{8}\left(\left(\frac{M_1 M_2}{m_1 m_2}\right)^2 - 1\right)^2\right] \langle A^2 \sharp B^2 x, x \rangle$

for any $x \in H$.

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

References

- DRAGOMIR S.S., A note on Young's inequality, Preprint RGMIA Res. Rep. Coll., 18(2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [2] DRAGOMIR S.S., A note on new refinements and reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll., 18(2015). [http://rgmia.org/ papers/v1].
- [3] DRAGOMIR S.S., Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Inequal. & Appl., Vol. 2010, Article ID 496821, 15 pages doi:10.1155/2010/496821Preprint RGMIA Res. Rep. Coll., 11(2008), Supliment. Art. 15. [Online http://rgmia.org /papers/v11e/RevJensenOp.pdf].
- [4] DRAGOMIR S.S., Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, 2012.
- [5] FUJII M.,, IZUMINO S., NAKAMOTO R., Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, *Nihonkai Math. J.*, 5(1)(1994), 61-67.
- [6] FUJI M., IZUMINO S., NAKAMOTO R., SEO Y., Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, *Nihonkai Math.* J., 8(1997), 117-122.
- [7] FURUICHI S., Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc., 20(2012), 46-49.
- [8] FURUICHI S., On refined Young inequalities and reverse inequalities, J. Math. Inequal., 5(2011), 21-31.
- [9] FURUICHI S., MINCULETE N., Alternative reverse inequalities for Young's inequality, J. Math Inequal., 5(4)(2011), 595-600.
- [10] FURUTA T., Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications, Proc. Japan Acad. Ser. A Math. Sci., 73(3)(1997), 38-41.
- [11] FURUTA T., Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2(2)(1998), 137-148.
- [12] FURUTA T., The Hölder-McCarthy and the Young inequalities are equivalent for Hilbert space operators, Amer. Math. Monthly, 108(1)(2001), 68-69.
- [13] GREUB W., RHEINBOLDT W., On a generalization of an inequality of L.V. Kantorovich, Proc. Amer. Math., 10(1959), 407-415.
- [14] KITTANEH F., MANASRAH Y., Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361(2010), 262-269.
- [15] KITTANEH F., MANASRAH Y., Reverse Young and Heinz inequalities for matrices, *Linear Multilinear Algebra*, 59(2011), 1031-1037.
- [16] LIN C.-S., CHO Y.J., On Hölder-McCarthy-type inequalities with powers, J. Korean Math. Soc., 39(3)(2002), 351-361.
- [17] LIN C.-S., CHO Y.J., On Kantorovich inequality and Hölder-McCarthy inequalities, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11(4) (2004), 481-490.

S. S. DRAGOMIR

- [18] MCCARTHY C.A., c_p, Israel J. Math., 5(1967), 249–271.
- [19] LIAO W., WU J., ZHAO J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, *Taiwanese J. Math.*, 19(2)(2015), 467-479.
- [20] NAKAMOTO R., NAKAMURA M., Operator mean and the Kantorovich inequality, *Math. Japonica*, 44(1966), 495-498.
- [21] SPECHT W., Zer Theorie der elementaren Mittel, Math. Z., 74(1960), 91-98.
- [22] TOMINAGA M., Specht's ratio in the Young inequality, Sci. Math. Japon., 55(2002), 583-588.
- [23] ZUO G., SHI G., FUJII M., Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5(2011), 551-556.

S. S. DRAGOMIR

Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia or

School of Computer Science & Applied Mathematics University of the Witwatersrand Private Bag 3, Johannesburg 2050, South Africa *e-mail:* sever.dragomir@vu.edu.au

Received on 08.10.2019 and, in revised form, on 29.10.2019.