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1. Introduction

Throughout this paper A, B are positive invertible operators on a com-
plex Hilbert space (H, ⟨·, ·⟩) . We use the following notation

A♯νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted geometric mean. When ν = 1
2 we write A♯B for brevity.

In [6] the authors obtained the following result:⟨
Bq♯1/pA

px, x
⟩
≤ ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q(1)

≤ λ1/p

(
p;

m1

M q−1
2

,
M1

mq−1
2

)⟨
Bq♯1/pA

px, x
⟩

for any x ∈ H, where 0 < m1I ≤ A ≤ M1I, 0 < m2I ≤ B ≤ M2I, p, q > 1
with 1

p + 1
q = 1, I is the identity operator and

λ (p;m,M) :=

[
1

p1/pq1/q
Mp −mp

(M −m)1/p (mMp −Mmp)1/q

]p
for 0 < m < M .

In particular, one can obtain from (1) the following noncommutative
version of Greub-Rheinboldt inequality

(2)
⟨
A2♯B2x, x

⟩
≤
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ m1m2 +M1M2

2
√
m1m2M1M2

⟨
A2♯B2x, x

⟩
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for any x ∈ H.
Moreover, if A and B are replaced by C1/2 and C−1/2 in (2), then we get

the Kantorovich inequality [20]

⟨Cx, x⟩1/2
⟨
C−1x, x

⟩1/2 ≤ m+M

2
√
mM

, x ∈ H with ∥x∥ = 1,

provided mI ≤ C ≤ MI for some 0 < m < M .
For various related inequalities, see [5]-[12] and [16]- [17].
In this paper, by making use of some recent Young’s type inequalities

outlined below, we establish some reverses and a refinement of Hölder’s
inequality for the positive operators A, B⟨

Bq♯1/pA
px, x

⟩
≤ ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q , x ∈ H

where p, q > 1 with 1
p + 1

q = 1.
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1],

then

(3) a1−νbν ≤ (1− ν) a+ νb

with equality if and only if a = b. The inequality (3) is also called ν-weighted
arithmetic-geometric mean inequality.

We recall that Specht’s ratio is defined by [21]

(4) S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h ̸= 1.

The function is decreasing on (0, 1) and increasing on (1,∞).
The following inequality provides a refinement and a multiplicative re-

verse for Young’s inequality

(5) S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν ,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (5) is due to Tominaga [22] while the first one

is due to Furuichi [7].
We consider the Kantorovich’s constant defined by

(6) K (h) :=
(h+ 1)2

4h
, h > 0.
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The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1
for any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality
in terms of Kantorovich’s constant holds

(7) Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}.
The first inequality in (7) was obtained by Zou et al. in [23] while the

second by Liao et al. [19].
Kittaneh and Manasrah [14], [15] provided a refinement and an additive

reverse for Young inequality as follows:

(8) r
(√

a−
√
b
)2

≤ (1− ν) a+ νb− a1−νbν ≤ R
(√

a−
√
b
)2

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}. The
case ν = 1

2 reduces (8) to an identity.
In the recent paper [1] we obtained the following reverses of Young’s

inequality as well:

(9) 0 ≤ (1− ν) a+ νb− a1−νbν ≤ ν (1− ν) (a− b) (ln a− ln b)

and

(10) 1 ≤ (1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]

,

where a, b > 0, ν ∈ [0, 1].
In [2] we obtained the following inequalities that improve the correspond-

ing results of Furuichi and Minculete from [9]

1

2
ν (1− ν) (ln a− ln b)2min {a, b} ≤ (1− ν) a+ νb− a1−νbν(11)

≤ 1

2
ν (1− ν) (ln a− ln b)2max {a, b}

and

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]
≤ (1− ν) a+ νb

a1−νbν
(12)

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]

for any a, b > 0 and ν ∈ [0, 1].
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2. Some reverse inequalities

We have the following reverse of Hölder’s inequality:

Theorem 1. Let A and B be two positive invertible operators, p, q > 1
with 1

p + 1
q = 1 and m,M > 0 such that

(13) mpBq ≤ Ap ≤ MpBq.

Then for any x ∈ H we have the inequality

(14) ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q ≤ S

((
M

m

)p)⟨
Bq♯1/pA

px, x
⟩
.

Proof. Assume that ν ∈ (0, 1) . Let a, b ∈ [t, T ] ⊂ (0,∞), then t
T ≤

a
b ≤ T

t with t
T < 1 < T

t . If
a
b ∈

[
t
T , 1

)
then S

(
a
b

)
≤ S

(
t
T

)
= S

(
T
t

)
. If

a
b ∈

(
1, Tt

]
then also S

(
a
b

)
≤ S

(
T
t

)
. Therefore for any a, b ∈ [t, T ] we have

by Tominaga’s inequality (5) that

(15) (1− ν) a+ νb ≤ S

(
T

t

)
a1−νbν .

Now, if C is an operator with tI ≤ C ≤ TI then for p > 1 we have tpI ≤
Cp ≤ T pI. Using the functional calculus we get from (15) for ν = 1

p that(
1− 1

p

)
d+

1

p
Cp ≤ S

((
T

t

)p)
d
1− 1

pC,

namely, the vector inequality,

(16)

(
1− 1

p

)
d+

1

p
⟨Cpy, y⟩ ≤ S

((
T

t

)p)
d
1− 1

p ⟨Cy, y⟩ ,

for any y ∈ H, ∥y∥ = 1 and d ∈ [tp, T p].
Since d := ⟨Cpy, y⟩ ∈ [tp, T p] for any y ∈ H, ∥y∥ = 1, hence by (16) we

have(
1− 1

p

)
⟨Cpy, y⟩+ 1

p
⟨Cpy, y⟩ ≤ S

((
T

t

)p)
⟨Cpy, y⟩1−

1
p ⟨Cy, y⟩ ,

that is equivalent to

⟨Cpy, y⟩ ≤ S

((
T

t

)p)
⟨Cpy, y⟩1−

1
p ⟨Cy, y⟩

and to

(17) ⟨Cpy, y⟩ ≤ Sp

((
T

t

)p)
⟨Cy, y⟩p
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for any y ∈ H, ∥y∥ = 1.
If z ∈ H with z ̸= 0, then by taking y = z

∥z∥ in (17) we get

⟨Cpz, z⟩ ∥z∥2p−2 ≤ Sp

((
T

t

)p)
⟨Cz, z⟩p

for any z ∈ H, and by taking the power 1
p we get

(18) ⟨Cpz, z⟩1/p ⟨z, z⟩1/q ≤ S

((
T

t

)p)
⟨Cz, z⟩

for any z ∈ H.
Now, from (13) by multiplying both sides with B− q

2 we have mpI ≤

B− q
2ApB− q

2 ≤ MpI and by taking the power 1
p we getmI ≤

(
B− q

2ApB− q
2

) 1
p

≤ MI.

By writing the inequality (18) for C =
(
B− q

2ApB− q
2

) 1
p
, t = m, T = M

and z = B
q
2x, with x ∈ H, we have⟨
B− q

2ApB− q
2B

q
2x,B

q
2x
⟩1/p ⟨

B
q
2x,B

q
2x
⟩1/q

≤ S

((
M

m

)p)⟨(
B− q

2ApB− q
2

) 1
p
B

q
2x,B

q
2x

⟩
,

namely

⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q ≤ S

((
M

m

)p)⟨
B

q
2

(
B− q

2ApB− q
2

) 1
p
B

q
2x, x

⟩
for any x ∈ H, and the inequality (14) is proved. �

Remark 1. We observe, for A and B two positive invertible operators,
that the condition (13) is equivalent to following condition

(19) mI ≤
(
B− q

2ApB− q
2

) 1
p ≤ MI.

If we assume that

(20) rBq ≤ Ap ≤ RBq,

for r, R > 0, then by (14) we have the inequality

(21) ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q ≤ S

(
R

r

)⟨
Bq♯1/pA

px, x
⟩

for any x ∈ H.
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Corollary 1. Let A and B be two positive invertible operators and m,
M > 0 such that

(22) mI ≤
(
B−1A2B−1

) 1
2 ≤ MI.

Then for any x ∈ H we have the inequality

(23)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ S

((
M

m

)2
)⟨

A2♯B2x, x
⟩
,

where

A2♯B2 = A
(
A−1B2A−1

)1/2
A = B2♯A2.

Now, by taking A = C1/2 and B = C−1/2, then the condition (22) be-
comes

(24) mI ≤ C ≤ MI

and by (23) we get

⟨Cx, x⟩1/2
⟨
C−1x, x

⟩1/2 ≤ S

((
M

m

)2
)
,

for any x ∈ H with ∥x∥ = 1.

Corollary 2. Assume that A and B satisfy the conditions

(25) m1I ≤ A ≤ M1I, m2I ≤ B ≤ M2I

for some 0 < m1 < M1 and 0 < m2 < M2. Then we have

(26) ⟨Apx, x⟩1/p ⟨Bqx,Bqx⟩1/q ≤ S

((
M1

m1

)p(M2

m2

)q)⟨
Bq♯1/pA

px, x
⟩
,

for any x ∈ H.
In particular, we have

(27)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ S

((
M1M2

m1m2

)2
)⟨

A2♯B2x, x
⟩
,

for any x ∈ H.

Proof. We have from (25) that

mp
1I ≤ Ap ≤ Mp

1 I.
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Then

mp
1M

−q
2 I ≤ mp

1B
−q ≤ B− q

2ApB− q
2 ≤ Mp

1B
−q ≤ Mp

1m
−q
2 I,

which implies that

m1M
− q

p

2 I ≤
(
B− q

2ApB− q
2

) 1
p ≤ M1m

− q
p

2 I.

Now, on using the inequality (14) for m = m1M
− q

p

2 and M = M1m
− q

p

2 , we
get the desired result (26). �

Using Kantorovich’s constant (6) we also have:

Theorem 2. With the assumptions of Theorem 1 we have the inequality

(28) ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q ≤ K
max

{
1
p
, 1
q

}((
M

m

)p)⟨
Bq♯1/pA

px, x
⟩

for any x ∈ H.

Proof. Assume that ν ∈ (0, 1) and R = max {1− ν, ν}. Let a, b ∈
[t, T ] ⊂ (0,∞), then t

T ≤ a
b ≤ T

t with t
T < 1 < T

t . If a
b ∈

[
t
T , 1

)
then

KR
(
a
b

)
≤ KR

(
t
T

)
= KR

(
T
t

)
. If a

b ∈
(
1, Tt

]
then also KR

(
a
b

)
≤ KR

(
T
t

)
.

Therefore for any a, b ∈ [t, T ] we have by inequality (7) that

(29) (1− ν) a+ νb ≤ KR

(
T

t

)
a1−νbν .

Now, if C is an operator with tI ≤ C ≤ TI then for p > 1 we have tpI ≤
Cp ≤ T pI. Using the functional calculus we get from (29) for ν = 1

p that(
1− 1

p

)
d+

1

p
Cp ≤ K

max
{

1
p
, 1
q

}((
T

t

)p)
d
1− 1

pC,

namely, the vector inequality,(
1− 1

p

)
d+

1

p
⟨Cpy, y⟩ ≤ K

max
{

1
p
, 1
q

}((
T

t

)p)
d
1− 1

p ⟨Cy, y⟩ ,

for any y ∈ H, ∥y∥ = 1 and d ∈ [tp, T p].
Now, by employing a similar argument to the one in the proof of Theo-

rem 1 we deduce the desired result (28). The details are omitted. �

Corollary 3. With the assumptions of Corollary 1 we have

(30)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ [K ((M

m

)2
)]1/2 ⟨

A2♯B2x, x
⟩
,

for any x ∈ H.
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We also have:

Corollary 4. With the assumptions of Corollary 2 we have

⟨Apx, x⟩1/p ⟨Bqx,Bqx⟩1/q(31)

≤ K
max

{
1
p
, 1
q

}((
M1

m1

)p(M2

m2

)q)⟨
Bq♯1/pA

px, x
⟩
,

for any x ∈ H.
In particular, we have

(32)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ [K ((M1M2

m1m2

)2
)]1/2 ⟨

A2♯B2x, x
⟩
,

for any x ∈ H.

3. Exponential reverses

We have:

Theorem 3. With the assumptions of Theorem 1 we have the inequality

⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q(33)

≤ exp

[
4

pq

(
K

[(
M

m

)p]
− 1

)] ⟨
Bq♯1/pA

px, x
⟩

for any x ∈ H.

Proof. Assume that ν ∈ (0, 1). Let a, b ∈ [t, T ] ⊂ (0,∞), then by the
inequality (10) we have

(34) (1− ν) a+ νb ≤ a1−νbν exp

[
4ν (1− ν)

(
K

(
T

t

)
− 1

)]
.

Now, if C is an operator with tI ≤ C ≤ TI then for p > 1 we have tpI ≤
Cp ≤ T pI. Using the functional calculus we get from (34) for ν = 1

p that(
1− 1

p

)
d+

1

p
Cp ≤ exp

[
4

pq

(
K

[(
T

t

)p]
− 1

)]
d
1− 1

pC,

namely, the vector inequality,(
1− 1

p

)
d+

1

p
⟨Cpy, y⟩ ≤ exp

[
4

pq

(
K

[(
T

t

)p]
− 1

)]
d
1− 1

p ⟨Cy, y⟩ ,

for any y ∈ H, ∥y∥ = 1 and d ∈ [tp, T p].
Now, by employing a similar argument to the one in the proof of Theorem

1 we deduce the desired result (33). The details are omitted. �
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We have:

Corollary 5. With the assumptions of Corollary 1 we have

(35)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ exp

(
K

[(
M

m

)2
]
− 1

)⟨
A2♯B2x, x

⟩
,

for any x ∈ H.

Corollary 6. With the assumptions of Corollary 2 we have

⟨Apx, x⟩1/p ⟨Bqx,Bqx⟩1/q(36)

≤ exp

[
4

pq

(
K

[(
M1

m1

)p(M2

m2

)q]
− 1

)] ⟨
Bq♯1/pA

px, x
⟩
,

for any x ∈ H.
In particular, we have

(37)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ exp

(
K

[(
M1M2

m1m2

)2
]
− 1

)⟨
A2♯B2x, x

⟩
,

for any x ∈ H.

Finally, we have the following reverse of Hölder’s inequality as well:

Theorem 4. With the assumptions of Theorem 1 we have the inequality

(38) ⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q ≤ exp

[
1

2pq

((
M

m

)p

− 1

)2
] ⟨

Bq♯1/pA
px, x

⟩
for any x ∈ H.

Proof. If a, b ∈ [t, T ] ⊂ (0,∞) and since

0 <
max {a, b}
min {a, b}

− 1 ≤ T

t
− 1,

hence (
max {a, b}
min {a, b}

− 1

)2

≤
(
T

t
− 1

)2

.

Therefore, by (12) we get

(39) (1− ν) a+ νb ≤ a1−νbν exp

[
1

2
ν (1− ν)

(
T

t
− 1

)2
]
,

for any a, b ∈ [t, T ] and ν ∈ (0, 1).
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Now, if C is an operator with tI ≤ C ≤ TI then for p > 1 we have
tpI ≤ Cp ≤ T pI. Using the functional calculus we get from (34) for ν = 1

p
that (

1− 1

p

)
d+

1

p
Cp ≤ exp

[
1

2pq

((
T

t

)p

− 1

)2
]
d
1− 1

pC,

namely, the vector inequality,(
1− 1

p

)
d+

1

p
⟨Cpy, y⟩ ≤ exp

[
1

2pq

((
T

t

)p

− 1

)2
]
d
1− 1

p ⟨Cy, y⟩ ,

for any y ∈ H, ∥y∥ = 1 and d ∈ [tp, T p].
Now, by employing a similar argument to the one in the proof of Theorem

1 we deduce the desired result (39). The details are omitted. �
We have:

Corollary 7. With the assumptions of Corollary 1 we have

(40)
⟨
A2x, x

⟩1/2 ⟨
B2x, x

⟩1/2 ≤ exp

1
8

((
M

m

)2

− 1

)2
⟨A2♯B2x, x

⟩
for any x ∈ H.

If mI ≤ C ≤ MI for some m,M with 0 < m < M, then by (40) we get

(41) ⟨Cx, x⟩1/2
⟨
C−1x, x

⟩1/2 ≤ exp

1
8

((
M

m

)2

− 1

)2
 ∥x∥2 ,

for any x ∈ H.

Corollary 8. With the assumptions of Corollary 2 we have

⟨Apx, x⟩1/p ⟨Bqx, x⟩1/q

≤ exp

[
1

2pq

((
M1

m1

)p(M2

m2

)q

− 1

)2
] ⟨

Bq♯1/pA
px, x

⟩
,

for any x ∈ H.
In particular, we have⟨

A2x, x
⟩1/2 ⟨

B2x, x
⟩1/2

(42)

≤ exp

1
8

((
M1M2

m1m2

)2

− 1

)2
⟨A2♯B2x, x

⟩
,

for any x ∈ H.
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lated to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math.
J., 8(1997), 117-122.

[7] Furuichi S., Refined Young inequalities with Specht’s ratio, J. Egyptian
Math. Soc., 20(2012), 46-49.

[8] Furuichi S., On refined Young inequalities and reverse inequalities, J. Math.
Inequal., 5(2011), 21-31.

[9] Furuichi S., Minculete N., Alternative reverse inequalities for Young’s
inequality, J. Math Inequal., 5(4)(2011), 595-600.
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