# F A S C I C U L I M A T H E M A T I C I 

Vijay Gupta

## DIFFERENCES OF OPERATORS OF BASKAKOV TYPE


#### Abstract

In the present article, we study the approximation of difference of operators and find the quantitative estimates for the differences of Baskakov with Baskakov-Szász and genuine Baskakov-Durrmeyer operators. We also estimate the result for the difference of Baskakov-Szász and genuine Baskakov-Durrmeyer operators.


KEY words: difference of operators, Baskakov operators, Baskakov-Szász operators, genuine Baskakov-Durrmeyer operators, modulus of continuity.
AMS Mathematics Subject Classification: 30E10, 41A25, 41A35.

## 1. Introduction

The study on the difference of linear positive operators is an active area of research in recent years. Such problem was initiated by A. Lupaş [11]. In the starting Acu-Rasa [1] and Aral et al. [3] established certain estimates for the difference of operators. Some of the recent results on this topic can be found in [2], [6], [9, Ch. 7] and [10] etc.

Let us consider $F_{n, k}, G_{n, k}: D \rightarrow \mathbb{R}$, where $D$ is a subspace of $C[0, \infty)$, which contains polynomials of degree upto 4 , we define the operators

$$
U_{n}(f, x)=\sum_{k=0}^{\infty} v_{n, k}(x) F_{n, k}(f), \quad V_{n}(f, x)=\sum_{k=0}^{\infty} v_{n, k}(x) G_{n, k}(f)
$$

with $F_{n, k}\left(e_{0}\right)=G_{n, k}\left(e_{0}\right)=1$. Throughout the paper, we use the notations

$$
b^{F}:=F\left(e_{1}\right), \quad \mu_{r}^{F}=F\left(e_{1}-b^{F} e_{0}\right)^{r}, \quad r \in \mathbb{N}
$$

Very recently Gupta in [5] established the following result for difference of operators.

Theorem 1 ([5]). Let $f^{(s)} \in C_{B}[0, \infty), s \in\{0,1,2\}$ and $x \in[0, \infty)$, then for $n \in \mathbb{N}$, we have

$$
\left|\left(U_{n}-V_{n}\right)(f, x)\right| \leq \frac{\alpha(x)}{2}\left\|f^{\prime \prime}\right\|+\frac{(1+\alpha(x))}{2} \omega\left(f^{\prime \prime}, \delta_{1}\right)+2 \omega\left(f, \delta_{2}(x)\right)
$$

where $C_{B}[0, \infty)$ be the class of bounded continuous functions defined for $x \geq 0,\|\cdot\|=\sup _{x \in[0, \infty)}|f(x)|<\infty$,

$$
\alpha(x)=\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{2}^{F_{n, k}}+\mu_{2}^{G_{n, k}}\right)
$$

and

$$
\delta_{1}^{2}=\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{4}^{F_{n, k}}+\mu_{4}^{G_{n, k}}\right), \quad \delta_{2}^{2}=\sum_{k=0}^{\infty} v_{n, k}(x)\left(b^{F_{n, k}}-b^{G_{n, k}}\right)^{2}
$$

Corollary 1. If the operators $U_{n}$ and $V_{n}$ satisfy $F_{n, k}\left(e_{1}\right)=G_{n, k}\left(e_{1}\right)=\frac{k}{n}$, then under the assumptions of Theorem 1, we have

$$
\left|\left(U_{n}-V_{n}\right)(f, x)\right| \leq \frac{\alpha(x)}{2}\left\|f^{\prime \prime}\right\|+\frac{(1+\alpha(x))}{2} \omega\left(f^{\prime \prime}, \delta_{1}\right)
$$

The Baskakov operators are defined as

$$
\begin{align*}
V_{n}(f, x) & =\sum_{k=0}^{\infty} v_{n, k}(x) F_{n, k}(f)  \tag{1}\\
& =\sum_{k=0}^{\infty} v_{n, k}(x) f\left(\frac{k}{n}\right),
\end{align*}
$$

where the Baskakov basis function is given by

$$
v_{n, k}(x)=\binom{n+k-1}{k} \frac{x^{k}}{(1+x)^{n+k}}
$$

Remark 1. With $e_{r}(t)=t^{r}, r \in \mathbb{N}^{0}$ we consider

$$
b^{F_{n, k}}=F_{n, k}\left(e_{1}\right)=\frac{k}{n}
$$

Also, for $r \in \mathbb{N}$, we have

$$
\mu_{r}^{F_{n, k}}:=F_{n, k}\left(e_{1}-b^{F_{n, k}} e_{0}\right)^{r}=0
$$

Lemma 1. The following recurrence relation holds for moments

$$
V_{n}\left(e_{m+1}, x\right)=\frac{x(1+x)}{n} V_{n}^{\prime}\left(e_{m}, x\right)+x V_{n}\left(e_{m}, x\right)
$$

Some of the moments of Baskakov operators defined by (1) are given as:
$V_{n}\left(e_{0}, x\right)=1$
$V_{n}\left(e_{1}, x\right)=x$
$V_{n}\left(e_{2}, x\right)=\frac{x^{2}(n+1)+x}{n}$
$V_{n}\left(e_{3}, x\right)=\frac{x^{3}(n+1)(n+2)+3 x^{2}(n+1)+x}{n^{2}}$
$V_{n}\left(e_{4}, x\right)=\frac{x^{4}(n+1)(n+2)(n+3)+6 x^{3}(n+1)(n+2)+7 x^{2}(n+1)+x}{n^{3}}$.
In the present paper, which is in continuation of our previous papers [5], [7], we establish here quantitative estimates for the difference of Baskakov type operators and their variants.

## 2. Difference of operators for Baskakov type

In this section, we estimate quantitative result for the difference of Baskakov with Baskakov-Szász and genuine Baskakov-Durrmeyer operators. We also estimate the result for the difference of Baskakov-Szász and genuine Baskakov- Durrmeyer operators.

### 2.1. Baskakov and Baskakov-Szász operators

The Baskakov-Szász operators considered in [8] are defined as

$$
\begin{equation*}
M_{n}(f ; x)=\sum_{k=0}^{\infty} v_{n, k}(x) G_{n, k}(f) \tag{2}
\end{equation*}
$$

where $v_{n, k}(x)$ is defined in (1) and

$$
G_{n, k}(f)=n \int_{0}^{\infty} s_{n, k}(t) f(t) d t, \quad s_{n, k}(t)=e^{-n t} \frac{(n t)^{k}}{k!}
$$

Remark 2. By simple computation with $e_{r}(t)=t^{r}, r \in \mathbb{N}^{0}$, we have

$$
G_{n, k}\left(e_{r}\right)=n \int_{0}^{\infty} s_{n, k}(t) t^{r} d t=\frac{(k+r)!}{k!n^{r}}
$$

Thus

$$
b^{G_{n, k}}=G_{n, k}\left(e_{1}\right)=\frac{k+1}{n}
$$

and

$$
\begin{aligned}
\mu_{2}^{G_{n, k}} & :=G_{n, k}\left(e_{1}-b^{G_{n, k}} e_{0}\right)^{2} \\
& =G_{n, k}\left(e_{2}, x\right)+\left(\frac{k+1}{n}\right)^{2}-2 G_{n, k}\left(e_{1}, x\right)\left(\frac{k+1}{n}\right) \\
& =\frac{(k+2)(k+1)}{n^{2}}-\left(\frac{k+1}{n}\right)^{2} \\
& =\frac{k+1}{n^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{4}^{G_{n, k}}:= & G_{n, k}\left(e_{1}-b^{G_{n, k}} e_{0}\right)^{4} \\
= & G_{n, k}\left(e_{4}, x\right)-4 G_{n, k}\left(e_{3}, x\right)\left(\frac{k+1}{n}\right)+6 G_{n, k}\left(e_{2}, x\right)\left(\frac{k+1}{n}\right)^{2} \\
& -4 G_{n, k}\left(e_{1}, x\right)\left(\frac{k+1}{n}\right)^{3}+G_{n, k}\left(e_{0}, x\right)\left(\frac{k+1}{n}\right)^{4} \\
= & \frac{(k+1)(k+2)(k+3)(k+4)}{n^{4}} \\
& -4 \frac{(k+1)(k+2)(k+3)}{n^{3}}\left(\frac{k+1}{n}\right)+6 \frac{(k+1)(k+2)}{n^{2}}\left(\frac{k+1}{n}\right)^{2} \\
& -4 \frac{(k+1)}{n}\left(\frac{k+1}{n}\right)^{3}+\left(\frac{k+1}{n}\right)^{4} \\
= & \frac{3\left(k^{2}+4 k+3\right)}{n^{4}}
\end{aligned}
$$

Below, we present the application of Theorem 1, i.e. exact estimate for difference of Baskakov-Szász- and Baskakov operators.

Theorem 2. Let $f^{(s)} \in C_{B}[0, \infty), s \in\{0,1,2\}$ and $x \in[0, \infty)$, then for $n \in \mathbb{N}$, we have

$$
\left|\left(M_{n}-V_{n}\right)(f, x)\right| \leq \frac{\alpha(x)}{2}\left\|f^{\prime \prime}\right\|+\frac{(1+\alpha(x))}{2} \omega\left(f^{\prime \prime}, \delta_{1}\right)+2 \omega\left(f, \delta_{2}(x)\right)
$$

where

$$
\alpha(x)=\frac{n x+1}{n^{2}}, \quad \delta_{1}^{2}(x)=\frac{3 x^{2} n(n+1)+15 n x+9}{n^{4}}, \quad \delta_{2}^{2}(x)=\frac{1}{n^{2}}
$$

Proof. Following Theorem 1, and using Remark 1, Remark 2 and Lemma 1, we have the following estimates

$$
\begin{aligned}
\alpha(x) & :=\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{2}^{F_{n, k}}+\mu_{2}^{G_{n, k}}\right)=\sum_{k=0}^{\infty} v_{n, k}(x) \frac{k+1}{n^{2}} \\
& =\frac{1}{n} V_{n}\left(e_{1}, x\right)+\frac{1}{n^{2}}=\frac{n x+1}{n^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
\delta_{1}^{2}(x) & =\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{4}^{F_{n, k}}+\mu_{4}^{G_{n, k}}\right) \\
& =\sum_{k=0}^{\infty} v_{n, k}(x) \mu_{4}^{G_{n, k}} \\
& =\frac{3 x^{2} n(n+1)+15 n x+9}{n^{4}} \\
\delta_{2}^{2}(x) & =\sum_{k=0}^{\infty} v_{n, k}(x)\left(b^{F_{n, k}}-b^{G_{n, k}}\right)^{2} \\
& =\sum_{k=0}^{\infty} v_{n, k}(x)\left[\frac{k}{n}-\frac{k+1}{n}\right]^{2}=\frac{1}{n^{2}} .
\end{aligned}
$$

The theorem follows by collecting the above values.

### 2.2. Baskakov and Genuine Baskakov-Durrmeyer operators

The genuine Baskakov operators operators (see [4]) are defined as

$$
\begin{equation*}
P_{n}(f ; x)=\sum_{k=0}^{\infty} v_{n, k}(x) H_{n, k}(f) \tag{3}
\end{equation*}
$$

where and

$$
H_{n, k}(f)=\frac{1}{B(k, n+1)} \int_{0}^{\infty} \frac{t^{k-1}}{(1+t)^{n+k+1}} f(t) d t
$$

$1 \leq k<\infty, H_{n, 0}(f)=f(0)$.
Remark 3. By simple computation with $e_{r}(t)=t^{r}, r \in \mathbb{N}^{0}$, we have

$$
H_{n, k}\left(e_{r}\right)=\frac{(k+r-1)!(n-r)!}{(k-1)!n!}
$$

Thus

$$
\begin{gathered}
b^{H_{n, k}}=H_{n, k}\left(e_{1}\right)=\frac{k}{n} \\
\mu_{2}^{H_{n, k}}:=H_{n, k}\left(e_{1}-b^{H_{n, k}} e_{0}\right)^{2} \\
=H_{n, k}\left(e_{2}\right)-2 H_{n, k}\left(e_{1}\right)\left(\frac{k}{n}\right)+H_{n, k}\left(e_{0}\right)\left(\frac{k}{n}\right)^{2} \\
=\frac{k^{2}+k}{n(n-1)}-\frac{k^{2}}{n^{2}}=\frac{k^{2}+n k}{n^{2}(n-1)}
\end{gathered}
$$

and

$$
\begin{aligned}
\mu_{4}^{H_{n, k}}:= & H_{n, k}\left(e_{1}-b^{H_{n, k}} e_{0}\right)^{4} \\
= & H_{n, k}\left(e_{4}\right)-4 H_{n, k}\left(e_{3}\right)\left(\frac{k}{n}\right)+6 H_{n, k}\left(e_{2}\right)\left(\frac{k}{n}\right)^{2} \\
& -4 H_{n, k}\left(e_{1}\right)\left(\frac{k}{n}\right)^{3}+H_{n, k}\left(e_{0}\right)\left(\frac{k}{n}\right)^{4} \\
= & \frac{(k+3)(k+2)(k+1) k}{n(n-1)(n-2)(n-3)}-4 \frac{(k+2)(k+1) k}{n(n-1)(n-2)}\left(\frac{k}{n}\right) \\
& +6 \frac{(k+1) k}{n(n-1)}\left(\frac{k}{n}\right)^{2}-4 \frac{k}{n}\left(\frac{k}{n}\right)^{3}+\left(\frac{k}{n}\right)^{4} \\
= & \frac{3}{n^{4}(n-1)(n-2)(n-3)} \\
& \times\left[k^{4}(n+6)+2 n k^{3}(n+6)+n^{2} k^{2}(n+8)+2 n^{3} k\right] .
\end{aligned}
$$

We present below the application of Theorem 1, i.e. exact estimate for difference of genuine Baskakov-Durrmeyer and Baskakov operators.

Theorem 3. Let $f^{(s)} \in C_{B}[0, \infty), s \in\{0,1,2\}$ and $x \in[0, \infty)$, then for $n \in \mathbb{N}$, we have

$$
\left|\left(P_{n}-V_{n}\right)(f, x)\right|=\frac{\alpha(x)}{2}\left\|f^{\prime \prime}\right\|+\frac{(1+\alpha(x))}{2} \omega\left(f^{\prime \prime}, \delta_{1}\right),
$$

where

$$
\alpha(x)=\frac{(n+1) x(1+x)}{n(n-1)}
$$

and

$$
\begin{aligned}
\delta_{1}^{2}:= & \frac{3(n+1) x(x+1)}{n^{3}(n-1)(n-2)(n-3)}\left[n^{3} x(x+1)\right. \\
& \left.+n^{2}\left(11 x^{2}+11 x+3\right)+n\left(36 x^{2}+36 x+7\right)+6\left(6 x^{2}+6 x+1\right)\right]
\end{aligned}
$$

Proof. Using Remark 1, Remark 3 and Lemma 1, we have the following estimates

$$
\alpha(x):=\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{2}^{F_{n, k}}+\mu_{2}^{H_{n, k}}\right)=\frac{(n+1) x(1+x)}{n(n-1)} .
$$

$$
\begin{aligned}
\delta_{1}^{2}(x)= & \sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{4}^{F_{n, k}}+\mu_{4}^{H_{n, k}}\right) \\
= & \sum_{k=0}^{\infty} v_{n, k}(x) \mu_{4}^{H_{n, k}} \\
= & \frac{3(n+1) x(x+1)}{n^{3}(n-1)(n-2)(n-3)}\left[n^{3} x(x+1)+n^{2}\left(11 x^{2}+11 x+3\right)\right. \\
& \left.+n\left(36 x^{2}+36 x+7\right)+6\left(6 x^{2}+6 x+1\right)\right] .
\end{aligned}
$$

Combining these values, the result follows from Corollary 1.

### 2.3. Baskaov-Szász and Genuine Baskakov-Durrmeyer operators

We present below the application of Theorem 1, i.e. exact estimate for difference of Baskakov-Szász and genuine Baskakov-Durrmeyer operators.

Theorem 4. Let $f^{(s)} \in C_{B}[0, \infty), s \in\{0,1,2\}$ and $x \in[0, \infty)$, then for $n \in \mathbb{N}$, we have

$$
\left|\left(M_{n}-P_{n}\right)(f, x)\right|=\frac{\alpha(x)}{2}\left\|f^{\prime \prime}\right\|+\frac{(1+\alpha(x))}{2} \omega\left(f^{\prime \prime}, \delta_{1}\right)+2 \omega\left(f, \delta_{2}(x)\right),
$$

where

$$
\alpha(x)=\frac{n x+1}{n^{2}}+\frac{(n+1) x(1+x)}{n(n-1)}, \quad \delta_{2}^{2}(x)=\frac{1}{n^{2}}
$$

and

$$
\begin{aligned}
\delta_{1}^{2}(x)= & \frac{3 x^{2} n(n+1)+15 n x+9 n}{n^{4}} \\
& +\frac{3(n+1) x(x+1)}{n^{3}(n-1)(n-2)(n-3)}\left[n^{3} x(x+1)+n^{2}\left(11 x^{2}+11 x+3\right)\right. \\
& \left.+n\left(36 x^{2}+36 x+7\right)+6\left(6 x^{2}+6 x+1\right)\right] .
\end{aligned}
$$

Proof. Following Theorem 1, using Remark 2, Remark 3 and Lemma 1, we have

$$
\begin{aligned}
\alpha(x) & :=\sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{2}^{G_{n, k}}+\mu_{2}^{H_{n, k}}\right) \\
& =\frac{n x+1}{n^{2}}+\frac{(n+1) x(1+x)}{n(n-1)} .
\end{aligned}
$$

$$
\begin{aligned}
\delta_{1}^{2}(x)= & \sum_{k=0}^{\infty} v_{n, k}(x)\left(\mu_{4}^{G_{n, k}}+\mu_{4}^{H_{n, k}}\right) \\
= & \frac{3 x^{2} n(n+1)+15 n x+9 n}{n^{4}} \\
& +\frac{3(n+1) x(x+1)}{n^{3}(n-1)(n-2)(n-3)}\left[n^{3} x(x+1)+n^{2}\left(11 x^{2}+11 x+3\right)\right. \\
& \left.+n\left(36 x^{2}+36 x+7\right)+6\left(6 x^{2}+6 x+1\right)\right]
\end{aligned}
$$

and by using above identities, we have

$$
\delta_{2}^{2}(x)=\sum_{k=0}^{\infty} v_{n, k}(x)\left(b^{G_{n, k}}-b^{H_{n, k}}\right)^{2}=\frac{1}{n^{2}}
$$

Combining the above estimates, the result follows from Theorem 1.
Remark 4. In the present paper, we considered $v_{n, k}(x)$ as Baskakov basis function, one may consider any other basis function analogously.

Acknowledgements. Author is thankful to the referee for valuable comments leading to better presentation of the paper.

## References

[1] Acu A.M., Rasa I., New estimates for the differences of positive linear operators, Numer. Algorithms, 73(2016), 775-789.
[2] Acu A.M., Rasa I., Estimates for the differences of positive linear operators and their derivatives, arXiv preprint arXiv:1810.08839, .
[3] Aral A., Inoan D., Rasa I., On differences of linear positive operators, Anal. Math. Phys., 9(3)(2019), 1227-1239. https://doi.org/10.1007/s1332.
[4] Finta Z., On converse approximation theorems, J. Math. Anal. Appl., 312(1) (2005), 159-180.
[5] Gupta V., On difference of operators with applications to Szász type operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113(3)(2019), 2059-2071. https://doi.org/ 10.1007/s13398-018-0605-x.
[6] Gupta V., General estimates for the difference of operators, Comput. Math. Methods, 1(2)(2019), e10118. https://doi.org/10.1002/cmm4.1018.
[7] Gupta V., Differences of operators of Lupas type, Constructive Math. Analysis, 1(1)(2018), 9-14.
[8] Gupta V., Srivastava G.S., Simultaneous approximation by BaskakovSzász type operators, Bulletin Math. de la Soc. des Sci. Math. de Roumanie, Nouvelle Série, 37(85)(3/4)(1993), 73-85.
[9] Gupta V., Rassias T.M., Agrawal P.N., Acu A.M., Recent Advances in Constructive Approximation Theory, Springer Optimization and Its Applications, 138, (2018), Springer, Cham.
[10] Gupta V., Tachev G., A note on the differences of two positive linear operators, Constructive Math. Analysis, 2(1)(2019), 1-7.
[11] Lupaş A., The approximation by means of some linear positive operators. In: Approximation Theory (M.W. Muller others, eds), Akademie-Verlag, Berlin, 1995, pp. 201-227.

Vijay Gupta<br>Department of Mathematics<br>Netaji Subhas University of Technology<br>Sector 3 Dwarka, New Delhi-110078, India<br>e-mail: vijaygupta2001@hotmail.com

Received on 16.10.2018 and, in revised form, on 19.07.2019.

