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DIFFERENCES OF OPERATORS OF BASKAKOV TYPE

Abstract. In the present article, we study the approxima-
tion of difference of operators and find the quantitative es-
timates for the differences of Baskakov with Baskakov-Szász
and genuine Baskakov-Durrmeyer operators. We also estimate
the result for the difference of Baskakov-Szász and genuine
Baskakov-Durrmeyer operators.
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1. Introduction

The study on the difference of linear positive operators is an active area
of research in recent years. Such problem was initiated by A. Lupaş [11]. In
the starting Acu-Rasa [1] and Aral et al. [3] established certain estimates
for the difference of operators. Some of the recent results on this topic can
be found in [2], [6], [9, Ch. 7] and [10] etc.

Let us consider Fn,k, Gn,k : D → R, where D is a subspace of C[0,∞),
which contains polynomials of degree upto 4, we define the operators

Un(f, x) =
∞∑
k=0

vn,k(x)Fn,k(f), Vn(f, x) =
∞∑
k=0

vn,k(x)Gn,k(f).

with Fn,k(e0) = Gn,k(e0) = 1. Throughout the paper, we use the notations

bF := F (e1), µF
r = F (e1 − bF e0)

r, r ∈ N

Very recently Gupta in [5] established the following result for difference of
operators.

Theorem 1 ([5]). Let f (s) ∈ CB[0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then
for n ∈ N, we have

|(Un − Vn)(f, x)| ≤
α(x)

2
||f ′′||+ (1 + α(x))

2
ω(f ′′, δ1) + 2ω(f, δ2(x)),
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where CB[0,∞) be the class of bounded continuous functions defined for
x ≥ 0, || · || = sup

x∈[0,∞)
|f(x)| < ∞,

α(x) =
∞∑
k=0

vn,k(x)(µ
Fn,k

2 + µ
Gn,k

2 )

and

δ21 =

∞∑
k=0

vn,k(x)(µ
Fn,k

4 + µ
Gn,k

4 ), δ22 =

∞∑
k=0

vn,k(x)(b
Fn,k − bGn,k)2.

Corollary 1. If the operators Un and Vn satisfy Fn,k(e1) = Gn,k(e1) =
k
n ,

then under the assumptions of Theorem 1, we have

|(Un − Vn)(f, x)| ≤
α(x)

2
||f ′′||+ (1 + α(x))

2
ω(f ′′, δ1).

The Baskakov operators are defined as

Vn(f, x) =

∞∑
k=0

vn,k(x)Fn,k(f)(1)

=
∞∑
k=0

vn,k(x)f

(
k

n

)
,

where the Baskakov basis function is given by

vn,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
.

Remark 1. With er(t) = tr, r ∈ N0 we consider

bFn,k = Fn,k(e1) =
k

n
.

Also, for r ∈ N, we have

µ
Fn,k
r := Fn,k(e1 − bFn,ke0)

r = 0.

Lemma 1. The following recurrence relation holds for moments

Vn(em+1, x) =
x(1 + x)

n
V ′
n(em, x) + xVn(em, x).
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Some of the moments of Baskakov operators defined by (1) are given as:

Vn(e0, x) = 1

Vn(e1, x) = x

Vn(e2, x) =
x2(n+ 1) + x

n

Vn(e3, x) =
x3(n+ 1)(n+ 2) + 3x2(n+ 1) + x

n2

Vn(e4, x) =
x4(n+ 1)(n+ 2)(n+ 3) + 6x3(n+ 1)(n+ 2) + 7x2(n+ 1) + x

n3
.

In the present paper, which is in continuation of our previous papers [5],
[7], we establish here quantitative estimates for the difference of Baskakov
type operators and their variants.

2. Difference of operators for Baskakov type

In this section, we estimate quantitative result for the difference of Baska-
kov with Baskakov-Szász and genuine Baskakov-Durrmeyer operators. We
also estimate the result for the difference of Baskakov-Szász and genuine
Baskakov- Durrmeyer operators.

2.1. Baskakov and Baskakov-Szász operators

The Baskakov-Szász operators considered in [8] are defined as

(2) Mn(f ;x) =

∞∑
k=0

vn,k(x)Gn,k(f),

where vn,k(x) is defined in (1) and

Gn,k(f) = n

∫ ∞

0
sn,k(t)f(t)dt, sn,k(t) = e−nt (nt)

k

k!
.

Remark 2. By simple computation with er(t) = tr, r ∈ N0, we have

Gn,k(er) = n

∫ ∞

0
sn,k(t)t

rdt =
(k + r)!

k!nr
.

Thus

bGn,k = Gn,k(e1) =
k + 1

n
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and

µ
Gn,k

2 := Gn,k(e1 − bGn,ke0)
2

= Gn,k(e2, x) +

(
k + 1

n

)2

− 2Gn,k(e1, x)

(
k + 1

n

)
=

(k + 2)(k + 1)

n2
−
(
k + 1

n

)2

=
k + 1

n2

and

µ
Gn,k

4 := Gn,k(e1 − bGn,ke0)
4

= Gn,k(e4, x)− 4Gn,k(e3, x)

(
k + 1

n

)
+ 6Gn,k(e2, x)

(
k + 1

n

)2

− 4Gn,k(e1, x)

(
k + 1

n

)3

+Gn,k(e0, x)

(
k + 1

n

)4

=
(k + 1)(k + 2)(k + 3)(k + 4)

n4

− 4
(k + 1)(k + 2)(k + 3)

n3

(
k + 1

n

)
+ 6

(k + 1)(k + 2)

n2

(
k + 1

n

)2

− 4
(k + 1)

n

(
k + 1

n

)3

+

(
k + 1

n

)4

=
3(k2 + 4k + 3)

n4
.

Below, we present the application of Theorem 1, i.e. exact estimate for
difference of Baskakov-Szász- and Baskakov operators.

Theorem 2. Let f (s) ∈ CB[0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for
n ∈ N, we have

|(Mn − Vn)(f, x)| ≤
α(x)

2
||f ′′||+ (1 + α(x))

2
ω(f ′′, δ1) + 2ω(f, δ2(x)),

where

α(x) =
nx+ 1

n2
, δ21(x) =

3x2n(n+ 1) + 15nx+ 9

n4
, δ22(x) =

1

n2
.

Proof. Following Theorem 1, and using Remark 1, Remark 2 and
Lemma 1, we have the following estimates

α(x) :=
∞∑
k=0

vn,k(x)(µ
Fn,k

2 + µ
Gn,k

2 ) =
∞∑
k=0

vn,k(x)
k + 1

n2

=
1

n
Vn(e1, x) +

1

n2
=

nx+ 1

n2
.
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δ21(x) =

∞∑
k=0

vn,k(x)(µ
Fn,k

4 + µ
Gn,k

4 )

=

∞∑
k=0

vn,k(x)µ
Gn,k

4

=
3x2n(n+ 1) + 15nx+ 9

n4
.

δ22(x) =
∞∑
k=0

vn,k(x)(b
Fn,k − bGn,k)2

=

∞∑
k=0

vn,k(x)

[
k

n
− k + 1

n

]2
=

1

n2
.

The theorem follows by collecting the above values. �

2.2. Baskakov and Genuine Baskakov-Durrmeyer operators

The genuine Baskakov operators operators (see [4]) are defined as

(3) Pn(f ;x) =

∞∑
k=0

vn,k(x)Hn,k(f),

where and

Hn,k(f) =
1

B(k, n+ 1)

∫ ∞

0

tk−1

(1 + t)n+k+1
f(t)dt,

1 ≤ k < ∞, Hn,0(f) = f(0).

Remark 3. By simple computation with er(t) = tr, r ∈ N0, we have

Hn,k(er) =
(k + r − 1)!(n− r)!

(k − 1)!n!
.

Thus

bHn,k = Hn,k(e1) =
k

n
.

µ
Hn,k

2 := Hn,k(e1 − bHn,ke0)
2

= Hn,k(e2)− 2Hn,k(e1)

(
k

n

)
+Hn,k(e0)

(
k

n

)2

=
k2 + k

n(n− 1)
− k2

n2
=

k2 + nk

n2(n− 1)
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and

µ
Hn,k

4 := Hn,k(e1 − bHn,ke0)
4

= Hn,k(e4)− 4Hn,k(e3)

(
k

n

)
+ 6Hn,k(e2)

(
k

n

)2

− 4Hn,k(e1)

(
k

n

)3

+Hn,k(e0)

(
k

n

)4

=
(k + 3)(k + 2)(k + 1)k

n(n− 1)(n− 2)(n− 3)
− 4

(k + 2)(k + 1)k

n(n− 1)(n− 2)

(
k

n

)
+ 6

(k + 1)k

n(n− 1)

(
k

n

)2

− 4
k

n

(
k

n

)3

+

(
k

n

)4

=
3

n4(n− 1)(n− 2)(n− 3)

×
[
k4(n+ 6) + 2nk3(n+ 6) + n2k2(n+ 8) + 2n3k

]
.

We present below the application of Theorem 1, i.e. exact estimate for
difference of genuine Baskakov-Durrmeyer and Baskakov operators.

Theorem 3. Let f (s) ∈ CB[0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for
n ∈ N, we have

|(Pn − Vn)(f, x)| =
α(x)

2
||f ′′||+ (1 + α(x))

2
ω(f ′′, δ1),

where

α(x) =
(n+ 1)x(1 + x)

n(n− 1)

and

δ21 :=
3(n+ 1)x(x+ 1)

n3(n− 1)(n− 2)(n− 3)

[
n3x(x+ 1)

+ n2(11x2 + 11x+ 3) + n(36x2 + 36x+ 7) + 6(6x2 + 6x+ 1)
]
.

Proof. Using Remark 1, Remark 3 and Lemma 1, we have the following
estimates

α(x) :=
∞∑
k=0

vn,k(x)(µ
Fn,k

2 + µ
Hn,k

2 ) =
(n+ 1)x(1 + x)

n(n− 1)
.
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δ21(x) =

∞∑
k=0

vn,k(x)(µ
Fn,k

4 + µ
Hn,k

4 )

=

∞∑
k=0

vn,k(x)µ
Hn,k

4

=
3(n+ 1)x(x+ 1)

n3(n− 1)(n− 2)(n− 3)

[
n3x(x+ 1) + n2(11x2 + 11x+ 3)

+ n(36x2 + 36x+ 7) + 6(6x2 + 6x+ 1)
]
.

Combining these values, the result follows from Corollary 1. �

2.3. Baskaov-Szász and Genuine Baskakov-Durrmeyer
operators

We present below the application of Theorem 1, i.e. exact estimate for
difference of Baskakov-Szász and genuine Baskakov-Durrmeyer operators.

Theorem 4. Let f (s) ∈ CB[0,∞), s ∈ {0, 1, 2} and x ∈ [0,∞), then for
n ∈ N, we have

|(Mn − Pn)(f, x)| =
α(x)

2
||f ′′||+ (1 + α(x))

2
ω(f ′′, δ1) + 2ω(f, δ2(x)),

where

α(x) =
nx+ 1

n2
+

(n+ 1)x(1 + x)

n(n− 1)
, δ22(x) =

1

n2

and

δ21(x) =
3x2n(n+ 1) + 15nx+ 9n

n4

+
3(n+ 1)x(x+ 1)

n3(n− 1)(n− 2)(n− 3)

[
n3x(x+ 1) + n2(11x2 + 11x+ 3)

+ n(36x2 + 36x+ 7) + 6(6x2 + 6x+ 1)
]
.

Proof. Following Theorem 1, using Remark 2, Remark 3 and Lemma 1,
we have

α(x) :=
∞∑
k=0

vn,k(x)(µ
Gn,k

2 + µ
Hn,k

2 )

=
nx+ 1

n2
+

(n+ 1)x(1 + x)

n(n− 1)
.
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δ21(x) =

∞∑
k=0

vn,k(x)(µ
Gn,k

4 + µ
Hn,k

4 )

=
3x2n(n+ 1) + 15nx+ 9n

n4

+
3(n+ 1)x(x+ 1)

n3(n− 1)(n− 2)(n− 3)

[
n3x(x+ 1) + n2(11x2 + 11x+ 3)

+ n(36x2 + 36x+ 7) + 6(6x2 + 6x+ 1)
]
.

and by using above identities, we have

δ22(x) =

∞∑
k=0

vn,k(x)(b
Gn,k − bHn,k)2 =

1

n2
.

Combining the above estimates, the result follows from Theorem 1. �

Remark 4. In the present paper, we considered vn,k(x) as Baskakov
basis function, one may consider any other basis function analogously.

Acknowledgements. Author is thankful to the referee for valuable
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