F A S C I C U L I M A T H E M A T I C I

A. Kashuri, R. Liko and S. Iqbal

FRACTIONAL INTEGRAL INEQUALITIES FOR COMPOSITE AND k-COMPOSITE PREINVEX FUNCTIONS

Abstract

In this article we found some Ostrowski inequalities for composite and \mathbf{k}-composite preinvex functions via fractional integrals. Also some special cases will be given. KEY words: Ostrowski inequality, Minkowski inequality, Hölder inequality, power mean inequality, Riemann-Liouville integrals.

AMS Mathematics Subject Classification: 26A33, 26A51, 26D15, 26D10, 26D07.

1. Introduction

Theorem 1. [33]Let $f: I \longrightarrow \mathbb{R}$ be a differentiable mapping on I° and $a_{1}, a_{2} \in I^{\circ}$ with $a_{1}<a_{2}$. If $\left|f^{\prime}(x)\right| \leq L, \forall x \in\left[a_{1}, a_{2}\right]$, then

$$
\begin{align*}
& \left|f(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}} f(t) d t\right| \leq L\left(a_{2}-a_{1}\right)\left[\frac{1}{4}+\frac{\left(x-\frac{a_{1}+a_{2}}{2}\right)^{2}}{\left(a_{2}-a_{1}\right)^{2}}\right] \tag{1}\\
& \forall x \in\left[a_{1}, a_{2}\right]
\end{align*}
$$

For other recent results concerning Ostrowski type inequalities, see [2]-[4], [14]-[18], [23], [26], [27], [31]-[34], [36]-[38], [41], [43], [45], [46], [48], [50]. Ostrowski inequality is playing a key role in all the fields of mathematics, see [11]-[13]. In recent years, a number of integral inequalities are introduced by many authors involving various fractional operators like, Katugampola, conformable fractional integral operators etc., see [1], [6]-[10], [28]-[30], [40], [42], [44]. Ostrowski inequality provides the bounds for many numerical quadrature rules, see [20],[21]. In recent decades Ostrowski, Hermite-Hadamard and Simpson type inequalities are studied in fractional calculus and generalized invexity analysis point of view by many mathematicians, see [5], [19], [22], [24], [25], [35], [39], [47], [49].

Now, let us evoke some basic definitions.

Definition 1. Let $f \in L\left[a_{1}, a_{2}\right]$. The Riemann-Liouville integrals $J_{a_{1}+}^{\alpha} f$ and $J_{a_{2}-}^{\alpha} f$ where $\alpha>0$ with $a_{1} \geq 0$ are

$$
J_{a_{1}+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a_{1}}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x>a_{1}
$$

and

$$
J_{a_{2}-}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{a_{2}}(t-x)^{\alpha-1} f(t) d t, \quad a_{2}>x
$$

Here $J_{a_{1}+}^{0} f(x)=J_{a_{2}-}^{0} f(x)=f(x)$.
Definition $2([5]) . A$ set $P \subseteq \mathbb{R}^{n}$ is called invex with $\varsigma: P \times P \longrightarrow \mathbb{R}^{n}$, if $x+t \varsigma(y, x) \in P$ for every $x, y \in P$ and $t \in[0,1]$.

Convex set is invex for $\varsigma(y, x)=y-x$, see [5], [47].
Definition 3 ([39]). A function f defined on the invex set $P \subseteq \mathbb{R}^{n}$ is called preinvex with ς, if for all $x, y \in P$ and $t \in[0,1]$, we have that

$$
f(x+t \varsigma(y, x)) \leq(1-t) f(x)+t f(y)
$$

Let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function and differentiable on $\left(a_{1}, a_{2}\right)$.

Definition 4 ([19]). A function $f:\left[a_{1}, a_{2}\right] \longrightarrow \mathbb{R}$ will be called composite-g^{-1} convex (concave) on $\left[a_{1}, a_{2}\right]$ if the composite function $f \circ g^{-1}:\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ $\longrightarrow \mathbb{R}$ is convex (concave) in the usual sense on $\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$.

In this way, any concept of convexity (log-convexity, harmonic convexity, trigonometric convexity, hyperbolic convexity, h-convexity, quasi-convexity, s-convexity, s-Godunova-Levin convexity etc.) can be extended to the corresponding composite $-g^{-1}$ convexity. The details however will not be presented here.

If $f:\left[a_{1}, a_{2}\right] \longrightarrow \mathbb{R}$ is composite- g^{-1} convex on $\left[a_{1}, a_{2}\right]$ then we have the inequality

$$
\begin{equation*}
f \circ g^{-1}\left((1-\lambda) u_{1}+\lambda v_{1}\right) \leq(1-\lambda) f \circ g^{-1}\left(u_{1}\right)+\lambda f \circ g^{-1}\left(v_{1}\right) \tag{2}
\end{equation*}
$$

for any $u_{1}, v_{1} \in\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ and $\lambda \in[0,1]$.
This is equivalent with condition

$$
\begin{equation*}
f \circ g^{-1}((1-\lambda) g(t)+\lambda g(s)) \leq(1-\lambda) f(t)+\lambda f(s) \tag{3}
\end{equation*}
$$

for any $t, s \in\left[a_{1}, a_{2}\right]$ and $\lambda \in[0,1]$.
Further, assume that $f:\left[a_{1}, a_{2}\right] \longrightarrow I$ and $\mathbf{k}: I \longrightarrow \mathbb{R}$ a continuous function on I that is strictly increasing (decreasing) on I.

Definition 5 ([19]). A function $f:\left[a_{1}, a_{2}\right] \longrightarrow I$ is \boldsymbol{k}-composite convex (concave) on $\left[a_{1}, a_{2}\right]$ if $\boldsymbol{k} \circ f$ is convex (concave) on $\left[a_{1}, a_{2}\right]$.

In this way, any concept of convexity as mentioned above can be extended to the corresponding \boldsymbol{k}-composite convexity. The details however will not be presented here.

Definition 6 ([19]). A function $f:\left[a_{1}, a_{2}\right] \longrightarrow I$ is \boldsymbol{k}-composite- g^{-1} convex (concave) on $\left[a_{1}, a_{2}\right]$ if $\boldsymbol{k} \circ f \circ g^{-1}$ is convex (concave) on $\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$.

This is equivalent with condition
(4) $\mathbf{k} \circ f \circ g^{-1}((1-\lambda) g(t)+\lambda g(s)) \leq(\geq)(1-\lambda)(\mathbf{k} \circ f)(t)+\lambda(\mathbf{k} \circ f)(s)$
for any $t, s \in\left[a_{1}, a_{2}\right]$ and $\lambda \in[0,1]$.
If $\mathbf{k}: I \longrightarrow \mathbb{R}$ is strictly increasing (decreasing) on I, then the condition (4) is equivalent to:

$$
\begin{equation*}
f \circ g^{-1}((1-\lambda) g(t)+\lambda g(s)) \leq(\geq) \mathbf{k}^{-1}[(1-\lambda)(\mathbf{k} \circ f)(t)+\lambda(\mathbf{k} \circ f)(s)] \tag{5}
\end{equation*}
$$

for any $t, s \in\left[a_{1}, a_{2}\right]$ and $\lambda \in[0,1]$.
The purpose of this article is to find some Ostrowski inequalities using two identities given in Section 2 for some new classes of functions called composite and \mathbf{k}-composite preinvex functions via fractional integrals. Also some new special cases will be given.

2. Main results

Firstly, we give some new definitions about composite and k-composite preinvex functions.

Definition 7. Let $P \subseteq \mathbb{R}$ be an open invex set and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. A function $f: P \longrightarrow \mathbb{R}$ is called composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex, if

$$
\begin{equation*}
f \circ g^{-1}(g(t)+\lambda \varsigma(g(s), g(t))) \leq h_{1}(\lambda) f(t)+h_{2}(\lambda) f(s) \tag{6}
\end{equation*}
$$

for any $t, s \in\left[a_{1}, a_{2}\right]$ and $\lambda \in[0,1]$.
Remark 1. In Definition 7, if $h_{1}(\lambda)=1-\lambda, h_{2}(\lambda)=\lambda$ and $\varsigma(g(s), g(t))$ $=g(s)-g(t)$, we get inequality (3).

Definition 8. Let $P \subseteq \mathbb{R}$ be an open invex set and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing
function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. Further, assume that $f: P \longrightarrow I$ and $\boldsymbol{k}: I \longrightarrow \mathbb{R} a$ continuous function on I that is strictly increasing on I. A function f is \boldsymbol{k}-composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex on P if $\boldsymbol{k} \circ f \circ g^{-1}$ is preinvex on P.
This is equivalent with condition

$$
\begin{equation*}
\mathbf{k} \circ f \circ g^{-1}(g(t)+\lambda \varsigma(g(s), g(t))) \leq h_{1}(\lambda)(\mathbf{k} \circ f)(t)+h_{2}(\lambda)(\mathbf{k} \circ f)(s) \tag{7}
\end{equation*}
$$

for any $t, s \in\left[a_{1}, a_{2}\right]$ and $\lambda \in[0,1]$.
Remark 2. In Definition 8, if $h_{1}(\lambda)=1-\lambda, h_{2}(\lambda)=\lambda$ and $\varsigma(g(s), g(t))=$ $g(s)-g(t)$, we get inequality (4).

Definition 9. Let $P \subseteq \mathbb{R}$ be an open invex set and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. A function $f: P \longrightarrow(0,+\infty)$ is called composite $-g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex, if

$$
\begin{equation*}
f \circ g^{-1}(g(t)+\lambda \varsigma(g(s), g(t))) \leq\left[h_{1}(\lambda) f^{r}(t)+h_{2}(\lambda) f^{r}(s)\right]^{\frac{1}{r}} \tag{8}
\end{equation*}
$$

for any $t, s \in\left[a_{1}, a_{2}\right], \lambda \in[0,1]$ and $r>0$.
Remark 3. In Definition 9 if $r=1$, we get Definition 7.
Definition 10. Let $P \subseteq \mathbb{R}$ be an open invex set and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. Further, assume that $f: P \longrightarrow(0,+\infty)$ and $\boldsymbol{k}:(0,+\infty) \longrightarrow$ $(0,+\infty)$ a continuous function on $(0,+\infty)$ that is strictly increasing on $(0,+\infty)$. A function f is \boldsymbol{k}-composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex on P if $\boldsymbol{k} \circ f \circ$ g^{-1} is preinvex on P.

This is equivalent with condition
(9) $\mathbf{k} \circ f \circ g^{-1}(g(t)+\lambda \varsigma(g(s), g(t))) \leq\left[h_{1}(\lambda)(\mathbf{k} \circ f)^{r}(t)+h_{2}(\lambda)(\mathbf{k} \circ f)^{r}(s)\right]^{\frac{1}{r}}$
for any $t, s \in\left[a_{1}, a_{2}\right], \lambda \in[0,1]$ and $r>0$.
Remark 4. In Definition 10, if we choose $r=1$, we get Definition 8.
In order to give some Ostrowski inequalities for composite and \mathbf{k}-composite preinvex functions using fractional integrals, we claim two identities.

Lemma 1. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing
function that is differentiable on $\left(a_{1}, a_{2}\right)$. Let $f: P \longrightarrow \mathbb{R}$ be a differentiable on P° and $\left(f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$. Then, for $\alpha>0$ we have the following equality for fractional integrals:

$$
\begin{align*}
& \left(\frac{\varsigma^{\alpha}\left(g\left(a_{2}\right), g(x)\right)-\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha}}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\right) \tag{10}\\
& \times\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right) \\
& -\frac{\Gamma(\alpha+1)}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\left[J_{\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha}}^{\alpha} f\left(g\left(a_{1}\right)\right)\right. \\
& \left.-J_{\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{+}}^{\alpha} f\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right] \\
& =\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \int_{0}^{1} p(t)\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t \text {, }
\end{align*}
$$

where $\varpi_{x}=\frac{\varsigma\left(g\left(a_{2}\right), g(x)\right)}{\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}$, and

$$
p(t):= \begin{cases}t^{\alpha}, & \text { if } t \in\left[0, \varpi_{x}\right] \\ (1-t)^{\alpha}, & \text { if } t \in\left(\varpi_{x}, 1\right]\end{cases}
$$

Throughout this paper we denote

$$
\begin{equation*}
I_{1}:=\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \int_{0}^{1} p(t)\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t \tag{11}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
I_{1}= & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\int_{0}^{\varpi_{x}} t^{\alpha}\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t\right. \\
& \left.+\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t\right] .
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
I_{1}= & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[\left.\frac{t^{\alpha}\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)}{\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\right|_{0} ^{\varpi_{x}}\right. \\
& -\frac{\alpha}{\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)} \int_{0}^{\varpi_{x}} t^{\alpha-1}\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t \\
& +\left.\frac{(1-t)^{\alpha}\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)}{\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\right|_{\varpi_{x}} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
+ & \left.\frac{\alpha}{\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)} \int_{\varpi_{x}}^{1}(1-t)^{\alpha-1}\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t\right] \\
= & \left(\frac{\varsigma^{\alpha}\left(g\left(a_{2}\right), g(x)\right)-\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha}}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\right) \\
& \times\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right) \\
- & \frac{\Gamma(\alpha+1)}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\left[J_{\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{-}}^{\alpha} f\left(g\left(a_{1}\right)\right)\right. \\
& \quad-J_{\left.\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha}+f\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right]}
\end{aligned}
$$

The proof of Lemma 1 is completed.
Lemma 2. Let $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$. Suppose $f: P \longrightarrow \mathbb{R}$ is a differentiable on P° and $\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>$ 0 and $\boldsymbol{k}: I \longrightarrow \mathbb{R}$ a continuous function on I that is strictly increasing on I. Then, for $\alpha>0$

$$
\begin{align*}
& \left(\frac{\varsigma^{\alpha}\left(g\left(a_{2}\right), g(x)\right)-\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha}}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}\right) \tag{12}\\
& \quad \times\left(\boldsymbol{k} \circ f \circ g^{-1}\right)\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)-\frac{\Gamma(\alpha+1)}{\varsigma^{\alpha}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)} \\
& \quad \times\left[J_{\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\alpha} \boldsymbol{k} \circ f\left(g\left(a_{1}\right)\right)}^{\left.\quad-J_{\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{+}}^{\alpha} \boldsymbol{k} \circ f\left(g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right]}\right. \\
& =\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \int_{0}^{1} p(t)\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t
\end{align*}
$$

where ϖ_{x} and $p(t)$ are defined as in Lemma 1.
Throughout this paper we denote
(13) $I_{2}:=\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \int_{0}^{1} p(t)\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right) d t$.

Proof. See Lemma 1.
By using Lemmas 1 and 2, we get the following.
Theorem 2. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times$ $P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow$ $[0,+\infty)$ are continuous. Let $f: P \longrightarrow \mathbb{R}$ be a differentiable on P° and
$\left(f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$. If $\left|f^{\prime}\right|^{q}$ is composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex function, $q>1$ and $p^{-1}+q^{-1}=1$, then for $\alpha>0$
(14) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{\sqrt[p]{A} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} J_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} J_{2}}\right. \\
& \left.\times \sqrt[p]{B} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} G_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} G_{2}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
A:=\int_{0}^{\varpi_{x}} t^{p \alpha} d t=\frac{\varpi_{x}^{p \alpha+1}}{p \alpha+1}, \quad B:=\int_{\varpi_{x}}^{1}(1-t)^{p \alpha} d t=\frac{\left(1-\varpi_{x}\right)^{p \alpha+1}}{p \alpha+1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{i}:=\int_{0}^{\varpi_{x}} h_{i}(t) d t, \quad G_{i}:=\int_{\varpi_{x}}^{1} h_{i}(t) d t, \quad \forall i=1,2 . \tag{16}
\end{equation*}
$$

Proof. From Lemma 1, composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvexity of $\left|f^{\prime}\right|^{q}$, Hölder inequality and properties of the modulus, we have

$$
\begin{aligned}
\left|I_{1}\right| \leq & \left|\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right|\left[\int_{0}^{\varpi_{x}} t^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right. \\
& \left.+\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right] \\
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\left(\int_{0}^{\varpi_{x}} t^{p \alpha} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\varpi_{x}}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{\varpi_{x}}^{1}(1-t)^{p \alpha} d t\right)^{\frac{1}{p}}\left(\int_{\varpi_{x}}^{1}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right] \\
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\sqrt[p]{A}\left(\int_{0}^{\varpi_{x}}\left[\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} h_{1}(t)+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} h_{2}(t)\right] d t\right)^{\frac{1}{q}}\right. \\
& \left.+\sqrt[p]{B}\left(\int_{\varpi_{x}}^{1}\left[\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} h_{1}(t)+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} h_{2}(t)\right] d t\right)^{\frac{1}{q}}\right] \\
= & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left\{\sqrt[p]{A} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} J_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} J_{2}}\right. \\
& +\sqrt[p]{B} \sqrt[q]{\left.\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} G_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} G_{2}\right\} .}
\end{aligned}
$$

The proof of Theorem 2 is completed.
Corollary 1. In Theorem 2 if $\left|\left(f \circ g^{-1}\right)^{\prime}\right| \leq K$, we get

$$
\begin{align*}
&\left|I_{1}\right| \leq \frac{K}{\varsigma \frac{p(\alpha-1)+1}{p}}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \tag{17}\\
& p / p \\
& \frac{1}{p \alpha+1} \\
& \times\left\{\varsigma^{\frac{p \alpha+1}{p}}\left(g\left(a_{2}\right), g(x)\right) \sqrt[q]{J_{1}+J_{2}}\right. \\
&\left.+\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{\frac{p \alpha+1}{p}} \sqrt[q]{G_{1}+G_{2}}\right\}
\end{align*}
$$

If one takes $\left|\left(f \circ g^{-1}\right)^{\prime}\right| \leq K$ and $\varsigma\left(g\left(a_{2}\right), g(x)\right)=g\left(a_{2}\right)-g(x)$ for all x, we have

$$
\begin{align*}
\left|\overline{I_{1}}\right|= & \left\lvert\,\left(\frac{\left(g\left(a_{2}\right)-g(x)\right)^{\alpha}-\left(g(x)-g\left(a_{1}\right)\right)^{\alpha}}{\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)^{\alpha}}\right)\right. \tag{18}\\
& \times\left(f \circ g^{-1}\right)\left(g\left(a_{1}\right)+g\left(a_{2}\right)-g(x)\right)-\frac{\Gamma(\alpha+1)}{\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)^{\alpha}} \\
& \times\left[J_{\left(g\left(a_{1}\right)+g\left(a_{2}\right)-g(x)\right)^{-}}^{\alpha} f\left(g\left(a_{1}\right)\right)-J_{\left(g\left(a_{1}\right)+g\left(a_{2}\right)-g(x)\right)^{+}}^{\alpha} f\left(g\left(a_{2}\right)\right)\right] \mid \\
\leq & \frac{K}{\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)^{\frac{p(\alpha-1)+1}{p}} \sqrt[p]{\frac{1}{p \alpha+1}}} \\
& \times\left\{\left(g\left(a_{2}\right)-g(x)\right)^{\frac{p \alpha+1}{p}} \sqrt[q]{J_{1}^{*}+J_{2}^{*}}+\left(g(x)-g\left(a_{1}\right)\right)^{\frac{p \alpha+1}{p}} \sqrt[q]{G_{1}^{*}+G_{2}^{*}}\right\}
\end{align*}
$$

where

$$
\begin{equation*}
J_{i}^{*}:=\int_{0}^{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}} h_{i}(t) d t, \quad G_{i}^{*}:=\int_{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}}^{1} h_{i}(t) d t, \quad \forall i=1,2 . \tag{19}
\end{equation*}
$$

Corollary 2. In Theorem 2 for $h_{1}(t)=h(1-t)$ and $h_{2}(t)=h(t)$, we get
(20) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{\sqrt[p]{A} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} \overline{J_{1}}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} \overline{J_{2}}}\right. \\
& \left.+\sqrt[p]{B} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} \overline{G_{1}}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} \overline{G_{2}}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\overline{J_{1}}:=\int_{1-\varpi_{x}}^{1} h(t) d t, \quad \overline{J_{2}}:=\int_{0}^{\varpi_{x}} h(t) d t \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{G_{1}}:=\int_{0}^{1-\varpi_{x}} h(t) d t, \quad \overline{G_{2}}:=\int_{\varpi_{x}}^{1} h(t) d t \tag{22}
\end{equation*}
$$

Corollary 3. In Theorem 2 for $h_{1}(t)=h_{2}(t)=t(1-t)$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[\sqrt[p]{A} \sqrt[q]{J^{*}}+\sqrt[p]{B} \sqrt[q]{G^{*}}\right] \tag{23}\\
& \times \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q}}
\end{align*}
$$

where

$$
\begin{equation*}
J^{*}:=\int_{0}^{\varpi_{x}} t(1-t) d t=\frac{\varpi_{x}^{2}}{2}-\frac{\varpi_{x}^{3}}{3} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{*}:=\int_{\varpi_{x}}^{1} t(1-t) d t=\frac{1-\varpi_{x}^{2}}{2}-\frac{1-\varpi_{x}^{3}}{3} \tag{25}
\end{equation*}
$$

Theorem 3. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times$ $P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow$ $[0,+\infty)$ are continuous. Let $f: P \longrightarrow \mathbb{R}$ be a differentiable on P° and $\left(f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$. If $\left|f^{\prime}\right|^{q}$ is composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex function, $q \geq 1$, then for $\alpha>0$
(26) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{C^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} H_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} H_{2}}\right. \\
& \left.\times D^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} M_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} M_{2}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
C:=\int_{0}^{\varpi_{x}} t^{\alpha} d t=\frac{\varpi_{x}^{\alpha+1}}{\alpha+1}, \quad D:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} d t=\frac{\left(1-\varpi_{x}\right)^{\alpha+1}}{\alpha+1} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i}:=\int_{0}^{\varpi_{x}} t^{\alpha} h_{i}(t) d t, \quad M_{i}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h_{i}(t) d t, \quad \forall i=1,2 . \tag{28}
\end{equation*}
$$

Proof. From Lemma 1, composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvexity of $\left|f^{\prime}\right|^{q}$, power mean inequality and properties of the modulus, we get

$$
\begin{aligned}
& \left|I_{1}\right| \leq\left|\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right|\left[\int_{0}^{\varpi_{x}} t^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right. \\
& \left.+\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right] \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\left(\int_{0}^{\varpi_{x}} t^{\alpha} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{\varpi_{x}} t^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& +\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha} d t\right)^{1-\frac{1}{q}} \\
& \left.\times\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right] \\
& \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[C^{1-\frac{1}{q}}\left(\int_{0}^{\varpi_{x}} t^{\alpha}\left[\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} h_{1}(t)+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} h_{2}(t)\right] d t\right)^{\frac{1}{q}}\right. \\
& +D^{1-\frac{1}{q}} \\
& \left.\times\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left[\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} h_{1}(t)+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} h_{2}(t)\right] d t\right)^{\frac{1}{q}}\right] \\
& =\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left\{C^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} H_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} H_{2}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} M_{1}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} M_{2}}\right\} .
\end{aligned}
$$

The proof of Theorem 3 is completed.

Remark 5. Using Theorems 2 and 3, for different choices of function g, for example $g(t)=e^{t}, \ln t,-\frac{1}{t}$ and t^{p} where $p>0$, we can get some Ostrowski inequalities for composite preinvex functions using fractional integrals. For $\alpha=1$, we derive some Ostrowskiinequalities for composite preinvex functions using classical integrals.

Corollary 4. In Theorem 3 if $\left|\left(f \circ g^{-1}\right)^{\prime}\right| \leq K$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \frac{K \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}{\left((\alpha+1) \varsigma^{\alpha+1}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)^{1-\frac{1}{q}}} \tag{29}\\
& \times\left\{\varsigma^{(\alpha+1)\left(1-\frac{1}{q}\right)}\left(g\left(a_{2}\right), g(x)\right) \sqrt[q]{H_{1}+H_{2}}\right.
\end{align*}
$$

$$
\left.+\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[q]{M_{1}+M_{2}}\right\}
$$

If one takes $\left|\left(f \circ g^{-1}\right)^{\prime}\right| \leq K$ and $\varsigma\left(g\left(a_{2}\right), g(x)\right)=g\left(a_{2}\right)-g(x)$ for all x, we have

$$
\begin{align*}
\left|\overline{I_{1}}\right| \leq & \frac{K\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)}{\left((\alpha+1)\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)^{\alpha+1}\right)^{1-\frac{1}{q}}} \tag{30}\\
& \times\left\{\left(g\left(a_{2}\right)-g(x)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[q]{H_{1}^{*}+H_{2}^{*}}\right. \\
& \left.+\left(g(x)-g\left(a_{1}\right)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[q]{M_{1}^{*}+M_{2}^{*}}\right\}
\end{align*}
$$

where

$$
\begin{align*}
H_{i}^{*} & :=\int_{0}^{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}} t^{\alpha} h_{i}(t) d t \tag{31}\\
M_{i}^{*} & :=\int_{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}}^{1}(1-t)^{\alpha} h_{i}(t) d t, \quad \forall i=1,2 .
\end{align*}
$$

Corollary 5. In Theorem 3 for $h_{1}(t)=h(1-t)$ and $h_{2}(t)=h(t)$, we get
(32) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{C^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} \overline{H_{1}}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} \overline{H_{2}}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} \overline{M_{1}}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} \overline{\overline{M_{2}}}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\overline{H_{1}}:=\int_{0}^{\varpi_{x}} t^{\alpha} h(1-t) d t, \quad \overline{H_{2}}:=\int_{0}^{\varpi_{x}} t^{\alpha} h(t) d t \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{M_{1}}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h(1-t) d t, \quad \overline{M_{2}}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h(t) d t . \tag{34}
\end{equation*}
$$

Corollary 6. In Theorem 3 for $h_{1}(t)=h_{2}(t)=t(1-t)$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[C^{1-\frac{1}{q}} \sqrt[q]{H^{*}}+D^{1-\frac{1}{q}} \sqrt[q]{M^{*}}\right] \tag{35}\\
& \times \sqrt[q]{\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q}+\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q}}
\end{align*}
$$

where

$$
\begin{equation*}
H^{*}:=\int_{0}^{\varpi_{x}} t^{\alpha} t(1-t) d t=\frac{\varpi_{x}^{\alpha+2}}{\alpha+2}-\frac{\varpi_{x}^{\alpha+3}}{\alpha+3} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{*}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} t(1-t) d t=\frac{\left(1-\varpi_{x}\right)^{\alpha+2}}{\alpha+2}-\frac{\left(1-\varpi_{x}\right)^{\alpha+3}}{\alpha+3} . \tag{37}
\end{equation*}
$$

Theorem 4. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. Let $f: P \longrightarrow \mathbb{R}$ be a differentiable on P° and $\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime} \in$ $L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$ and $\boldsymbol{k}: I \longrightarrow$ \mathbb{R} a continuous function on I that is strictly increasing on I. If $\left|f^{\prime}\right|^{q}$ is \boldsymbol{k}-composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex function, $q>1$ and $p^{-1}+q^{-1}=1$, then for $\alpha>0$

$$
\begin{align*}
& \left|I_{2}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \tag{38}\\
& \quad \times\left\{\sqrt[p]{A} \sqrt[q]{\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} J_{1}+\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} J_{2}}\right. \\
& \left.\quad+\sqrt[p]{B} \sqrt[q]{\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} G_{1}+\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} G_{2}}\right\}
\end{align*}
$$

where $A, B, J_{1}, J_{2}, G_{1}$ and G_{2} are defined as in Theorem 2.
Proof. See Theorem 2 using Lemma 2.
Theorem 5. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. Let $f: P \longrightarrow \mathbb{R}$ be a differentiable on P° and $\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime} \in$ $L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$ and $\boldsymbol{k}: I \longrightarrow$ \mathbb{R} a continuous function on I that is strictly increasing on I. If $\left|f^{\prime}\right|^{q}$ is \boldsymbol{k}-composite- $g^{-1}-\left(h_{1}, h_{2}\right)$-preinvex function, $q \geq 1$, then for $\alpha>0$
(39) $\left|I_{2}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{C^{1-\frac{1}{q}} \sqrt[q]{\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} H_{1}+\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} H_{2}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[q]{\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right|^{q} M_{1}+\left|\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right|^{q} M_{2}}\right\},
\end{aligned}
$$

where $C, D, H_{1}, H_{2}, M_{1}$ and M_{2} are defined as in Theorem 3.

Proof. See Theorem 3 using Lemma 2.
Remark 6. Using Theorems 4 and 5 , for different choices of function g, for example $g(t)=e^{t}, \ln t,-\frac{1}{t}$ and t^{p} where $p>0$ and for different choices of function \mathbf{k}, for example $\mathbf{k}(t)=\ln t$ and $\frac{1}{t}$, we can get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using fractional integrals. Also, for functions h_{1}, h_{2} as we taked above, we can get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using fractional integrals. For $\alpha=1$, we get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using classical integrals.

Theorem 6. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times$ $P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow$ $[0,+\infty)$ are continuous. Let $f: P \longrightarrow(0,+\infty)$ be a differentiable on P° and $\left(f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$. If $f^{\prime q}$ is composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex function, $0<r \leq 1, q>1$ and $p^{-1}+q^{-1}=1$, then for $\alpha>0$

$$
\begin{align*}
& \left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \tag{40}\\
& \quad \times\left\{\sqrt[p]{A} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} J_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} J_{2, r}^{r}}\right. \\
& \\
& \left.\quad+\sqrt[p]{B} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} G_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} G_{2, r}^{r}}\right\},
\end{align*}
$$

where

$$
\begin{equation*}
J_{i, r}:=\int_{0}^{\varpi_{x}} h_{i}^{\frac{1}{r}}(t) d t, \quad G_{i, r}:=\int_{\varpi_{x}}^{1} h_{i}^{\frac{1}{r}}(t) d t, \quad \forall i=1,2 \tag{41}
\end{equation*}
$$

and A, B are defined as in Theorem 2.
Proof. From Lemma 1, composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvexity of $f^{\prime q}$, Hölder inequality, Minkowski inequality and properties of the modulus, we get

$$
\begin{aligned}
\left|I_{1}\right| \leq & \left|\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right|\left[\int_{0}^{\varpi_{x}} t^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right. \\
& \left.+\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right] \\
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\left(\int_{0}^{\varpi_{x}} t^{p \alpha} d t\right)^{\frac{1}{p}}\left(\int_{0}^{\varpi_{x}}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right)^{q} d t\right)^{\frac{1}{q}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(\int_{\varpi_{x}}^{1}(1-t)^{p \alpha} d t\right)^{\frac{1}{p}}\left(\int_{\varpi_{x}}^{1}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right)^{q} d t\right)^{\frac{1}{q}}\right] \\
& \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left[\sqrt[p]{A}\left(\int_{0}^{\varpi_{x}}\left[\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} h_{1}(t)+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} h_{2}(t)\right]^{\frac{1}{r}} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\sqrt[p]{B}\left(\int_{\varpi_{x}}^{1}\left[\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} h_{1}(t)+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} h_{2}(t)\right]^{\frac{1}{r}} d t\right)^{\frac{1}{q}}\right] \\
& \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left\{\sqrt [p] { A } \left[\left(\int_{0}^{\varpi_{x}}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{q} h_{1}^{\frac{1}{r}}(t) d t\right)^{r}\right.\right. \\
& \left.+\left(\int_{0}^{\varpi_{x}}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{q} h_{2}^{\frac{1}{r}}(t) d t\right)^{r}\right]^{\frac{1}{r q}} \\
& +\sqrt[p]{B}\left[\left(\int_{\varpi_{x}}^{1}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{q} h_{1}^{\frac{1}{r}}(t) d t\right)^{r}\right. \\
& \left.\left.+\left(\int_{\varpi_{x}}^{1}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{q} h_{2}^{\frac{1}{r}}(t) d t\right)^{r}\right]^{\frac{1}{r q}}\right\} \\
& =\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left\{\sqrt[p]{A} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} J_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} J_{2, r}^{r}}\right. \\
& +\sqrt[p]{B} \sqrt[r q]{\left.\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} G_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} G_{2, r}^{r}\right\}}
\end{aligned}
$$

The proof of Theorem 6 is completed.
Remark 7. For $r=1$ in Theorem 6, we get Theorem 2.
Corollary 7. In Theorem 6 if $\left(f \circ g^{-1}\right)^{\prime} \leq K$, we get

$$
\begin{equation*}
\left|I_{1}\right| \leq K \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left\{\sqrt[p]{A} \sqrt[r q]{J_{1, r}^{r}+J_{2, r}^{r}}+\sqrt[p]{B} \sqrt[r q]{G_{1, r}^{r}+G_{2, r}^{r}}\right\} \tag{42}
\end{equation*}
$$

If one takes $\left(f \circ g^{-1}\right)^{\prime} \leq K$ and $\varsigma\left(g\left(a_{2}\right), g(x)\right)=g\left(a_{2}\right)-g(x)$ for all x, we have
(43) $\left|\overline{I_{1}}\right| \leq K\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right) \times\left\{\sqrt[p]{A^{*}} \sqrt[r q]{J_{1, r}^{* r}+J_{2, r}^{*}}+\sqrt[p]{B^{*}} \sqrt[r q]{G_{1, r}^{*}+G_{2, r}^{*} r}\right\}$, where

$$
\begin{equation*}
A^{*}:=\int_{0}^{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}} t^{p \alpha} d t=\frac{\left(\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}\right)^{p \alpha+1}}{p \alpha+1} \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
B^{*}:=\int_{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}}^{1}(1-t)^{p \alpha} d t=\frac{\left(1-\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}\right)^{p \alpha+1}}{p \alpha+1} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{i, r}^{*}:=\int_{0}^{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}} h_{i}^{\frac{1}{r}}(t) d t, \quad G_{i, r}^{*}:=\int_{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}}^{1} h_{i}^{\frac{1}{r}}(t) d t, \quad \forall i=1,2 . \tag{46}
\end{equation*}
$$

Corollary 8. In Theorem 6 for $h_{1}(t)=h(1-t)$ and $h_{2}(t)=h(t)$, we get
(47) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{\sqrt[p]{A} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}{\overline{J_{1, r}}}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}{\overline{J_{2, r}}}^{r}}\right. \\
& \left.+\sqrt[p]{B} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}{\overline{G_{1, r}}}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}{\overline{G_{2, r}}}^{r}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\overline{J_{1, r}}:=\int_{1-\varpi_{x}}^{1} h^{\frac{1}{r}}(t) d t, \quad \overline{J_{2, r}}:=\int_{0}^{\varpi_{x}} h^{\frac{1}{r}}(t) d t \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{G_{1, r}}:=\int_{0}^{1-\varpi_{x}} h^{\frac{1}{r}}(t) d t, \quad \overline{G_{2, r}}:=\int_{\varpi_{x}}^{1} h^{\frac{1}{r}}(t) d t \tag{49}
\end{equation*}
$$

Corollary 9. In Theorem 6 for $h_{1}(t)=h_{2}(t)=t(1-t)$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[\sqrt[p]{A} \sqrt[q]{J_{r}^{*}}+\sqrt[p]{B} \sqrt[q]{G_{r}^{*}}\right] \tag{50}\\
& \times \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}}
\end{align*}
$$

where

$$
\begin{equation*}
J_{r}^{*}:=\int_{0}^{\varpi_{x}} \sqrt[r]{t(1-t)} d t, \quad G_{r}^{*}:=\int_{\varpi_{x}}^{1} \sqrt[r]{t(1-t)} d t \tag{51}
\end{equation*}
$$

Theorem 7. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow[0,+\infty)$ are continuous. Let $f: P \longrightarrow(0,+\infty)$ be a differentiable on P° and $(f \circ$ $\left.g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$. If $f^{\prime q}$ is
composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex function, $0<r \leq 1$ and $q \geq 1$, then for $\alpha>0$
(52) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{C^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} H_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} H_{2, r}^{r}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} M_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} M_{2, r}^{r}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
H_{i, r}:=\int_{0}^{\varpi_{x}} t^{\alpha} h_{i}^{\frac{1}{r}}(t) d t, \quad M_{i, r}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h_{i}^{\frac{1}{r}}(t) d t, \quad \forall i=1,2 \tag{53}
\end{equation*}
$$

and C, D are defined as in Theorem 3.
Proof. From Lemma 1, composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvexity of $f^{\prime q}$, power mean inequality, Minkowski inequality and properties of the modulus, we have

$$
\begin{aligned}
\left|I_{1}\right| \leq & \left|\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right|\left[\int_{0}^{\varpi_{x}} t^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right. \\
& \left.+\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left|\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right| d t\right] \\
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[\left(\int_{0}^{\varpi_{x}} t^{\alpha} d t\right)^{1-\frac{1}{q}}\right. \\
& \times\left(\int_{0}^{\varpi_{x}} t^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right)^{q} d t\right)^{\frac{1}{q}} \\
& +\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha} d t\right)^{1-\frac{1}{q}} \\
& \left.\times\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)+t \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)\right)^{q} d t\right)^{\frac{1}{q}}\right] \\
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[C ^ { 1 - \frac { 1 } { q } } \left(\int _ { 0 } ^ { \varpi _ { x } } t ^ { \alpha } \left[\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} h_{1}(t)\right.\right.\right. \\
& \left.\left.+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} h_{2}(t)\right]^{\frac{1}{r}} d t\right)^{\frac{1}{q}} \\
& +D^{1-\frac{1}{q}}\left(\int _ { \varpi _ { x } } ^ { 1 } (1 - t) ^ { \alpha } \left[\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} h_{1}(t)\right.\right. \\
& \left.\left.\left.+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} h_{2}(t)\right]^{\frac{1}{r}} d t\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \times\left\{C ^ { 1 - \frac { 1 } { q } } \left[\left(\int_{0}^{\varpi_{x}} t^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{q} h_{1}^{\frac{1}{r}}(t) d t\right)^{r}\right.\right. \\
& \left.+\left(\int_{0}^{\varpi_{x}} t^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{q} h_{2}^{\frac{1}{r}}(t) d t\right)^{r}\right]^{\frac{1}{r q}} \\
& +D^{1-\frac{1}{q}}\left[\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{q} h_{1}^{\frac{1}{r}}(t) d t\right)^{r}\right. \\
& \left.\left.+\left(\int_{\varpi_{x}}^{1}(1-t)^{\alpha}\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{q} h_{2}^{\frac{1}{r}}(t) d t\right)^{r}\right]^{\frac{1}{r q}}\right\} \\
= & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \\
& \times\left\{C^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} H_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} H_{2, r}^{r}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} M_{1, r}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} M_{2, r}^{r}}\right\} .
\end{aligned}
$$

The proof of Theorem 7 is completed.

Remark 8. For $r=1$ in Theorem 7, we get Theorem 3.
Remark 9. Using Theorems 6 and 7, for different choices of function g, for example $g(t)=e^{t}, \ln t,-\frac{1}{t}$ and t^{p} where $p>0$, we can get some Ostrowski type inequalities for composite preinvex functions using fractional integrals. For $\alpha=1$, we get some Ostrowski inequalities for composite preinvex functions using classical integrals.

Corollary 10. In Theorem 7 if $\left(f \circ g^{-1}\right)^{\prime} \leq K$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \frac{K \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)}{\left((\alpha+1) \varsigma^{\alpha+1}\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right)^{1-\frac{1}{q}}} \tag{54}\\
& \times\left\{\varsigma^{(\alpha+1)\left(1-\frac{1}{q}\right)}\left(g\left(a_{2}\right), g(x)\right) \sqrt[r q]{H_{1, r}^{r}+H_{2, r}^{r}}\right. \\
& \left.+\left(\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)-\varsigma\left(g\left(a_{2}\right), g(x)\right)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[r q]{M_{1, r}^{r}+M_{2, r}^{r}}\right\}
\end{align*}
$$

If one takes $\left(f \circ g^{-1}\right)^{\prime} \leq K$ and $\varsigma\left(g\left(a_{2}\right), g(x)\right)=g\left(a_{2}\right)-g(x)$ for all x, we have

$$
\begin{equation*}
\left|\overline{I_{1}}\right| \leq \frac{K\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)}{\left((\alpha+1)\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)^{\alpha+1}\right)^{1-\frac{1}{q}}} \tag{55}
\end{equation*}
$$

$$
\begin{aligned}
& \times\left\{\left(g\left(a_{2}\right)-g(x)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[r q]{H_{1, r}^{* r}+H_{2, r}^{* r}}\right. \\
& \left.+\left(g(x)-g\left(a_{1}\right)\right)^{(\alpha+1)\left(1-\frac{1}{q}\right)} \sqrt[r q]{M_{1, r}^{* r}+M_{2, r}^{* r}}\right\}
\end{aligned}
$$

where

$$
\begin{align*}
H_{i, r}^{*} & :=\int_{0}^{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}} t^{\alpha} h_{i}^{\frac{1}{r}}(t) d t \tag{56}\\
M_{i, r}^{*} & :=\int_{\frac{g\left(a_{2}\right)-g(x)}{g\left(a_{2}\right)-g\left(a_{1}\right)}}^{1}(1-t)^{\alpha} h_{i}^{\frac{1}{r}}(t) d t, \quad \forall i=1,2
\end{align*}
$$

Corollary 11. In Theorem 7 for $h_{1}(t)=h(1-t)$ and $h_{2}(t)=h(t)$, we get
(57) $\left|I_{1}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)$

$$
\begin{aligned}
& \times\left\{C^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}{\overline{\bar{H}_{1, r}}}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}{\overline{H_{2, r}}}^{r}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}{\overline{M_{1, r}}}^{r}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}{\overline{M_{2, r}}}^{r}}\right\}
\end{aligned}
$$

where

$$
\begin{equation*}
\overline{H_{1, r}}:=\int_{0}^{\varpi_{x}} t^{\alpha} h^{\frac{1}{r}}(1-t) d t, \quad \overline{H_{2, r}}:=\int_{0}^{\varpi_{x}} t^{\alpha} h^{\frac{1}{r}}(t) d t \tag{58}
\end{equation*}
$$

and
(59) $\quad \overline{M_{1, r}}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h^{\frac{1}{r}}(1-t) d t, \quad \overline{M_{2, r}}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} h^{\frac{1}{r}}(t) d t$.

Corollary 12. In Theorem 7 for $h_{1}(t)=h_{2}(t)=t(1-t)$, we get

$$
\begin{align*}
\left|I_{1}\right| \leq & \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\left[C^{1-\frac{1}{q}} \sqrt[q]{H_{r}^{*}}+D^{1-\frac{1}{q}} \sqrt[q]{M_{r}^{*}}\right] \tag{60}\\
& \times \sqrt[r q]{\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q}+\left(\left(f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q}}
\end{align*}
$$

where

$$
\begin{equation*}
H_{r}^{*}:=\int_{0}^{\varpi_{x}} t \sqrt[r]{t(1-t)} d t, \quad M_{r}^{*}:=\int_{\varpi_{x}}^{1}(1-t)^{\alpha} \sqrt[r]{t(1-t)} d t \tag{61}
\end{equation*}
$$

Theorem 8. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times$ $P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow$ $[0,+\infty)$ are continuous. Let $f: P \longrightarrow(0,+\infty)$ be a differentiable on P° and $\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$ and $\boldsymbol{k}:(0,+\infty) \longrightarrow(0,+\infty)$ a continuous function on $(0,+\infty)$ that is strictly increasing on $(0,+\infty)$. If $f^{\prime q}$ is \boldsymbol{k}-composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex function, $0<r \leq 1, q>1$ and $p^{-1}+q^{-1}=1$, then for $\alpha>0$

$$
\begin{align*}
\left|I_{2}\right| & \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \tag{62}\\
& \times\left\{\sqrt[p]{A} \sqrt[r q]{\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} J_{1, r}^{r}+\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} J_{2, r}^{r}}\right. \\
& \left.+\sqrt[p]{B} \sqrt[r q]{\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} G_{1, r}^{r}+\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} G_{2, r}^{r}}\right\}
\end{align*}
$$

where A, B are defined as in Theorem 2 and $J_{1, r}, J_{2, r}, G_{1, r}, G_{2, r}$ are defined as in Theorem 6.

Proof. See Theorem 6 using Lemma 2.
Remark 10. For $r=1$ in Theorem 8, we get Theorem 4.
Theorem 9. Suppose $P \subseteq \mathbb{R}$ be an open invex subset and $\varsigma: P \times$ $P \longrightarrow \mathbb{R}$. Also, let $g:\left[a_{1}, a_{2}\right] \longrightarrow\left[g\left(a_{1}\right), g\left(a_{2}\right)\right]$ be a continuous strictly increasing function that is differentiable on $\left(a_{1}, a_{2}\right)$ and $h_{1}, h_{2}:[0,1] \longrightarrow$ $[0,+\infty)$ are continuous. Let $f: P \longrightarrow(0,+\infty)$ be a differentiable on P° and $\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime} \in L\left[g\left(a_{1}\right), g\left(a_{1}\right)+\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)\right]$, where $\varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right)>0$ and $\boldsymbol{k}:(0,+\infty) \longrightarrow(0,+\infty)$ a continuous function on $(0,+\infty)$ that is strictly increasing on $(0,+\infty)$. If $f^{\prime q}$ is \boldsymbol{k}-composite- $g^{-1}-\left(r ; h_{1}, h_{2}\right)$-preinvex function, $0<r \leq 1$ and $q \geq 1$, then for $\alpha>0$

$$
\begin{align*}
& \left|I_{2}\right| \leq \varsigma\left(g\left(a_{2}\right), g\left(a_{1}\right)\right) \tag{63}\\
& \quad \times\left\{C^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} H_{1, r}^{r}+\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} H_{2, r}^{r}}\right. \\
& \left.+D^{1-\frac{1}{q}} \sqrt[r q]{\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{1}\right)\right)\right)^{r q} M_{1, r}^{r}+\left(\left(\boldsymbol{k} \circ f \circ g^{-1}\right)^{\prime}\left(g\left(a_{2}\right)\right)\right)^{r q} M_{2, r}^{r}}\right\},
\end{align*}
$$

where C, D are defined as in Theorem 3 and $H_{1, r}, H_{2, r}, M_{1, r}, M_{2, r}$ are defined as in Theorem 7.

Proof. See Theorem 7 using Lemma 2.

Remark 11. For $r=1$ in Theorem 9, we get Theorem 5.
Remark 12. Using Theorems 8 and 9, for different choices of function g, for example $g(t)=e^{t}, \ln t,-\frac{1}{t}$ and t^{p} where $p>0$ and for different choices of function \mathbf{k}, for example $\mathbf{k}(t)=\ln t$ and $\frac{1}{t}$, we can get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using fractional integrals. Also, for functions h_{1}, h_{2} as we taked above, we can get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using fractional integrals. For $\alpha=1$, we get some Ostrowski inequalities for \mathbf{k}-composite preinvex functions using classical integrals.

References

[1] Abdeljawad T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57-66.
[2] Agarwal R.P., Luo M.J., Raina R.K., On Ostrowski type inequalities, Fasc. Math., 204(2016), 5-27.
[3] Ahmadmir M., Ullah R., Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math., 42(4)(2011), 415-426.
[4] Alomari M., Darus M., Dragomir S.S., Cerone P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010), 1071-1076.
[5] Antczak T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.
[6] Chu Y.M., Khan M.A., Ali T., Dragomir S.S., Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017(93)(2017), pp. 12.
[7] Dahmani Z., New inequalities in fractional integrals, J. Nonlinear Sci., 9(4)(2010), 493-497.
[8] Dahmani Z., Tabharit L., Taf S., Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1(2)(2010), 155-160.
[9] Dahmani Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1(1)(2010), 51-58.
[10] Dahmani Z., Tabharit L., Taf S., New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.
[11] Dragomir S.S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. 83 Appl., 1(2)(1998).
[12] Dragomir S.S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38(1999), 33-37.
[13] Dragomir S.S., Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14(1)(2017), 1-287.
[14] Dragomir S.S., Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll., 20(2017), Art. 84.
[15] Dragomir S.S., Ostrowski and trapezoid type inequalities for the generalized k - g-fractional integrals of functions with bounded variation, RGMIA Res. Rep. Coll., 20(2017), Art. 111.
[16] Dragomir S.S., Some inequalities for the generalized k - g-fractional integrals of functions under complex boundedness conditions, RGMIA Res. Rep. Coll., 20(2017), Art. 119.
[17] Dragomir S.S., Inequalities of Jensen's type for generalized k - g-fractional integrals, RGMIA Res. Rep. Coll., 20(2017).
[18] Dragomir S.S., Inequalities of Jensen's type for generalized k - g-fractional integrals of function f for which the composite $f \circ g^{-1}$ is convex, Fractional Differ. Calc., 8(1)(2018), 127-150.
[19] Dragomir S.S., Inequalities of Hermite-Hadamard type for composite convex functions, Preprints, (2018).
[20] Dragomir S.S., Wang S., An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13(11)(1997), 15-20.
[21] Dragomir S.S., Wang S., A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28(1997), 239-244.
[22] Du T.S., Liao J.G., Li Y.J., Properties and integral inequalities of Hada-mard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112-3126.
[23] Farid G., Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14(1)(2017), 64-68.
[24] Hudzik H., Maligranda L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.
[25] Iqbal A., Khan M.A., Ullah S., Chu Y.M., Kashuri A., HermiteHadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Advances, 8(7)(2018), pp. 18.
[26] Kashuri A., Liko R., Ostrowski type fractional integral inequalities for generalized (s, m, φ)-preinvex functions, Aust. J. Math. Anal. Appl., 13(1)(2016), Article 16, 1-11.
[27] Kashuri A., Liko R., Generalizations of Hermite-Hadamard and Ostrowski type inequalities for $M T_{m}$-preinvex functions, Proyecciones, 36(1)(2017), 45-80.
[28] Katugampola U.N., A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6(4)(2014), 1-15.
[29] Khalil R., Horani M.A., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.
[30] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier, New York-London, (2006).
[31] Liv Z., Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53(2007), 73-79.
[32] Liu Z., Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math., 10(2)(2009), Art. 52, pp. 12.
[33] Liu W., Wen W., Park J., Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16(1)(2015), 249-256.
[34] Matloka M., Ostrowski type inequalities for functions whose derivatives are
h-convex via fractional integrals, Journal of Scientific Research and Reports, $3(12)(2014), 1633-1641$.
[35] Mitrinovic D.S., PečArić J.E., Fink A.M., Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[36] Özdemir M.E., Kavurmaci H., Set E., Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50(2010), 371-378.
[37] Pachpatte B.G., On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249(2000), 583-591.
[38] Pachpatte B.G., On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32(1)(2001), 45-49.
[39] Pini R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.
[40] Purohit S.D., Kalla S.L., Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Series A: Math. Sci., 25(2014), 53-63.
[41] Rafiq A., Mir N.A., Ahmad F., Weighted Čebyšev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28(7)(2007), 901-906.
[42] Raina R.K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2)(2005), 191-203.
[43] Sarikaya M.Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79(1)(2010), 129-134.
[44] Set E., Gözpinar A., Choi J., Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci., 101(4)(2017), 873-891.
[45] Tunç M., Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17(4)(2014), 691-696.
[46] Ujević N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48(2004), 145-151.
[47] Yang X.M., Yang X.Q., Teo K.L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.
[48] Yildiz Ç., Özdemir M.E., Sarikaya M.Z., New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J., 56(2016), 161-172.
[49] Zhang Y., Du T.S., Wang H., Shen Y.J., Kashuri A., Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018(49)(2018), pp. 30.
[50] Zhongxue L., On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56(2008), 2043-2047.

Artion Kashuri
Department of Mathematics
Faculty of Technical Science University Ismail Qemali
Vlora, Albania
e-mail: artionkashuri@gmail.com

Rozana Liko
Department of Mathematics
Faculty of Technical Science
University Ismail Qemali
Vlora, Albania
e-mail: rozanaliko86@gmail.com

Sajid Iqbal
Department of Mathematics
University of Sargodha (Sub-Campus Bhakkar)
Bhakkar, Pakistan
e-mail: sajiduos2000@yahoo.com

Received on 19.10.2018 and, in revised form, on 14.08.2019.

