Nr 62

2019 DOI: 10.21008/j.0044-4413.2019.0006

VASILE LAURIC

A FUGLEDE–PUTNAM TYPE THEOREM FOR A CLASS OF ALMOST NORMAL OPERATORS

ABSTRACT. In this note we will prove that operators $T \in \mathcal{L}(\mathcal{H})$ with finite k_1 function satisfy a Fuglede–Putnam type modulo the Hilbert–Schmidt class, that is, for arbitrary $X \in \mathcal{L}(\mathcal{H})$ with $TX - XT \in \mathcal{C}_2(\mathcal{H})$ implies $T^*X - XT^* \in \mathcal{C}_2(\mathcal{H})$.

KEY WORDS: almost normal operators, k_1 -function, Fuglede –Putnam type theorem.

AMS Mathematics Subject Classification: 47B20, 47B37.

1. Introduction

1. Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and denote by $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} and by $\mathcal{C}_p(\mathcal{H})$ (or simply \mathcal{C}_p) the Shatten-von Neumann *p*-classes and by $|\cdot|_p, p \geq 1$, their respective norm. In this note, of particular interest will be the classes corresponding to p = 1, 2, that is the trace-class \mathcal{C}_1 and the class of Hilbert-Schmidt operators \mathcal{C}_2 . For arbitrary operators $S, T \in$ $\mathcal{L}(\mathcal{H}), [S, T]$ will denote their commutator ST - TS and D_S will denote the self-commutator of S, that is $[S^*, S]$. An operator $S \in \mathcal{L}(\mathcal{H})$ is called *almost normal* when $D_S \in \mathcal{C}_1(\mathcal{H})$ and the class of operators defined on \mathcal{H} which are almost normal will be denoted by $\mathcal{AN}(\mathcal{H})$.

2. Voiculescu's Conjecture 4 (C₄) (cf. [3] or [4]) states that for $T \in \mathcal{AN}(\mathcal{H})$, there exists $S \in \mathcal{AN}(\mathcal{H})$ such that $T \oplus S = N + K$, where N is a normal operator and K is a Hilbert–Schmidt operator. Under the assumption that conjecture (C₄) has a positive answer, one can easily prove that almost normal operators satisfy a Fuglede–Putnam type theorem, that is, if $T \in \mathcal{AN}(\mathcal{H})$ and $X \in \mathcal{L}(\mathcal{H})$ is such that $[T, X] \in \mathcal{C}_2(\mathcal{H})$, then $[T^*, X] \in \mathcal{C}_2(\mathcal{H})$, and the family of operators on \mathcal{H} that have such a property will be denoted by $\mathcal{FP}_2(\mathcal{H})$. This is an easy consequence of a theorem of G. Weiss [5] that states that if $N \in \mathcal{L}(\mathcal{H})$ is a normal operator and $X \in \mathcal{L}(\mathcal{H})$ such that $[N, X] \in \mathcal{C}_2(\mathcal{H})$, then $[N^*, X] \in \mathcal{C}_2(\mathcal{H})$ and $|[N, X]|_2 = |[N^*, X]|_2$ (in particular $N \in \mathcal{FP}_2(\mathcal{H})$), and the details are left for the reader.

Let \mathcal{P} and \mathcal{R}_1^+ denote the set of finite rank orthogonal projections and the finite rank positive semidefinite contractions respectively, and

$$q_p(T) = \liminf_{P \in \mathcal{P}} |((I - P)TP)|_p,$$

$$k_p(T) = \liminf_{A \in \mathcal{R}_1^+} |[T, A]|_p,$$

where the lim inf's are with respect to the natural order.

3. In [1] it was proved that almost normal operators T such that $q_2(T) < \infty$ belong to $\mathcal{FP}_2(\mathcal{H})$. It is natural to ask whether almost normal operators T with finite $k_2(T)$, and implicitly $k_2(T) = 0$ (since the function k_2 is either zero or infinite acc. [2]), belong to \mathcal{FP}_2 .

In this note we will prove that such a result holds under the hypothesis that $k_1(T)$ is finite. We mention that k_1 is not necessarily zero when it is finite.

Theorem 1. If $T \in \mathcal{AN}(\mathcal{H})$ and $k_1(T) < \infty$, then for $X \in \mathcal{L}(\mathcal{H})$ the commutator [T, X] is a Hilbert–Schmidt operator if and only if so is $[T^*, X]$.

Proof. Let $T \in \mathcal{AN}(\mathcal{H})$ with $k_1(T) < \infty$, let $A_n \in \mathcal{R}_1^+$, $n \ge 1$, so that $A_n \uparrow I$ and $|[A_n, T]|_1 \downarrow k_1(T)$, and let $X \in \mathcal{L}(\mathcal{H})$ with $[T, X] =: R \in \mathcal{C}_2(\mathcal{H})$. It will be enough to prove that

$$\limsup_{n \to \infty} |\operatorname{tr}[A_n(QQ^* - RR^*)]| < \infty,$$

where $Q := T^*X - XT^*$. Write

$$A_n RR^* = A_n TXX^*T^* - A_n TXT^*X^* - A_n XTX^*T^* + A_n XTT^*X^*$$
$$= a - b - c + d$$

and

$$A_n Q Q^* = A_n T^* X X^* T - A_n T^* X T X^* - A_n X T^* X^* T + A_n X T^* T X^*$$

= A - B - C + D,

where a, b, \ldots, C, D are the terms in the order they appear in these expansions. We will use several times each of the following facts about trace-class operators: $\operatorname{tr}([F,Y]) = 0$, $|\operatorname{tr}(F)| \leq |F|_1$, and $|FY|_1$, $|YF|_1 \leq |F|_1 ||Y||$, for $F \in \mathcal{C}_1$ and in particular for finite rank operators, and arbitrary $Y \in \mathcal{L}(\mathcal{H})$.

First

(1)
$$|\operatorname{tr}(D-d)| \le |D-d|_1 \le ||X||^2 |D_T|_1.$$

Then

$$|\operatorname{tr}(B-c)| = |\operatorname{tr}(A_n T^* X T X^* - A_n X T X^* T^*)|$$

= $|\operatorname{tr}(A_n T^* X T X^* - T^* A_n X T X^*)| = |\operatorname{tr}([A_n, T^*] X T X^*)|$
 $\leq |[A_n, T^*] X T X^*|_1 \leq |[A_n, T^*]|_1 ||X T X^*||$
 $\leq |[A_n, T^*]|_1 ||X||^2 ||T||$

and then after passing to limit

(2)
$$|\operatorname{tr}(B-c)| \le k_1(T) ||X||^2 ||T||.$$

In a similar way,

$$\begin{aligned} |\operatorname{tr}(C-b)| &= |\operatorname{tr}(A_n X T^* X^* T - A_n T X T^* X^*)| \\ &= |\operatorname{tr}(T A_n X T^* X^* - T^* A_n T X T^* X^*)| = |\operatorname{tr}([T, A_n] X T^* X^*)| \\ &\leq |[A_n, T] X T^* X^*|_1 \leq |[A_n, T]|_1 ||X T^* X^*|| \\ &\leq |[A_n, T]|_1 ||X||^2 ||T|| \end{aligned}$$

and thus

(3)
$$|\operatorname{tr}(C-b)| \le k_1(T) ||X||^2 ||T||.$$

Finally,

$$\begin{aligned} |\mathrm{tr}(A-a)| &= |\mathrm{tr}(A_n T^* X X^* T - A_n T X X^* T^*)| \\ &= |\mathrm{tr}(T A_n T^* X X^* - T^* A_n T X X^*)| \\ &\leq |T A_n T^* - T^* A_n T|_1 ||X||^2. \end{aligned}$$

Furthermore

$$|TA_nT^* - T^*A_nT|_1 = |(TA_nT^* - A_nTT^*) + (A_nT^*T - T^*A_nT)|_1$$

$$\leq |[[T, A_n]T^*|_1 + |A_nD_T|_1 + |[A_n, T^*]T|_1$$

$$\leq |[T, A_n]|_1 ||T^*|| + |D_T|_1 + |[A_n, T^*]|_1 ||T||$$

$$= 2 |[T, A_n]|_1 ||T|| + |D_T|_1,$$

and consequently, by passing to limit, we have

(4)
$$|\operatorname{tr}(A-a)| \le (2k_1(T)||T|| + |D_T|_1)||X||^2.$$

Using inequalities (1)-(4),

$$\limsup_{n \to \infty} |\operatorname{tr}[A_n(QQ^* - RR^*)]| \le 4k_1(T)||X||^2||T|| + 2|D_T|_1||X||^2,$$

which proves one implication of the theorem. The other implication is a consequence of the previous one since $k_1(T) = k_1(T^*)$.

The above proof leads to the following.

VASILE LAURIC

Corollary 1. If $T \in \mathcal{AN}(\mathcal{H})$ with $k_1(T) < \infty$ and $X \in \mathcal{L}(\mathcal{H})$ so that $[T, X] \in \mathcal{C}_2(\mathcal{H})$, then $|[T^*, X]|_2^2 \le |[T, X]|_2^2 + 4k_1(T)||X||^2||T|| + 2|D_T|_1||X||^2$.

Corollary 2. If $T, S \in \mathcal{AN}(\mathcal{H})$ with $k_1(T)$ and $k_1(S) < \infty$ and $X \in \mathcal{L}(\mathcal{H})$ so that $R := TX - XS \in \mathcal{C}_2(\mathcal{H})$, then $Q := T^*X - XS^* \in \mathcal{C}_2(\mathcal{H})$ and

$$|Q|_{2}^{2} \leq |R|_{2}^{2} + 4(k_{1}(T) + k_{1}(S))||X||^{2} \max\{||T||, ||S||\} + 2(|D_{T}|_{1} + |D_{S}|_{1})||X||^{2}.$$

Proof. Let T, S, X as in the hypothesis. It is straightforward to see that

$$k_1(T \oplus S) \le k_1(T) + k_1(S) < \infty.$$

Setting $\tilde{X} = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ then $(T \oplus S)\tilde{X} - \tilde{X}(T \oplus S) = \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix}$, and thus $(T \oplus S)\tilde{X} - \tilde{X}(T \oplus S) \in \mathcal{C}_2(\mathcal{H})$. Therefore $(T \oplus S)^*\tilde{X} - \tilde{X}(T \oplus S)^* = \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix} \in \mathcal{C}_2$. Consequently $Q \in \mathcal{C}_2(\mathcal{H})$, and the inequality is left for the reader.

Corollary 3. If
$$T \in \mathcal{AN}(\mathcal{H})$$
 with $k_1(T) < \infty$ and $X \in \mathcal{L}(\mathcal{H})$ so that $R' := TX - XT^* \in \mathcal{C}_2(\mathcal{H})$, then $Q' := T^*X - XT \in \mathcal{C}_2(\mathcal{H})$ and $|Q'|_2^2 \le |R'|_2^2 + 8k_1(T)||X||^2||T|| + 4|D_T|_1||X||^2.$

References

- LAURIC V., A Fuglede-Putnam theorem modulo the Hilbert-Schmidt class for almost normal operators with finite modulus of Hilbert-Schmidt quasitriangularity, *Concr. Oper.*, 3(2016), 8-14.
- [2] VOICULESCU D.V., Some results on norm-ideal perturbations of Hilbert space operators II, J. Operator Theory, 5(1981), 77–100.
- [3] VOICULESCU D.V., Hilbert space operators modulo normed ideals, Proceedings of the International Congress of Mathematicians, August 16-24, W-wa (1983), 1041-1047.
- [4] VOICULESCU D.V., Almost normal operators mod Hilbert-Schmidt and the K-theory of the algebras $E\Lambda(\Omega)$, J. Noncommut. Geom., 8(2014), 11231-1145.
- [5] WEISS G., The Fuglede commutativity theorem modulo operator ideals, *Proc. Amer. Math. Soc.*, 83(1981), 113-118.

VASILE LAURIC DEPARTMENT OF MATHEMATICS FLORIDA A&M UNIVERSITY TALLAHASSEE, FL 32307 *e-mail:* vasile.lauric@famu.edu

Received on 28.12.2018 and, in revised form, on 15.10.2019.