A. A. Mogbademu and J. K. Kim

THE EQUIVALENCE OF CONVERGENCE RESULTS BETWEEN MODIFIED ISHIKAWA AND MODIFIED MANN ITERATIONS *

Abstract

In [11], the author discussed a new class of nearly weak uniformly L-Lipschitzian mappings and prove some strong convergence results of the modified Ishikawa iteration with errors in real Banach spaces. And the author has given the open problem as follows: Are there any difference on convergence between the Mann iteration and Ishikawa iteration? Can we prove the equivalence on convergence between these two iterations? In this paper, we given an affirmative answer to the open problem.

Key words: modified Mann iteration process with errors, Modified Ishikawa iteration process with error, Banach space, fixed point, nearly weak uniformly L-Lipschitzian.
AMS Mathematics Subject Classification: 47H09, 47H10, 46A03L.

1. Introduction

Let X be an arbitrary real normed space with the dual X^{*}. We denote by J the normalized duality mapping from X into $2^{\mathrm{x}^{*}}$ by

$$
J(x)=\left\{f \in \mathrm{X}^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

where $\langle.,$.$\rangle denotes the generalized duality pairing between elements of X$ and X^{*}. We first recall and define some concepts as follows (see [15]).

Definition 1. Let K be a subset of a real normed linear space X and $\left\{\sigma_{n}\right\}_{n \geq 1}$ be a sequence in $[0, \infty)$ such that $\lim _{n \rightarrow \infty} \sigma_{n}=0$. A mapping T : $K \rightarrow K$ is said to be nearly Lipschitzian with respect to the sequence $\left\{\sigma_{n}\right\}$ if for each $n \in N$, there exists a constant $k_{n} \geq 1$ such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\left(\|x-y\|+\sigma_{n}\right), \quad \forall x, y \in K \tag{1}
\end{equation*}
$$

Observe that for any sequence $\left\{k_{n}\right\}_{n} \geq 1$ satisfying (1), $\eta\left(T^{n}\right) \leq k_{n} \forall n \in$ N. $\eta\left(T^{n}\right)$ is the infimum of k_{n} and is called the nearly Lipschitz constant of the mapping T. A nearly Lipschitzian mapping T with sequence

[^0]$\left\{\left(\sigma_{n}, \eta\left(T^{n}\right)\right\}\right.$ is said to be nearly uniformly L-Lipschitzian if $k_{n}=L$ for all $n \in N$, i.e., if
$$
\left\|T^{n} x-T^{n} y\right\| \leq L\left(\|x-y\|+\sigma_{n}\right), \quad \forall x, y \in K
$$

The class of nearly uniformly L-Lipschitzian have been studied extensively by many authors: for results in this area, see e.g. Kim et al. [6], Mogbademu [8] and Sahu[15]; for uniformly L-Lipschitzian mappings, see e.g., Chang [2], Chang et al. [3] and Ofoedu [13]; see also Mogbademu [9] and the references there in. In [10], one of the authors introduced the following new concept which generalize the notion of nearly uniformly L-Lipschitzian mappings:

Definition 2. Let K be a subset of a real normed linear space X and $\left\{\sigma_{n}\right\}_{n \geq 1}$ be a sequence in $[0, \infty)$ such that $\lim _{n \rightarrow \infty} \sigma_{n}=0$. A mapping $T: K \rightarrow K$ is called nearly weak uniformly Lipschitzian with respect to the sequence $\left\{\sigma_{n}\right\}$ if for each $n \in N$, there exists a constant $L \geq 1$ such that

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\| \leq L\left(\|x-y\|+\sigma_{n}\right), \quad \forall x \in K, y \in F(T) \tag{2}
\end{equation*}
$$

It is clear that the class of nearly weak uniformly L-Lipschitzian mappings is a generalization of the class of nearly uniformly L-Lipschitzian mappings which inturn is a generalization of the class of uniformly L-Lipschitzian mappings (see also [9]).

It is well known that the modified Ishikawa (see [5]) and modified Mann (see [7]) iterations with errors for a mapping $T: K \rightarrow K$ are defined respectively as:

For arbitrary $x_{1} \in K$,

$$
\begin{align*}
x_{n+1} & =\left(1-a_{n}-c_{n}\right) x_{n}+a_{n} T^{n} y_{n}+c_{n} u_{n} \tag{3}\\
y_{n} & =\left(1-b_{n}-d_{n}\right) x_{n}+b_{n} T^{n} x_{n}+d_{n} v_{n}, \quad n \geq 1
\end{align*}
$$

where $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty},\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ are real sequences in $[0,1]$ satisfying $a_{n}+c_{n} \leq 1, b_{n}+d_{n} \leq 1$ and $\left\{u_{n}\right\}_{n=1}^{\infty},\left\{v_{n}\right\}_{n=1}^{\infty}$ are two bounded sequences in K, and for $z_{1} \in K$,

$$
\begin{equation*}
z_{n+1}=\left(1-a_{n}-c_{n}\right) z_{n}+a_{n} T^{n} z_{n}+c_{n} u_{n}, \quad n \geq 1 \tag{4}
\end{equation*}
$$

The sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ satisfy

$$
\begin{equation*}
\sum_{n \geq 1} a_{n}=\infty, \quad c_{n}=o\left(a_{n}\right) \tag{5}
\end{equation*}
$$

The following problem was given in [11]: Can we prove the equivalence on convergence between the iterations (3) and (4) for the most general class of nearly weak uniformly L-Lipschitzian mappings? For results on equivalence, see e.g., Banarjee and Choudhury [1] and Rhoades and Soltuz [14]. The purpose of this paper is to give an affirmative answer for the question.

Lemma 1 ([5]). Let X be real Banach Space and $J: X \rightarrow 2^{X^{*}}$ be the normalized duality mapping. Then, for any $x, y \in X$

$$
\|x+y\|^{2} \leq\|x\|^{2}+2<y, j(x+y)>, \quad \forall j(x+y) \in J(x+y)
$$

Lemma 2 ([12]). Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be an increasing function with $\Phi(x)=0 \Leftrightarrow x=0$ and let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a positive real sequence satisfying

$$
\sum_{n=1}^{\infty} b_{n}=+\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=0
$$

Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a nonnegative real sequence. If there exists an integer $N_{0}>0$ satisfying

$$
a_{n+1}^{2}<a_{n}^{2}+o\left(b_{n}\right)-b_{n} \Phi\left(a_{n+1}\right), \quad \forall n \geq N_{0}
$$

where $\lim _{n \rightarrow \infty} \frac{o\left(b_{n}\right)}{b_{n}}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

2. The Main results

Now, we are in a position to introduce and prove the main results of this paper.

Theorem 1. Let X be a real Banach space, K be a nonempty closed convex subset of X, and $T: K \rightarrow K$ be a nearly weak uniformly L-Lipschitzian mapping with $\rho \in F(T)=\{\rho \in K: T \rho=\rho\} \neq \emptyset$ and sequences $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$, $k_{n} \subset[1, \infty)$ and μ_{n} be such that $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} \mu_{n}=0$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ satisfy (5), and $x_{1}=z_{1} \in K$. Suppose that there exists a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ such that

$$
\begin{align*}
& <T^{n} x_{n+1}-T^{n} z_{n+1}, j\left(x_{n+1}-z_{n+1}\right)> \tag{*}\\
& \quad \leq k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}
\end{align*}
$$

for all $n \geq 0$, where $j\left(x_{n+1}-z_{n+1}\right) \in J\left(x_{n+1}-z_{n+1}\right)$, then the following are equivalent:
(i) the modified Mann iteration with errors (4) converges (to $\rho \in F(T)$),
(ii) the modified Ishikawa iteration with errors (3) converges (to $\rho \in$ $F(T))$.

Proof. It is obvious that (ii) implies (i) by setting, $b_{n}=d_{n}=0$, for all $n \geq 1$ in equation (4). We will prove that (i) implies (ii). Let ρ be the fixed point of T. Suppose that $\lim _{n \rightarrow \infty} z_{n}=\rho$. Applying

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq\left\|\rho-x_{n}\right\| \leq\left\|z_{n}-\rho\right\|+\left\|x_{n}-z_{n}\right\| \tag{7}
\end{equation*}
$$

we have

$$
\lim _{n \rightarrow \infty} x_{n}=\rho
$$

This completes the proof if (6) is proved. Set $z_{n}=\rho$, for all $n \geq 1$, then $\left(^{*}\right)$ becomes

$$
\begin{equation*}
\left\langle T_{n+1}^{n}-T^{n} \rho, j\left(x_{n+1}-\rho\right)\right\rangle \leq k_{n}\left\|x_{n+1}-\rho\right\|^{2}-\Phi\left(\left\|x_{n+1}-\rho\right\|\right)+\mu_{n} \tag{8}
\end{equation*}
$$

for $\forall n \geq 0$, then this implies that

$$
\begin{equation*}
\mu_{n}+\left\langle k_{n}\left(x_{n+1}-\rho\right)-\left(T^{n} x_{n+1}-\rho\right), j\left(x_{n+1}-\rho\right)\right\rangle \geq \Phi\left(\left\|x_{n+1}-\rho\right\|\right), \forall n \geq 0 \tag{9}
\end{equation*}
$$

Firstly, we will prove that there exists $x_{1} \in K$ with $x_{1} \neq T x_{1}$ such that $r_{0}=\mu_{n}+\left(k_{n}+L\right)\left\|x_{1}-\rho\right\|^{2}+L\left\|x_{1}-\rho\right\|^{2} \in R(\Phi)$, where $R(\Phi)$ is the range of Φ. Infact, if $x_{1}=T x_{1}$, then we are done. Otherwise, there exists the smallest positive integer $n_{1} \in N$ such that $x_{n_{1}} \neq T x_{n_{1}}$. We denote $x_{n_{1}}=x_{1}$, and then we obtain that $r_{0}=\mu_{n}+\left(k_{n}+L\right)\left\|x_{1}-\rho\right\|^{2}+L\left\|x_{1}-\rho\right\|^{2} \in R(\Phi)$. Indeed, if $\Phi(r) \rightarrow+\infty$ as $r \rightarrow \infty$, then $r_{0} \in R(\Phi)$; If $\sup \{\Phi(r): r \in[0, \infty]\}=r_{1}<$ $+\infty$ with $r_{1}<r_{0}$, then for $\rho \in K$, there exists a sequence $\left\{\eta_{n}\right\}$ in K such that $\eta_{n} \rightarrow \rho$ as $n \rightarrow \infty$ with $\eta_{n} \neq \rho$. Clearly, we have that $T \eta_{n} \rightarrow T \rho$ as $n \rightarrow \infty$ thus $\left\{\eta_{n}-T \eta_{n}\right\}$ is a bounded sequence. So therefore, there exists a natural number n_{0} such that $\mu_{n}+\left(k_{n}+L\right)\left\|\eta_{n}-\rho\right\|^{2}+L\left\|\eta_{n}-\rho\right\|^{2}<\frac{r_{1}}{2}$ for $n \geq n_{1}$, and then we redefine $x_{1}=\eta_{n_{0}}$ to have $\mu_{n}+\left(k_{n}+L\right)\left\|x_{1}-\rho\right\|^{2}+L\left\|x_{1}-\rho\right\|^{2} \in R(\Phi)$.

Secondly, we will show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence using induction process. Set $R=\Phi^{-1}\left(r_{0}\right)$, then from (9), we obtain that $\left\|x_{1}-\rho\right\| \leq R$. Denote $B_{1}=\{x \in K:\|x-\rho\| \leq R\}, B_{2}=\{x \in K:\|x-\rho\| \leq 2 R\}$, $M^{*}=\sup _{n}\left\{\left\|u_{n}-\rho\right\|+\left\|v_{n}-\rho\right\|\right\}$. Now, we want to prove that $x_{n} \in B_{1}$. If $n=1$, then $x_{1} \in B_{1}$. Now, assume that it holds for some n, that is, $x_{n} \in B_{1}$. Suppose that, it is not the case, then $\left\|x_{n+1}-\rho\right\|>R$.

Denote

$$
\begin{align*}
\tau_{0}=\min \{1 & \frac{R}{8 R(1+L)}, \frac{\Phi(R)}{8 R(1+L) M} \tag{10}\\
& \frac{\Phi(R)}{16(1+L) R\left(2(1+L) R+\left(M L+M^{*}\right)\right)} \\
& \left.\frac{\Phi(R)}{\left(3 R^{2}+4 M R+2\right)}, \frac{R}{\left(L(R+M)+M^{*}\right)}\right\}
\end{align*}
$$

Since $\left\{\sigma_{n}\right\} \in[0, \infty)$ with $\sigma_{n} \rightarrow 0$ as $n \rightarrow \infty$, set $M=\sup _{n}\left\{\sigma_{n}: n \in N\right\}$. Since $\lim _{n \rightarrow \infty} a_{n}, b_{n}, c_{n}, d_{n}, \mu_{n}=0$ and $\lim _{n \rightarrow \infty} k_{n}=1$, without loss of generality, we assume that $0 \leq a_{n}, b_{n}, c_{n}, d_{n}, \frac{c_{n}}{a_{n}}, k_{n}-1, \mu_{n} \leq \tau_{0}$, for any
$n \geq 1$. Given $c_{n}=o\left(a_{n}\right)$, we denote $c_{n}<a_{n} \tau_{0}$ for any $n \geq 1$. Observe that if $x_{n} \in B_{1}$, we get $y_{n} \in B_{2}$. That is

$$
\begin{aligned}
\left\|y_{n}-\rho\right\| & \leq\left(1-b_{n}-d_{n}\right)\left\|x_{n}-\rho\right\|+b_{n}\left\|T^{n} x_{n}-T^{n} \rho\right\|+d_{n}\left\|v_{n}-\rho\right\| \\
& \leq\left(1-b_{n}-d_{n}\right)\left\|x_{n}-\rho\right\|+b_{n} L\left(\left\|x_{n}-\rho\right\|+\sigma_{n}\right)+d_{n}\left\|v_{n}-\rho\right\| \\
& \leq\left\|x_{n}-\rho\right\|+\tau_{0}\left(L\left(\left\|x_{n}-\rho\right\|+M\right)+M^{*}\right) \\
& \leq R+\tau_{0}\left(L(R+M)+M^{*}\right) \leq 2 R
\end{aligned}
$$

From (3), we have the following estimates

$$
\begin{aligned}
\left\|x_{n+1}-\rho\right\| \leq & \left(1-a_{n}-c_{n}\right)\left\|x_{n}-\rho\right\| \\
& +a_{n}\left\|T^{n} y_{n}-T^{n} \rho\right\|+c_{n}\left\|u_{n}-\rho\right\| \\
\leq & \left(1-a_{n}-c_{n}\right)\left\|x_{n}-\rho\right\|+a_{n} L\left(\left\|y_{n}-\rho\right\|+\sigma_{n}\right)+c_{n}\left\|u_{n}-\rho\right\| \\
\leq & R+\tau_{0}\left(L(2 R+M)+M^{*}\right)<2 R
\end{aligned}
$$

$$
\begin{align*}
\left\|x_{n+1}-y_{n}\right\| \leq & a_{n}\left\|x_{n}-T^{n} y_{n}\right\|+b_{n}\left\|x_{n}-T^{n} x_{n}\right\| \tag{11}\\
& +c_{n}\left\|u_{n}-x_{n}\right\|+d_{n}\left\|v_{n}-x_{n}\right\| \\
\leq & a_{n}\left(\left\|x_{n}-\rho\right\|+L\left(\left\|y_{n}-\rho\right\|+\sigma_{n}\right)\right) \\
& +b_{n}\left(\left\|x_{n}-\rho\right\|+L\left(\left\|x_{n}-\rho\right\|+\sigma_{n}\right)\right) \\
& \left.+c_{n}\left(\| u_{n}-\rho\right)+\left\|x_{n}-\rho\right\|\right) \\
& \left.+d_{n}\left(\| v_{n}-\rho\right)+\left\|x_{n}-\rho\right\|\right) \\
\leq & a_{n}(R+L(2 R+M))+b_{n}(R+L(2 R+M)) \\
& +c_{n}\left(M^{*}+R\right)+d_{n}\left(M^{*}+R\right) \\
= & \left(\left(a_{n}+b_{n}\right)(1+2 L)+\left(c_{n}+d_{n}\right)\right) R \\
& +\left(a_{n}+b_{n}\right) M L+\left(c_{n}+d_{n}\right) M^{*} \\
\leq & 2 \tau_{o}\left(2(1+L) R+\left(M L+M^{*}\right)\right) \leq \frac{\Phi(R)}{8 R} .
\end{align*}
$$

So,

$$
\begin{align*}
\left\|T^{n} x_{n+1}-T^{n} y_{n}\right\| & \leq L\left(\left\|x_{n+1}-y_{n}\right\|+\sigma_{n}\right) \tag{12}\\
& \leq L\left(\frac{\Phi(R)}{8 R}+M\right) \\
& \leq L\left(\frac{\Phi(R)}{8 R(1+L)}+M \tau_{o}\right) \\
& \leq L \frac{\Phi(R)}{4 R(1+L)} .
\end{align*}
$$

Using Lemma 1 and the above estimates, we get

$$
\begin{align*}
\left\|x_{n+1}-\rho\right\|^{2}= & \|\left(1-a_{n}-c_{n}\right)\left(x_{n}-\rho\right) \tag{13}\\
& +a_{n}\left(T^{n} y_{n}-\rho\right)+c_{n}\left(u_{n}-\rho\right) \|^{2}
\end{align*}
$$

$$
\begin{aligned}
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-\rho\right\|^{2}+2 a_{n}<T^{n} y_{n}-\rho, j\left(x_{n+1}-\rho\right)> \\
& +2 c_{n}<u_{n}-x_{n}, j\left(x_{n+1}-\rho\right)> \\
= & \left(1-a_{n}\right)^{2}\left\|x_{n}-\rho\right\|^{2}+2 a_{n}<T^{n} x_{n+1}-\rho, j\left(x_{n+1}-\rho\right)> \\
& +2 a_{n}<T^{n} y_{n}-T^{n} x_{n+1}, j\left(x_{n+1}-\rho\right)> \\
& +2 c_{n}<u_{n}-x_{n}, j\left(x_{n+1}-\rho\right)> \\
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-\rho\right\|^{2} \\
& +2 a_{n}\left(k_{n}\left\|x_{n+1}-\rho\right\|^{2}-\Phi\left(\left\|x_{n+1}-\rho\right\|\right)+\mu_{n}\right) \\
& +2 a_{n}\left(\left\|T^{n} x_{n+1}-T^{n} y_{n}\right\|\right)\left\|x_{n+1}-\rho\right\| \\
& +2 c_{n}\left\|u_{n}-x_{n}\right\|\left\|x_{n+1}-\rho\right\| \\
\leq & \left(1-a_{n}\right)^{2} R^{2}+2 a_{n}\left(k_{n}\left\|x_{n+1}-\rho\right\|^{2}-\Phi(R)+\mu_{n}\right) \\
& +2 a_{n} \frac{\Phi(R)}{4 R} 2 R+2 c_{n} M 2 R \\
\leq & \left(1-a_{n}\right)^{2} R^{2}+2 a_{n}\left(k_{n} R^{2}-\Phi(R)+\mu_{n}\right) \\
& +2 a_{n} \frac{\Phi(R)}{2}+2 c_{n} M 2 R \\
\leq & R^{2}+2 a_{n}\left[\left(k_{n}-1\right)+\frac{a_{n}}{2}\right] R^{2}-2 a_{n} \Phi(R)+2 a_{n} \mu_{n} \\
& +2 a_{n} \frac{\Phi(R)}{2}+4 c_{n} M R \\
\leq & R^{2}+2 a_{n}\left[\tau_{0}+\frac{\tau_{0}}{2}\right] R^{2}-2 a_{n} \Phi(R)+2 a_{n} \tau_{0} \\
& +2 a_{n} \frac{\Phi(R)}{2}+4 a_{n} \tau_{0} M R \\
\leq & R^{2}-2 a_{n} \Phi(R)+2 a_{n} \frac{\Phi(R)}{2}+a_{n} \tau_{0}\left(3 R^{2}+4 M R+2\right) \leq R^{2},
\end{aligned}
$$

which is a contradiction with the assumption $\left\|x_{n+1}-\rho\right\|>R$. Hence $x_{n+1} \in$ B_{1}, i.e., the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence. From above estimate, the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is also bounded. Since $\left\|z_{n}-\rho\right\| \rightarrow 0$ as $n \rightarrow \infty$, without loss of generality, we let $\left\|z_{n}-\rho\right\| \leq 1$. Therefore $\left\{\left\|x_{n}-z_{n}\right\|\right\}$ is also a bounded sequence.

Thirdly, we will prove that $\left\|x_{n}-z_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Denote

$$
\begin{aligned}
M_{0}= & \sup _{n}\left\{\left\|x_{n}-\rho\right\|\right\}+\sup _{n}\left\{\left\|y_{n}-\rho\right\|\right\} \\
& +\sup _{n}\left\{\left\|u_{n}-\rho\right\|\right\}+\sup _{n}\left\{\left\|v_{n}-\rho\right\|\right\}+\sup _{n}\left\{\left\|x_{n}-z_{n}\right\|\right\}+\sup _{n}\left\{\sigma_{n}\right\}
\end{aligned}
$$

Employing Lemma 2, (12) and (13), we have

$$
\begin{align*}
\left\|x_{n+1}-z_{n+1}\right\|^{2} \leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \tag{14}\\
& +2 a_{n}<T^{n} y_{n}-z_{n}, j\left(x_{n+1}-z_{n+1}\right)>
\end{align*}
$$

$$
\begin{aligned}
= & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \\
& +2 a_{n}<T^{n} x_{n+1}-T^{n} z_{n+1}, j\left(x_{n+1}-z_{n+1}\right)> \\
& +2 a_{n}<T^{n} y_{n}-T^{n} x_{n+1}, j\left(x_{n+1}-z_{n+1}\right)> \\
& +2 a_{n}<T^{n} z_{n+1}-T^{n} z_{n}, j\left(x_{n+1}-z_{n+1}\right)> \\
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \\
& +2 a_{n}\left(k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}\right) \\
& +2 a_{n}\left(\left\|T^{n} x_{n+1}-T^{n} y_{n}\right\|\right)\left\|x_{n+1}-z_{n+1}\right\| \\
& +2 a_{n}\left(\left\|T^{n} z_{n+1}-T^{n} z_{n}\right\|\right)\left\|x_{n+1}-z_{n+1}\right\| \\
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \\
& +2 a_{n}\left(k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}\right) \\
& +2 a_{n} L\left(\left\|x_{n+1}-y_{n}\right\|+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| \\
& +2 a_{n} L\left(\left\|z_{n+1}-z_{n}\right\|+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| .
\end{aligned}
$$

$$
\begin{align*}
\left\|x_{n+1}-y_{n}\right\|= & \|\left(1-b_{n}-d_{n}\right) x_{n}+b_{n} T^{n} x_{n}+d_{n} v_{n} \tag{15}\\
& \left.-\left(1-a_{n}-c_{n}\right) x_{n}-a_{n} T^{n} y_{n}-c_{n} u_{n}\right) \| \\
\leq & a_{n}\left\|x_{n}-T^{n} y_{n}\right\|+b_{n}\left\|x_{n}-T^{n} x_{n}\right\| \\
& +d_{n}\left\|v_{n}-x_{n}\right\|+c_{n}\left\|x_{n}-u_{n}\right\| \\
\leq & a_{n}\left(\left\|x_{n}-\rho\right\|+L\left(\left\|x_{n}-\rho\right\|+\sigma_{n}\right)\right) \\
& +b_{n}\left(\left\|x_{n}-\rho\right\|+L\left(\left\|x_{n}-\rho\right\|+\sigma_{n}\right)\right) \\
& +d_{n}\left(\left\|v_{n}-\rho\right\|+\left\|x_{n}-\rho\right\|\right) \\
& +c_{n}\left(\left\|x_{n}-\rho\right\|+\left\|u_{n}-\rho\right\|\right)
\end{align*}
$$

Observe that

$$
\begin{align*}
\leq & \left((1+L) a_{n}+(1+L) b_{n}+c_{n}+d_{n}\right)\left\|x_{n}-\rho\right\| \tag{16}\\
& +\left(a_{n}+b_{n}\right) \sigma_{n} L+\left(c_{n}+d_{n}\right) M^{*} \\
= & A_{n}\left\|x_{n}-\rho\right\|+B_{n} \\
\leq & A_{n}\left(\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-\rho\right\|\right)+B_{n} \\
\leq & A_{n}\left(\left\|x_{n}-z_{n}\right\|+1\right)+B_{n},
\end{align*}
$$

where

$$
A_{n}=(1+L) a_{n}+(1+L) b_{n}+c_{n}+d_{n}
$$

and

$$
B_{n}=\left(a_{n}+b_{n}\right) \sigma_{n} L+\left(c_{n}+d_{n}\right) M^{*}
$$

In a similar way,

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\| & =\left\|\left(1-a_{n}-c_{n}\right) z_{n}+a_{n} T^{n} z_{n}+c_{n} u_{n}-z_{n}\right\| \tag{17}\\
& \leq a_{n}\left\|T^{n} z_{n}-z_{n}\right\|+c_{n}\left\|u_{n}-z_{n}\right\|
\end{align*}
$$

$$
\begin{aligned}
\leq & a_{n}\left(\left\|z_{n}-\rho\right\|+L\left(\left\|z_{n}-\rho\right\|+\sigma_{n}\right)\right) \\
& +c_{n}\left(\left\|z_{n}-\rho\right\|+\left\|u_{n}-\rho\right\|\right) \\
= & \left(a_{n}(1+L)+c_{n}\right)\left\|z_{n}-\rho\right\|+a_{n} L \sigma_{n}+c_{n} M^{*} \\
= & C_{n}\left\|z_{n}-\rho\right\|+D_{n} \\
\leq & C_{n}+D_{n},
\end{aligned}
$$

where

$$
C_{n}=\left(a_{n}(1+L)+c_{n}\right) \quad \text { and } \quad D_{n}=a_{n} L \sigma_{n}+c_{n} M^{*}
$$

Substituting equations (15) and (16) in (14), we obtain

$$
\begin{align*}
\| x_{n+1}- & z_{n+1} \|^{2} \tag{18}\\
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \\
& +2 a_{n}\left(k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}\right) \\
& +2 a_{n} L\left(A_{n}\left(\left\|x_{n}-z_{n}\right\|+1\right)+B_{n}+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| \\
& +2 a_{n} L\left(C_{n}+B_{n}+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| \\
\leq & \left(1-a_{n}\right)^{2}\left\|x_{n}-z_{n}\right\|^{2} \\
& +2 a_{n}\left(k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}\right) \\
& +2 a_{n} L A_{n}\left\|x_{n}-z_{n}\right\|\left\|x_{n+1}-z_{n+1}\right\| \\
& +2 a_{n} L\left(A_{n}+B_{n}+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| \\
& +2 a_{n} L\left(C_{n}+B_{n}+\sigma_{n}\right)\left\|x_{n+1}-z_{n+1}\right\| \\
\leq & \left\|x_{n}-z_{n}\right\|^{2}+2 a_{n}\left(k_{N}-1\right) M_{o}^{2}+a_{n}^{2} M_{o} \\
& -2 a_{n} \Phi\left(\| x_{n+1}-z_{n+1}\right) \\
& +2 a_{n} \mu_{n}+2 a_{n} A_{n} L M_{o}+\left(A_{n}+B_{n}+\sigma_{n}\right) 2 a_{n} L \\
& +\left(C_{n}+D_{n}+\sigma_{n}\right) 2 a_{n} L M_{o} \\
\leq & \left\|x_{n}-z_{n}\right\|-a_{n} \Phi\left(\| x_{n+1}-z_{n+1}\right)+o\left(a_{n}\right)
\end{align*}
$$

where

$$
\begin{align*}
o\left(a_{n}\right)= & 2 a_{n}\left(k_{n}-1\right) M_{o}^{2}+a_{n}^{2} M_{o}+2 a_{n} \mu_{n}+2 a_{n} A_{n} L M_{o} \tag{19}\\
& +\left(A_{n}+B_{n}+\sigma_{n}\right) 2 a_{n} L+\left(C_{n}+D_{n}+\sigma_{n}\right) 2 a_{n} L M_{o}
\end{align*}
$$

By Lemma 2, we obtain $\left\|x_{n}-z_{n}\right\|=0$ as $n \rightarrow \infty$. That is, $\left\|x_{n}-z_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. From the inequalities $0 \leq\left\|x_{n}-\rho\right\| \leq\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-\rho\right\|$, we get $\left\|x_{n}-\rho\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

Remark 1. Theorem 1 also holds if the nearly weak uniformly L-Lipschitzian mapping (see [6], [9]) and the uniformly L-Lipschitzian mapping ([4], [13]).

3. An equivalence result of the T - stability

The concepts employed for the equivalence of the T-stabilities between modified Ishikawa and modified Mann iterations with errors are similar to those from [10]. The following sequences are well defined for all $n \geq 1$:

$$
\begin{align*}
\epsilon_{n} & :=\left\|x_{n+1}-\left(1-a_{n}-c_{n}\right) x_{n}-a_{n} T^{n} y_{n}-c_{n} u_{n}\right\|, \tag{20}\\
\delta_{n} & :=\left\|z_{n+1}-\left(1-a_{n}-c_{n}\right) z_{n}-a_{n} T^{n} z_{n}-c_{n} u_{n}\right\| . \tag{21}
\end{align*}
$$

Definition 3 (see [4]). If $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ (resp., $\lim _{n \rightarrow \infty} \delta_{n}=0$) implies that $\lim _{n \rightarrow \infty} x_{n}=\rho$ (resp., $\lim _{n \rightarrow \infty} z_{n}=\rho$), then (4) (resp., (3)) is said to be T-stable.

Theorem 2. Let X be a real Banach space, K be a nonempty closed convex subset of X, and $T: K \rightarrow K$ be a nearly weak uniformly L-Lipschitzian mapping with $\rho \in F(T)=\{\rho \in K: T \rho=\rho\} \neq \emptyset$ and sequences $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$, $k_{n} \subset[1, \infty)$ and μ_{n} such that $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} \mu_{n}=0$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{c_{n}\right\}_{n=1}^{\infty}$ satisfy (5), and $x_{1}=z_{1} \in K$. Suppose that there exists a strictly increasing function $\Phi:[0, \infty) \rightarrow[0, \infty)$ with $\Phi(0)=0$ such that

$$
\begin{aligned}
& <T^{n} x_{n+1}-T^{n} z_{n+1}, j\left(x_{n+1}-z_{n+1}\right)> \\
& \quad \leq k_{n}\left\|x_{n+1}-z_{n+1}\right\|^{2}-\Phi\left(\left\|x_{n+1}-z_{n+1}\right\|\right)+\mu_{n}
\end{aligned}
$$

for all $n \geq 0$, where $j\left(x_{n+1}-z_{n+1}\right) \in J\left(x_{n+1}-z_{n+1}\right)$, then the following are equivalent:
(i) the modified Mann iteration with errors (4) is T-stable,
(ii) the modified Ishikawa iteration with errors (3) is T-stable.

Proof.The proof follows easily using Definition 3 and the assurance of Theorem 1.

Acknowledgments. The first author undertook this work while on leave at Augustine University, Nigeria and the second author was supported by the Basic Science Research Program through the National Research Foundation (NRF) Grant founded by the Ministry of Education of the republic of Korea (2018 R1 D1 A1B07045427).

References

[1] Banerjee S., Choudhury B.C., The equivalence between the convergences of Ishikawa and Mann iterations for an ϕ - strongly pseudocontractive operators, Nonlinear Funct. Analy. and Appl., 12(1)(2007), 61-74.
[2] Chang S., Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129(2000), 845-853.
[3] Chang S.S., Cho Y.J., Kim J.K., Some results for uniformly L-Lipschitzian mappings in Banach spaces, Appl. Math. Lett., 22(2009), 121-125.
[4] Harder A.M., Hicks T.L., Stability results for fixed point iteration procedures, Math. Japon., 33(1988), 693-706.
[5] Ishikawa S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150.
[6] Kim J.K., Sahu D.R., Nam Y.M., Convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ-hemicon- tractive mappings, Nonl. Anal., 71(2009), e2833- e2838.
[7] Mann W.R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-610.
[8] Mogbademu A.A., A convergence theorem for Multistep iterative scheme for nonlinear maps, Publ. Inst. Math. (Beograd) (N.S.), 98(112) (2015), 281-285.
[9] Mogbademu A.A., Strong convergence results for nonlinear mappings in Banach spaces, Creat. Math. Inform., 25(1)(2016), 79-85.
[10] Mogbademu A.A., Fixed points of nearly weak uniformly L-Lipschitzian mappings in real Banach spaces, Creat. Math. Inform., 27(1)(2018), 63-70.
[11] Mogbademu A.A., Ishikawa iteration with errors for nearly weak uniformly L-Lipschitzian mappings, Transyvania J. Math. Mech., 10(1)(2018), 23-30.
[12] Moore C., Nnoli B.C., Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Computers and Mathematics with Applications, 42(1-2)(2001), 131-140.
[13] Ofoedu E.U., Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl., 321(2006), 722-728.
[14] Rhoades B.E., Soltuz S.M., The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonl. Anal.: Theory, Methods and Applications, 58(2004), 218-228.
[15] Sahu D.R., Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae, 46(4)(2005), 653-666.

A. A. Mogbademu

Department of Mathematics
University of Lagos
Lagos, Nigeria
e-mail: amogbademu@unilag.edu.ng

J. K. Kim
Department of Mathematics Educations Kyungam University
Masan, Kyungnam, Republic of Korea
e-mail: jongkyuk@kyungnam.ac.kr

Received on 09.05.2019 and, in revised form, on 29.06.2019.

[^0]: * This paper is dedicated to my dearest mother Mrs. F. M. Mogbademu on her 75th Birthday.

