FASCICULI MATHEMATTICI
Nr 62 2019

DOI: 10.21008/j.0044-4413.2019.0010

YUTAKA SHOUKAKU

OSCILLATION CRITERIA FOR HIGHER ORDER
DIFFERENTIAL EQUATIONS WITH POSITIVE
AND NEGATIVE COEFFICIENTS

ABSTRACT. A new sufficient conditions for the oscillation of all
solutions of higher order neutral delay differential equations with
positive and negative coeflicients are given. Because, we did not
find a paper which gave conditions to guarantee the existence of
oscillatory solutions for those equations with positive and neg-
ative coefficients. The main distinguishing feature of results is
oscillation theorems for all solutions of those homogeneous or
non-homogeneous neutral equations are derived. These oscillation
criteria extend and improve the results given in the recent papers.
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1. Introduction

In this paper we consider the oscillation of the higher order neutral delay
differential equations

l (N)
(E+) )izhz‘( ]
+Zpl (t)G1(x ZQz (t)G2(z(vi(t))) =0, t >0
(N)
(Ex) )izhi( ]
i—1
+) )G (Bi(1) = > ai(t)Ga(x (i) = f(t), >0
=1 i=1

where (V) (¢t) = dNz/dt", and N is an integer N > 2. Throughout, we
assume that the following hypotheses are satisfied:
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(H1) hi(t)(i=1,2,...,1) € CN([0,00); [0, 20)),

pi®)(i=1,2,....m), ¢i(t)(i=1,2,...,n) € C(]0,0);[0,00)),
f(t) € C(]0,00);R), R is real line;

(H2) «i(t) € C([0,00); R), tli)rgoai(t) =00, ai(t) <t (i=1,2,...,1),
Bi(t) € C([0,00); R), tligloﬁi(t) =00, Bi(t) <t (i=1,2,...,m),
7i(t) € C([0,00); R), tli%oyi(t) =00, 7i(t) <t (i=1,2,...,n);

(H3) hi(t) < h; (i=1,2,...,1), where h; are nonnegative constants;
(H4) Gi(§) € C(R;R), uGi(u) > 0 (i = 1,2) for u # 0, G1(£) is nondecre-
asing and there exists positive constants M such that

lim inf Ga(u)

|u| =00 U

< M;

(H5) there exist a bounded function F(t) € CN([0,00);R) such that
1tli}m FO@)=0(i=0,1,...,N), where

F(t) =/;o/:---/:f@)dsds]v_l--dsl.

Definition 1. By a solution of (Ex) (or (E+)) we mean a_continuous
function x(t) which is defined for t > T, and satisfies (Ex) (or (Ex)), where
T = min{«, 5,7} and

«=inf {mi o} 5 =i min, H0 . = inf | i 20}
Definition 2. A solution of (E+) (or (E+)) is called oscillatory if it has
arbitrary large zeros, otherwise, it is called nonoscillatory.

Lemma 1 ([8], p.193). Let u(t) € CN(]0,0);R) be of constant sign and
not identically zero on any interval [T,00), T > 0, and u™) (t)u(t) < 0.
Then there exists a number Ty > 0 such that the function v9)(t) (j =
1,2,...,N—1) are of the constant sign on [Ty, 00) and there exists a number
jo € {1,3,...,N — 1} when N is even or jo € {0,2,4,...,N — 1} when N
s odd such that

u(t)uD(t) >0 for j=0,1,2,...,7j0,
(=DN () () >0 for j=jo+1,...,N -1

Lemma 2 ([1], p.169). If u(t) is an N-times differentiable function on
[T, 00) with u(m (t) of constant sign on [T, 00) , then for anyi=0,1,...,N—
2 with tlim u(t) = ¢, c € R, it follows that tlim w (1) = 0.

—00 —00
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The oscillation and asymptotic behavior of homogeneous or non-homo-
geneous differential equations with positive and negative coefficients has
been widely studied by numerous authors (see, [2]-[8], [10]-[17]).

In 2008, Kurpuz, Padhy and Rath [8] studied higher order neutral dif-
ferential equations with positive and negative coefficients (E), and they
obtained various sufficient conditions for the oscillation of solutions of (E.).
However, they were not established the oscillatory conditions for all solu-
tions of higher order neutral differential equations with positive and negative
coefficients (E4).

Our aim in this paper, we derive the sufficient conditions for the oscilla-
tion of all solutions of higher order neutral delay differential equations with
positive and negative coefficients (E4) and (E.), and improve the results of
[8]. As a consequence, we success to erase restrictive conditions of oscillatory
solution of (E.), and establish the new oscillation criteria.

2. Oscillatory solutions of the equations (E.)

Theorem 1. If for some j € {1,2,...,m}

1) | pitsris =
&) Z [ @ s <

then every solution of (Ey) oscillates.

Proof. Suppose that z(t) is a nonoscillatory solution of (E;). Without
any loss of generality, we assume that z(t) > 0, t > t( for some ¢ty > 0. We
set

(3) = +Zh

/ / /Nl §)Ga(w((€)))deds 1
zx(t)+(—1)N;/to /°° /:: 4 () Ca(7s(€)))dedsn 1 - - - dsy

for t > to. Differentiating the above equation N-times and noting (E.)
yields

4) M) = Zqz )Ga(x sz )G1(z(Bi(t)),
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which can be rewritten as

(5) AN () < —p; (G (x(B;(1)) <0, t > to

for some j € {1,2,...,m}. Hence, 2(N)(t) is nonincreasing. By applying
Lemma 1, we see that z(t),2/(t),...,2N=1(t) are monotonic and single
sign for t > tg. |

If NV is odd, then

- g/t: /Sjo/sj_l qi(§)G2(x(vi(§)))dEdsn—1 - - - ds1

tlggo 2(t) = p € [—o0, 9]

and

exists, because of the monotonic property of z(t).
Case 1. p € [—00,0). If () is not bounded from above, there exists a
number T > ty such that

max z(t) = z(T).

Thus we see that
(6) (Zh

—MZ/t / / §)dédsy—1---ds 1) z(T) > 0,

which is a contradiction. Hence, z(t) is bounded from above. There exists
a positive constant L such that

(7) z(t) <L and L = limsupxz(t),

t—o00

and so,

2(t) > MLZ/ / / €)dédsy—1 -+ - ds1.

Taking the superior limit as ¢ — oo yields

(8) lim (t) (1—MZ/ / / €)dedsn— 1---dsl>L20.
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This is a contradiction.

Case 2. pu = 0. If z(t) > 0 and 2/(¢t) > 0, there exists a constant
ko > 0 such that z(t) > ko, which contradicts p = 0. Therefore 2/(t) < 0. If
Z/(t) < 0 and 2”(t) < 0, then 2/(t) < —ko. Integrating 2/(t) < —ko, we see
that tlgglo z(t) = —oo. This is a contradiction, and so, z”(t) > 0. Proceeding

as the above, we obtain
(=1)'2()29 ) >0 (i =1,2,...,N —1).
Using this fact and Lemma 2, we obtain
tli)réloz(i) =0(i=0,1,...,N—1).
Furthermore, (6) and (8) implies that
(9) Jlim x(t) =0,

which lead to tlim X(t) = 0. From (9) we see that
—00

(10) 0<z(t)<e

for some sufficiently small € > 0. On the other hand, it follows from (3) that

(1) < X'(t) < 2t +eMZ// / §)dedsy_ - dss,

and

- 5MZ / / / §)dedsn_y - -ds3 < X" (t) < 2"(t).

Repeating the same method as in the above proof, we can show that

lim XO () =0 (i=0,1,...,N —1).

t—o00

Integrating (E4) and (4), N times from ¢ to oo, we obtain (cf. [7])

Z / A G CTONE TR
+§j [ a0t dn =0
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and

0+ [ [ G (B dedsy— - dsy = 0.
SR

Since

2(t) < X (1)
holds, it is easy to see that

;/t /51 /5qu 2 g N-1 1

which is a contradiction.

Case 3. u € (0,00]. Then it is easy to see from Lemma 1 that

XNy >0, 6>t
for some t; > tg. There exists a constant k1 > 0 such that
2(t) > ki, t > 1o

for some to > t;. Then we see from z(t) < X(t) that

l

ky < z2(t) <a(t)+ > hia(o(t)).

=1

Taking inferior limit as ¢ — oo yields

l
ky < (1 + Z hi> lim inf z(t),

=1

that is,

(12) w(B(1) > 5L 1> 1

for some t3 > t9. Integrating (5) over [t3,t] yields

1) 6 () [ s <D0+ ) < o

This contradicts the condition (1).
Proof. If N is even, then

a9 =0 =x0+3 [ [ @) dedsy_ -
;/to /51 /SN_IQ 2{ Y N-1

'd81.
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and z(t) > 0. It follows from Lemma 1 that
Zt)>0 and zN7V() >0, >t
Since z(t) > 0 and 2/(t) > 0, there exists a constant ko > 0 such that
2(t) > ko, t > to.

Substituting z(t) > x(t) into (14) and noting 2'(¢) > 0, we obtain

+MZ/t/S / (©))dédsy—1 -+ dsi
t>+Mz<t>; / | e / (€ d

Obviously we see that

Ko = ko (1—MZ/t / / &)dedsy_y - - - ds 1) < X(1).

Taking inferior limit, we show that

l
Ko < (1 +Y hi> lim inf a(t).

i=1

z(t)

| /\

IN

This means that
Ky

litminfx(t) >\ = Ky,
L (FSaTy
that is, (12) holds. Integrating (5) over [t3, ] yields (13), which contradicts
the condition (1). We complete the proof of the theorem. |

3. Oscillatory solutions of equation (E_)

Theorem 2. If (1) for some j € {1,2,...,m} and
if N is odd:

Zh+MZ// / §)dédsy_1 -+ -ds; < 1,

if N is even:

MZ// / €)dédsy_1 -- d31<zzl:

then every solution of (E_) oscillates.

\
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Proof. Let x(t) be a nonoscillatory solution of (E_). Without loss of
generality, we assume that x(t) > 0, t > ¢, for some to > 0. Putting

(15) w Zh

> / / / (s - dsy

YO COYY / / / Gi(6)Ga(@((€)))dedsy_y -+ ds
i=1 Jto Y1 SN-1

Differentiating (15) N-times and combining (E_), we obtain

(16) w™M () = ZQz (t)Ga(z sz (t)G1(z(Bi(t)))

This can be rewritten

(17) wM(t) < (DG ((8;(1)) <0, t > to

for some j € {1,2,...,m}. Then we conclude that w™)(t) is nonincreasing.
Clearly, w(t), w'(t),...,wN=1(t) are monotonic and single sign for t > t,. W

If NV is odd, then

- ; /tt / OO - :O G(E)Ga(x((E))dedsn 1 - dsy

and tlim w(t) = p € [—o0, 0] exists.
—00
Case 1. p € [—00,0). If () is not bounded from above, there exists a
sequence {t5}2 ; such that

(18) lim t; =00 and max z(t) = z(t5).

=00 t <t<tpn

Then we have

(1—Zh —MZ/ / / §)dédsy_1 - - - ds 1) z(tr).

Taking the limit as n — oo yields
nh_)rrolo w(t (1 — Z h;

_MZ/ / / €)dédsy_1 -+ ds )nllr{:ox(tﬁ) >0,
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which contradicts the assumption. Hence z(t) is bounded from above. There
exists a constant L > 0 such that (7) holds. Then we have

LZh —MLZ/ / / §)dédsy_y - - - dsy.

Taking superior limit as t — oo yields

lim w(t)

t—o0

(1—Zh—MZ/ / / E)dedsy 1 d1>Lzo,

which is a contradiction.
Case 2. = 0. By the same proof of Theorem 1, we observe that

(—D'w®)wD @) >0 (i=1,2,...,N=1), t > t;
for some t1 > tg, and
tlgrolo:n(t) tlg(r)low (t)=0((G=0,1,...,N —1).

From the definition of Y'(t) we obtain

l
— " haa(au(t) < V() < a(0),
=1

which implies that tlirn Y (t) = 0. Now, there exists a small number ¢ > 0
—00
such that (10). Then we show that

w'(t) <Y'(t) <w'(t +5MZ// / &)dédsn_1 - - dss,

and

— 5MZ/ / / E)dédsy_q - -ds3 < Y"(t) < w'(t).

Repeating the same method as in the above, we have

lim YO @#) =0 (i=0,1,...,N —1).

t—o0
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Integrating (16) and (E;) N-times, we have
19 Y Y i (&)G i dédsy_1---d
19 vO+Y [ [ peoienasisas

D) Y R C R

and
o) wt) -3 [ [ [ p©C i) deds 1 -+ dsi =0,
> A ot

Combining (19), (20) and w(t) < Y (¢), we obtain the contradiction (11).
Case 3. u € (0,00]. It follows from Lemma 1 that

wN D) >0, t >ty

for some ty > tg. There exists a constant kg > 0 and a number t3 > t5 such
that
x(t) > w(t) > ko, t > ts,

which implies that (12) holds. By integrating (17) we obtain the contradic-
tion

(21) Gy (l;l) /ttpj(s)ds < —wN D) + wN D (3) < 0.

Proof. If N is even, then
n t roo 0
ICEIUEDY L[ [ aoeetuededs-dn

and tlim w(t) = p € [—o0, 0] exists.
—00
Case 1. p € [—00,0). If z(t) is not bounded from above, then there
exists a sequence {tz}>2; such that (18) holds. Hence we have

l
w(ts) > (1 -> hz-) a(ta),

that is,

g, wlin)

v
~/
—_
|
S
N~
i

gE
&
-
\z_l/
V
o
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as i — oo. This is a contradiction. Therefore, x(t) is bounded from above.
There exists a positive constant L satisfying (7). Then

l

w(t) > x(t) = LY hi.

=1

By taking superior limit as t — oo, we obtain

l
1 > — ; >
tlggo w(t) > <1 Z;hl) L >0,

which is a contradiction.

Case 2. = 0. Applying the same proof of the case when N is odd, we
can lead to a contradiction.

Case 3. 1 € (0,00]. It follows from Lemma that w® =1 > 0. There
exists a constant kg > 0 such that w(t) > ko. If 2(¢) is not bounded from
above, there exists a sequence {t,,}>° ; satisfying (18). Then

ko < (1+MZ/ / / €)dédsy_ - ds )wn)

< 2x(ty),

which means that (12) holds. Thus we can lead to the contradiction (21).
Therefore, z(t) is bounded from above. There exists a constant L > 0 such
that (7) holds. Then

ko < xz(t) thaz

—i—MLZ/ / / §)dédsy—1 -+ dsi.

Taking inferior limit as ¢ — oo, we observe that

ko < liminfz(t)

t—o0
l
+ (MZ/ / / €)dedsn_1 - dsl—Zh,)L
=1
ok
< htrgégfaj( ),

which implies that (12) is satisfied, moreover, (21) holds. This is a contra-
diction. Therefore, we complete the proof. |
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4. Oscillatory solutions of equations (E.)

Theorem 3. If (1) for some j € {1,2,...,m}, and (2) holds, then every
solution of (E4) oscillates.

Proof. Suppose that z(t) is a nonoscillatory solution of (E;). We may
assume that z(t) > 0, t > to for some tg > 0. In view of (H5) there exists a
ep > 0 such that F(t) < ep. If we now define

(23) Z(t)=z(t)+ F, t > ty,
where

= | F(t), N is odd,
(24) F= { —F(t)+ep, N iseven

for sufficiently large ¢; > to. Differentiating (23) N-times and substituting
(E4), we obtain

(25) ZM(t) = XM(t) =Y ai()Ga(x((t)) - ()
=1
i=1

which can be rewritten as follows
(26) ZWN(t) = —p;(t)G1((B;(t)) <0, t >t

for some j € {1,2,...,m}. Then we conclude that Z(")(¢) is nonincreasing,
and Z(t), Z'(t),..., ZN=1(t) are monotonic and single sign for t > ¢;. W

If N is odd, then

Z(t) = X)) -3 / / T / GO Cala(n(E)))deds 1 - dsy + (1)
i=1 Jto 1 SN—1

s

and tlirn Z(t) = p € [—00, 00] exists.
— 00
Case 1. p € [—00,0). If (t) is not bounded from above, there exists a
sequence {tp}2°; such that (18) holds. Hence we see that

Z(t) > (1 - MZ/OOO/OO- --/OO qi(g)dgdsN_l---dm) 2(tn) + F(tn).
i—1 51 SN—1
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Taking limit as 7 — oo, we obtain

n—oo

(1 - MZ/ / / €)dédsy_ - d51> Jim (tz) > 0,

which is a contradiction. Consequently, z(t) is bounded from above. There
exists a positive constant L such that (7) holds. Then we have

Z(t) > MLZ/ / / §)dedsn_1 - ds; + F(t).

Taking superior limit as ¢ — oo yields

lim Z(t) (1—MZ/ / / €)dédsn_1 - - d1>L20.

This is a contradiction.
Case 2. p = 0. From the same proof of Theorem 1, it follows that

lim z(t) = lim X(t) = tli)rgoZ(i) =0(i=0,1,...,N—1).

t—o00

Thus there exists a small number € > 0 such that (10). Hence we see that

Z'(t) - F'(t)

IN

X'(t)

< +5MZ / / / §)dedsn_y - - - dsa,

Z"(t 5MZ / / / €)dédsy_1 - --ds3 — F"(t)

< X//( ) < Z// F//(

/\

and

By the similar proof of Theorem 1, we state that
lim X® () =0 (i=0,1,...,N —1).

t—o00

Integrating (25) and (E) N-times yields

Z / [ [ oo @) s

+ o | a(©Ga(@(i(€)dedsn - - - dsy = —F (1)
;/t /51 /SN_1q 2T\, N-1 1
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and
Z(t) — E i(&)G1(x(Bi(§)))dEdsy—1 -+ -ds1 = 0.
iZl/t\ \/51 /SN_lp ! ! !

Substituting the above equations into
Z(t) < X(t) + F(t),

we can lead to the contradiction (11).
Case 3. p € (0,00]. From Lemma we see that

ZNV@)y >0, t >4
for some t1 > tg. There exists a constant kg > 0 such that
Z(t) > ko, t >t
for some to > t1. Then we see that
ko < X(t)+ F(t)

l
< z(t)+ > hiw(ai(t)) + F(t).
=1

Taking inferior limit as ¢ — oo yields (12) holds. By integrating (26) over
[t2,t], we have

t
2 (21) / pi(s)ds < —ZN "D (k) + 2NV (1) < o,
to

which is a contradiction.

Proof. If N is even, then

Z(t) = X(t) + T[T GO n(e))deds - ds
;/to /51 /SN_IQ AT N-1 1
—F(t)—i—EF,

which means that Z(t) > x(t) > 0. Using the similar proof of Theorem 1,
we can prove the rest part of this proof, and hence we omit its proof. We
complete the proof of Theorem. [ |



OSCILLATION CRITERIA FOR HIGHER ORDER ... 135

Example 1. Consider the equation

(27) x(t) + zx(t — w)] W + <i + e_t> x(t — 3)

1
- §e_t:v(t —m) = —ie_t cost, t > 0.

It is easy to see that all conditions of Theorem 3 holds. Therefore, every
solutions of (27) oscillates. In fact, x(¢) = cost is such a solution.

5. Oscillatory solutions of equations (E_)

Theorem 4. If all the conditions of Theorem 2 hold, then every solution
of (E_) oscillates.

Proof. Suppose that z(t) is a nonoscillatory solution of (E_). We may
assume that z(t) > 0, t > to for some ¢y > 0. The function W (¢) defined
with

(28) W(t)=wlt)+F, t>t,

where F is defined by (24). Differentiating (28) N-times and using (E_),
we obtain

(29) W (@) = YN (@) = > ai(t)Gala(vi(1))) — f(2)
=1

— =3 nG (B D).
i=1

Rewrite (29) in the form
(30) W (E) < —ps ()G (2(5(6))) < 0, ¢ > to,

for some j € {1,2,...,m}. Therefore, W (t), W'(t),..., W=D (t) are mono-
tonic and single sign for ¢ > t;. |

If N is odd, then

S

W=y -3 / / T / (&) Cala(n(€))deds 1 - ds + F(1)
i=1 Yto Js1 SN-1

and lim W (t) = p € [—00, 00| exists.

t—o00
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Case 1. p € [—00,0). If () is not bounded from above, there exists a
sequence {t5}22 satlsfymg (18). Then we obtain

W(tn) > (1—Zh

—MZ/ / / §)dedsy_y - - ds 1) x(tn) + F(ts).

Taking limit as n — oo yields
A Wt (1 - Z b
_ MZ/ / / &)dédsn—_1 - d81> ﬁ11_>ngo x(tz) >0,

which is a contradiction. Next, we assume that z(t) is bounded from above.
There exists a positive constant L such that (7) holds. Then it is clear that

l
W(t) > z(t)— L Z hi

—MLZ/ / / §)dédsy_y -~ - ds; + F(t),

and taking superior limit as ¢ — oo yields
> _
B W) = (1 Z h

—MZ/ / / &)dédsn_1 - - dl)LZO.

This is a contradiction.
Case 2. 1 = 0. From the same proof of Theorem 2, we see that (10) and

lim z(¢) = lim Y (¢) = lim W) =0 (i=0,1,...,N —1).

t—o00 t—o00 t—o00

for sufficiently small £ > 0. Hence, we obtain

W'(t) — F'(t) <Y'(t)

<W'(t +5MZ// / §)dedsn_y - - - dsy — F'(t)
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and

W"(t) —eM Z / / €)dedsy_y - --dss — F"(t)
< Y//( ) < W/I F//
From the same proof of Theorem 2 we have

lim YO@#) =0 (i=0,1,...,N —1).

t—o0

Integrating (29) and (E_) N-times and noting W (t) < Y(t) + F(t), we
obtain (11), which is a contradiction.
Case 3. p € (0,00]. It follows from Lemma 1 that

WD) >0, t >ty
for some to > t1. There exists a constant kg > 0 such that
z(t) + F(t) > W(t) > ko, t > ta.

By taking inferior limit as t — oo, we show that (12) holds for some t3 > to.
Therefore we obtain the contradiction

(31) Gy <k;> /t pi(s)ds < —WWN V@) 1 WD (13) < o0

by integrating (30) over [t3,].

If N is even, then

1=1 /tO /31 /SNI N

and tlim W (t) = p € [—00, 00| exists.
—00
Case 1. p € [—00,0). If x(¢) is not bounded from above, there exists a
sequence {t7}2° Such that (18) holds. Hence we obtain

!
W (tn) > <1 - th> z(th
=1

that is,
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This is a contradiction. Therefore x(t) is bounded from above. There exists
a constant L > 0 satisfies (7). It is obvious that

Taking superior limit as ¢ — oo yields

l
i > 11— - >
lim W(t) > (1 ; hl) L >0,

which is a contradiction.
Case 2. p = 0. From the same proof of the case when NN is odd, we
obtain
lim YO () = lim WO(t) =0 (i=0,1,...,N —1).
t—o00

t—o00

Integrating (29) and (E_) N times and noting W (t) > Y (t) — F(t) +ep, we
can lead to the contradiction

ep> Zl /t h / °O . / :O Gi(6) Gaa((€)))dedsy 1 -+ dsy.

Case 3. 1 € (0,00]. There exists a constant k; > 0 such that
W(t) > ki, t >y

for some t4 > to. If (¢) is not bounded from above, there exists a sequence
{tn}52, such that (18) is satisfied. Then we obtain

(1 +Mzn:/ooo /OO . ”/00 qi(§)dédsy 1 - - 'd81> x(tn)
i=1 51 SN-1

— F(tn) +er
2x(tn) — F(tn) + €p.

k1

IN

IN

Proof. Taking limit as 7 — oo yields

. (k1 —¢r)
-y > -~ 7
A, T 2 7
for k1 > ep > 0. If we choose ep = ki/2, then we see that (12) holds.
Taking the account into W=D (¢) > 0, we obtain the contradiction (31).
Hence, x(t) is bounded from above. Applying the same proof of Theorem 2,
we can lead to a contradiction. Therefore we complete the proof. |
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Example 2. Consider the equation

(32)

1 " 1 . 3
x(t) — 53:(75—277) —1—5 (1—e™")a(t— §7T)
1 1
- Ze_tx(t - g) = —le_t cost, t > 0.

It is easy to see that all conditions of Theorem 4 holds. Therefore, every
solutions of (32) oscillates. In fact, x(¢) = sint is such a solution.
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