F A S C I C U L I M A T H E M A T I C I

Yutaka Shoukaku

OSCILLATION CRITERIA FOR HIGHER ORDER DIFFERENTIAL EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

Abstract

A new sufficient conditions for the oscillation of all solutions of higher order neutral delay differential equations with positive and negative coefficients are given. Because, we did not find a paper which gave conditions to guarantee the existence of oscillatory solutions for those equations with positive and negative coefficients. The main distinguishing feature of results is oscillation theorems for all solutions of those homogeneous or non-homogeneous neutral equations are derived. These oscillation criteria extend and improve the results given in the recent papers. KEY words: oscillation criteria, higher order, delay differential equations, positive and negative coefficients.

AMS Mathematics Subject Classification: 34C10, 34K11, 34K40.

1. Introduction

In this paper we consider the oscillation of the higher order neutral delay differential equations

$$
\begin{aligned}
\left(\mathrm{E}_{ \pm}\right) \quad[x(t) & \left. \pm \sum_{i=1}^{l} h_{i}(t) x\left(\alpha_{i}(t)\right)\right]^{(N)} \\
& +\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)=0, t>0 \\
\left(\tilde{\mathrm{E}}_{ \pm}\right) \quad & {\left[x(t) \pm \sum_{i=1}^{l} h_{i}(t) x\left(\alpha_{i}(t)\right)\right]^{(N)} } \\
& +\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)=f(t), t>0
\end{aligned}
$$

where $x^{(N)}(t) \equiv d^{N} x / d t^{N}$, and N is an integer $N \geq 2$. Throughout, we assume that the following hypotheses are satisfied:
(H1) $h_{i}(t)(i=1,2, \ldots, l) \in C^{N}([0, \infty) ;[0, \infty))$,

$$
p_{i}(t)(i=1,2, \ldots, m), q_{i}(t)(i=1,2, \ldots, n) \in C([0, \infty) ;[0, \infty))
$$

$$
f(t) \in C([0, \infty) ; \mathbb{R}), \mathbb{R} \text { is real line }
$$

$(\mathrm{H} 2) \alpha_{i}(t) \in C([0, \infty) ; \mathbb{R}), \lim _{t \rightarrow \infty} \alpha_{i}(t)=\infty, \alpha_{i}(t) \leq t \quad(i=1,2, \ldots, l)$, $\beta_{i}(t) \in C([0, \infty) ; \mathbb{R}), \lim _{t \rightarrow \infty} \beta_{i}(t)=\infty, \quad \beta_{i}(t) \leq t \quad(i=1,2, \ldots, m)$, $\gamma_{i}(t) \in C([0, \infty) ; \mathbb{R}), \lim _{t \rightarrow \infty} \gamma_{i}(t)=\infty, \quad \gamma_{i}(t) \leq t(i=1,2, \ldots, n) ;$
(H3) $h_{i}(t) \leq h_{i}(i=1,2, \ldots, l)$, where h_{i} are nonnegative constants;
(H4) $G_{i}(\xi) \in C(\mathbb{R} ; \mathbb{R}), u G_{i}(u)>0(i=1,2)$ for $u \neq 0, G_{1}(\xi)$ is nondecreasing and there exists positive constants M such that

$$
\liminf _{|u| \rightarrow \infty} \frac{G_{2}(u)}{u} \leq M
$$

(H5) there exist a bounded function $F(t) \in C^{N}([0, \infty) ; \mathbb{R})$ such that $\lim _{t \rightarrow \infty} F^{(i)}(t)=0(i=0,1, \ldots, N)$, where

$$
F(t)=\int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N}}^{\infty} f(\xi) d \xi d s_{N-1} \cdots d s_{1}
$$

Definition 1. By a solution of $\left(\mathrm{E}_{ \pm}\right)\left(\right.$or $\left.\left(\tilde{\mathrm{E}}_{ \pm}\right)\right)$we mean a continuous function $x(t)$ which is defined for $t \geq T$, and satisfies $\left(\mathrm{E}_{ \pm}\right)$(or $\left(\tilde{\mathrm{E}}_{ \pm}\right)$), where $T=\min \{\alpha, \beta, \gamma\}$ and

$$
\alpha=\inf _{t>0}\left\{\min _{1 \leq i \leq l} \alpha_{i}(t)\right\}, \beta=\inf _{t>0}\left\{\min _{1 \leq i \leq m} \beta_{i}(t)\right\}, \gamma=\inf _{t>0}\left\{\min _{1 \leq i \leq n} \gamma_{i}(t)\right\}
$$

Definition 2. A solution of $\left(\mathrm{E}_{ \pm}\right)\left(\right.$or $\left.\left(\tilde{\mathrm{E}}_{ \pm}\right)\right)$is called oscillatory if it has arbitrary large zeros, otherwise, it is called nonoscillatory.

Lemma $1\left([8]\right.$, p.193). Let $u(t) \in C^{N}([0, \infty) ; \mathbb{R})$ be of constant sign and not identically zero on any interval $[T, \infty), T \geq 0$, and $u^{(N)}(t) u(t) \leq 0$. Then there exists a number $T_{0} \geq 0$ such that the function $u^{(j)}(t)(j=$ $1,2, \ldots, N-1)$ are of the constant sign on $\left[T_{0}, \infty\right)$ and there exists a number $j_{0} \in\{1,3, \ldots, N-1\}$ when N is even or $j_{0} \in\{0,2,4, \ldots, N-1\}$ when N is odd such that

$$
\begin{aligned}
& u(t) u^{(j)}(t)>0 \text { for } \\
& j=0,1,2, \ldots, j_{0} \\
&(-1)^{N+j-1} u(t) u^{(j)}(t)>0 \text { for } \\
& j=j_{0}+1, \ldots, N-1 .
\end{aligned}
$$

Lemma 2 ([1], p.169). If $u(t)$ is an N-times differentiable function on $[T, \infty)$ with $u^{(N)}(t)$ of constant sign on $[T, \infty)$, then for any $i=0,1, \ldots, N-$ 2 with $\lim _{t \rightarrow \infty} u^{(i)}(t)=c, c \in \mathbb{R}$, it follows that $\lim _{t \rightarrow \infty} u^{(i+1)}(t)=0$.

The oscillation and asymptotic behavior of homogeneous or non-homogeneous differential equations with positive and negative coefficients has been widely studied by numerous authors (see, [2]-[8], [10]-[17]).

In 2008, Kurpuz, Padhy and Rath [8] studied higher order neutral differential equations with positive and negative coefficients ($\tilde{\mathrm{E}}_{ \pm}$), and they obtained various sufficient conditions for the oscillation of solutions of ($\tilde{\mathrm{E}}_{ \pm}$). However, they were not established the oscillatory conditions for all solutions of higher order neutral differential equations with positive and negative coefficients ($\tilde{E}_{ \pm}$).

Our aim in this paper, we derive the sufficient conditions for the oscillation of all solutions of higher order neutral delay differential equations with positive and negative coefficients ($\mathrm{E}_{ \pm}$) and ($\tilde{\mathrm{E}}_{ \pm}$), and improve the results of [8]. As a consequence, we success to erase restrictive conditions of oscillatory solution of ($\tilde{\mathrm{E}}_{ \pm}$), and establish the new oscillation criteria.

2. Oscillatory solutions of the equations ($\mathrm{E}_{ \pm}$)

Theorem 1. If for some $j \in\{1,2, \ldots, m\}$

$$
\begin{equation*}
\int_{0}^{\infty} p_{j}(s) d s=\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}<\frac{1}{M} \tag{2}
\end{equation*}
$$

then every solution of $\left(\mathrm{E}_{+}\right)$oscillates.
Proof. Suppose that $x(t)$ is a nonoscillatory solution of $\left(\mathrm{E}_{+}\right)$. Without any loss of generality, we assume that $x(t)>0, t \geq t_{0}$ for some $t_{0}>0$. We set
(3) $z(t)=x(t)+\sum_{i=1}^{l} h_{i}(t) x\left(\alpha_{i}(t)\right)$

$$
\begin{aligned}
& +(-1)^{N} \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
= & X(t)+(-1)^{N} \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}
\end{aligned}
$$

for $t \geq t_{0}$. Differentiating the above equation N-times and noting (E_{+}) yields

$$
\begin{equation*}
z^{(N)}(t)=X^{(N)}(t)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)=-\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right) \tag{4}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
z^{(N)}(t) \leq-p_{j}(t) G_{1}\left(x\left(\beta_{j}(t)\right)\right) \leq 0, t \geq t_{0} \tag{5}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, m\}$. Hence, $z^{(N)}(t)$ is nonincreasing. By applying Lemma 1, we see that $z(t), z^{\prime}(t), \ldots, z^{(N-1)}(t)$ are monotonic and single sign for $t \geq t_{0}$.

If N is odd, then

$$
z(t)=X(t)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}
$$

and

$$
\lim _{t \rightarrow \infty} z(t)=\mu \in[-\infty, \infty]
$$

exists, because of the monotonic property of $z(t)$.
Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, there exists a number $T \geq t_{0}$ such that

$$
\max _{t_{0} \leq t \leq T} x(t)=x(T)
$$

Thus we see that
(6) $\quad z(T) \geq\left(\sum_{i=1}^{l} h_{i}(T)\right.$

$$
\left.-M \sum_{i=1}^{n} \int_{t_{0}}^{T} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x(T) \geq 0
$$

which is a contradiction. Hence, $x(t)$ is bounded from above. There exists a positive constant L such that

$$
\begin{equation*}
x(t) \leq L \quad \text { and } \quad L=\limsup _{t \rightarrow \infty} x(t) \tag{7}
\end{equation*}
$$

and so,

$$
z(t) \geq x(t)-M L \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}
$$

Taking the superior limit as $t \rightarrow \infty$ yields
(8) $\lim _{t \rightarrow \infty} z(t) \geq\left(1-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) L \geq 0$.

This is a contradiction.
Case 2. $\mu=0$. If $z(t) \geq 0$ and $z^{\prime}(t) \geq 0$, there exists a constant $k_{0}>0$ such that $z(t) \geq k_{0}$, which contradicts $\mu=0$. Therefore $z^{\prime}(t)<0$. If $z^{\prime}(t)<0$ and $z^{\prime \prime}(t)<0$, then $z^{\prime}(t) \leq-k_{0}$. Integrating $z^{\prime}(t) \leq-k_{0}$, we see that $\lim _{t \rightarrow \infty} z(t)=-\infty$. This is a contradiction, and so, $z^{\prime \prime}(t) \geq 0$. Proceeding as the above, we obtain

$$
(-1)^{i} z(t) z^{(i)}(t)>0(i=1,2, \ldots, N-1)
$$

Using this fact and Lemma 2, we obtain

$$
\lim _{t \rightarrow \infty} z^{(i)}=0(i=0,1, \ldots, N-1)
$$

Furthermore, (6) and (8) implies that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=0 \tag{9}
\end{equation*}
$$

which lead to $\lim _{t \rightarrow \infty} X(t)=0$. From (9) we see that

$$
\begin{equation*}
0<x(t)<\varepsilon \tag{10}
\end{equation*}
$$

for some sufficiently small $\varepsilon>0$. On the other hand, it follows from (3) that

$$
z^{\prime}(t) \leq X^{\prime}(t) \leq z^{\prime}(t)+\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{2}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{2}
$$

and

$$
z^{\prime \prime}(t)-\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{3}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{3} \leq X^{\prime \prime}(t) \leq z^{\prime \prime}(t)
$$

Repeating the same method as in the above proof, we can show that

$$
\lim _{t \rightarrow \infty} X^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

Integrating (E_{+}) and (4), N times from t to ∞, we obtain (cf. [7])

$$
\begin{aligned}
X(t) & -\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
& +\sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=0
\end{aligned}
$$

and

$$
z(t)+\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=0 .
$$

Since

$$
z(t) \leq X(t)
$$

holds, it is easy to see that

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \leq 0 \tag{11}
\end{equation*}
$$

which is a contradiction.
Case 3. $\mu \in(0, \infty]$. Then it is easy to see from Lemma 1 that

$$
z^{(N-1)}(t)>0, t \geq t_{1}
$$

for some $t_{1} \geq t_{0}$. There exists a constant $k_{1}>0$ such that

$$
z(t) \geq k_{1}, t \geq t_{2}
$$

for some $t_{2} \geq t_{1}$. Then we see from $z(t) \leq X(t)$ that

$$
k_{1} \leq z(t) \leq x(t)+\sum_{i=1}^{l} h_{i} x\left(\alpha_{i}(t)\right)
$$

Taking inferior limit as $t \rightarrow \infty$ yields

$$
k_{1} \leq\left(1+\sum_{i=1}^{l} h_{i}\right) \liminf _{t \rightarrow \infty} x(t)
$$

that is,

$$
\begin{equation*}
x\left(\beta_{j}(t)\right) \geq \frac{k_{1}}{2}, t \geq t_{3} \tag{12}
\end{equation*}
$$

for some $t_{3} \geq t_{2}$. Integrating (5) over $\left[t_{3}, t\right]$ yields

$$
\begin{equation*}
G_{1}\left(\frac{k_{1}}{2}\right) \int_{t_{3}}^{t} p_{j}(s) d s \leq-z^{(N-1)}(t)+z^{(N-1)}\left(t_{3}\right)<\infty \tag{13}
\end{equation*}
$$

This contradicts the condition (1).
Proof. If N is even, then
(14) $z(t)=X(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}$.
and $z(t)>0$. It follows from Lemma 1 that

$$
z^{\prime}(t)>0 \quad \text { and } \quad z^{(N-1)}(t)>0, t \geq t_{1}
$$

Since $z(t)>0$ and $z^{\prime}(t)>0$, there exists a constant $k_{0}>0$ such that

$$
z(t) \geq k_{0}, t \geq t_{2}
$$

Substituting $z(t) \geq x(t)$ into (14) and noting $z^{\prime}(t)>0$, we obtain

$$
\begin{aligned}
z(t) & \leq X(t)+M \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) x\left(\gamma_{i}(\xi)\right) d \xi d s_{N-1} \cdots d s_{1} \\
& \leq X(t)+M z(t) \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}
\end{aligned}
$$

Obviously we see that

$$
K_{0} \equiv k_{0}\left(1-M \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) \leq X(t)
$$

Taking inferior limit, we show that

$$
K_{0} \leq\left(1+\sum_{i=1}^{l} h_{i}\right) \liminf _{t \rightarrow \infty} x(t)
$$

This means that

$$
\liminf _{t \rightarrow \infty} x(t) \geq \frac{K_{0}}{\left(1+\sum_{i=1}^{l} h_{i}\right)} \equiv K_{1}
$$

that is, (12) holds. Integrating (5) over $\left[t_{3}, t\right]$ yields (13), which contradicts the condition (1). We complete the proof of the theorem.

3. Oscillatory solutions of equation (E_{-})

Theorem 2. If (1) for some $j \in\{1,2, \ldots, m\}$ and

$$
\left\{\begin{array}{l}
\text { if } N \text { is odd: } \\
\quad \sum_{i=1}^{l} h_{i}+M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1} \leq 1, \\
\text { if } N \text { is even: } \\
M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1} \leq \sum_{i=1}^{l} h_{i} \leq 1,
\end{array}\right.
$$

then every solution of (E_{-}) oscillates.

Proof. Let $x(t)$ be a nonoscillatory solution of (E_{-}). Without loss of generality, we assume that $x(t)>0, t \geq t_{0}$ for some $t_{0}>0$. Putting
(15) $w(t)=x(t)-\sum_{i=1}^{l} h_{i}(t) x\left(\alpha_{i}(t)\right)$

$$
\begin{aligned}
& +(-1)^{N} \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
= & Y(t)+(-1)^{N} \sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} .
\end{aligned}
$$

Differentiating (15) N-times and combining (E-), we obtain

$$
\begin{equation*}
w^{(N)}(t)=Y^{(N)}(t)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)=-\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right) \tag{16}
\end{equation*}
$$

This can be rewritten

$$
\begin{equation*}
w^{(N)}(t) \leq-p_{j}(t) G_{1}\left(x\left(\beta_{j}(t)\right)\right) \leq 0, t \geq t_{0} \tag{17}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, m\}$. Then we conclude that $w^{(N)}(t)$ is nonincreasing. Clearly, $w(t), w^{\prime}(t), \ldots, w^{(N-1)}(t)$ are monotonic and single sign for $t \geq t_{0}$.

If N is odd, then

$$
w(t)=Y(t)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}
$$

and $\lim _{t \rightarrow \infty} w(t)=\mu \in[-\infty, \infty]$ exists.
Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ such that

$$
\begin{equation*}
\lim _{\bar{n} \rightarrow \infty} t_{\bar{n}}=\infty \quad \text { and } \quad \max _{t_{1} \leq t \leq t_{\bar{n}}} x(t)=x\left(t_{\bar{n}}\right) \tag{18}
\end{equation*}
$$

Then we have

$$
w\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x\left(t_{\bar{n}}\right)
$$

Taking the limit as $\bar{n} \rightarrow \infty$ yields

$$
\begin{aligned}
& \lim _{\bar{n} \rightarrow \infty} w\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right. \\
& \left.\quad-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) \lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq 0
\end{aligned}
$$

which contradicts the assumption. Hence $x(t)$ is bounded from above. There exists a constant $L>0$ such that (7) holds. Then we have

$$
w(t) \geq x(t)-L \sum_{i=1}^{l} h_{i}-M L \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}
$$

Taking superior limit as $t \rightarrow \infty$ yields

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} w(t) \\
& \geq\left(1-\sum_{i=1}^{l} h_{i}-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) L \geq 0
\end{aligned}
$$

which is a contradiction.
Case 2. $\mu=0$. By the same proof of Theorem 1, we observe that

$$
(-1)^{i} w(t) w^{(i)}(t)>0(i=1,2, \ldots, N-1), t \geq t_{1}
$$

for some $t_{1} \geq t_{0}$, and

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} w^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

From the definition of $Y(t)$ we obtain

$$
x(t)-\sum_{i=1}^{l} h_{i} x\left(\alpha_{i}(t)\right) \leq Y(t) \leq x(t)
$$

which implies that $\lim _{t \rightarrow \infty} Y(t)=0$. Now, there exists a small number $\varepsilon>0$ such that (10). Then we show that

$$
w^{\prime}(t) \leq Y^{\prime}(t) \leq w^{\prime}(t)+\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{2}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{2}
$$

and

$$
w^{\prime \prime}(t)-\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{3}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{3} \leq Y^{\prime \prime}(t) \leq w^{\prime \prime}(t)
$$

Repeating the same method as in the above, we have

$$
\lim _{t \rightarrow \infty} Y^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

Integrating (16) and (E_{+}) N-times, we have

$$
\begin{align*}
& Y(t)+\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \tag{19}\\
& \quad-\sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=0
\end{align*}
$$

and

$$
\begin{equation*}
w(t)-\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=0 \tag{20}
\end{equation*}
$$

Combining (19), (20) and $w(t) \leq Y(t)$, we obtain the contradiction (11).
Case 3. $\mu \in(0, \infty]$. It follows from Lemma 1 that

$$
w^{(N-1)}(t)>0, t \geq t_{2}
$$

for some $t_{2} \geq t_{0}$. There exists a constant $k_{0}>0$ and a number $t_{3} \geq t_{2}$ such that

$$
x(t) \geq w(t) \geq k_{0}, t \geq t_{3}
$$

which implies that (12) holds. By integrating (17) we obtain the contradiction

$$
\begin{equation*}
G_{1}\left(\frac{k_{1}}{2}\right) \int_{t_{3}}^{t} p_{j}(s) d s \leq-w^{(N-1)}(t)+w^{(N-1)}\left(t_{3}\right)<\infty \tag{21}
\end{equation*}
$$

Proof. If N is even, then

$$
\begin{equation*}
w(t)=Y(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \tag{22}
\end{equation*}
$$

and $\lim _{t \rightarrow \infty} w(t)=\mu \in[-\infty, \infty]$ exists.
Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, then there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ such that (18) holds. Hence we have

$$
w\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) x\left(t_{\bar{n}}\right)
$$

that is,

$$
\lim _{\bar{n} \rightarrow \infty} w\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) \lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq 0
$$

as $\bar{n} \rightarrow \infty$. This is a contradiction. Therefore, $x(t)$ is bounded from above. There exists a positive constant L satisfying (7). Then

$$
w(t) \geq x(t)-L \sum_{i=1}^{l} h_{i}
$$

By taking superior limit as $t \rightarrow \infty$, we obtain

$$
\lim _{t \rightarrow \infty} w(t) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) L \geq 0
$$

which is a contradiction.
Case 2. $\mu=0$. Applying the same proof of the case when N is odd, we can lead to a contradiction.

Case 3. $\mu \in(0, \infty]$. It follows from Lemma that $w^{(N-1)}>0$. There exists a constant $k_{0}>0$ such that $w(t) \geq k_{0}$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ satisfying (18). Then

$$
\begin{aligned}
k_{0} & \leq\left(1+M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x\left(t_{n}\right) \\
& \leq 2 x\left(t_{n}\right)
\end{aligned}
$$

which means that (12) holds. Thus we can lead to the contradiction (21). Therefore, $x(t)$ is bounded from above. There exists a constant $L>0$ such that (7) holds. Then

$$
\begin{aligned}
k_{0} \leq & x(t)-\sum_{i=1}^{l} h_{i} x\left(\alpha_{i}(t)\right) \\
& +M L \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}
\end{aligned}
$$

Taking inferior limit as $t \rightarrow \infty$, we observe that

$$
\begin{aligned}
k_{0} \leq & \liminf _{t \rightarrow \infty} x(t) \\
& +\left(M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}-\sum_{i=1}^{l} h_{i}\right) L \\
\leq & \liminf _{t \rightarrow \infty} x(t)
\end{aligned}
$$

which implies that (12) is satisfied, moreover, (21) holds. This is a contradiction. Therefore, we complete the proof.

4. Oscillatory solutions of equations (\tilde{E}_{+})

Theorem 3. If (1) for some $j \in\{1,2, \ldots, m\}$, and (2) holds, then every solution of $\left(\tilde{\mathrm{E}}_{+}\right)$oscillates.

Proof. Suppose that $x(t)$ is a nonoscillatory solution of ($\tilde{\mathrm{E}}_{+}$). We may assume that $x(t)>0, t \geq t_{0}$ for some $t_{0}>0$. In view of (H5) there exists a $\varepsilon_{F}>0$ such that $F(t) \leq \varepsilon_{F}$. If we now define

$$
\begin{equation*}
Z(t)=z(t)+\tilde{F}, t \geq t_{1}, \tag{23}
\end{equation*}
$$

where

$$
\tilde{F}= \begin{cases}F(t), & N \text { is odd, } \tag{24}\\ -F(t)+\varepsilon_{F}, & N \text { is even }\end{cases}
$$

for sufficiently large $t_{1}>t_{0}$. Differentiating (23) N-times and substituting (\tilde{E}_{+}), we obtain

$$
\begin{align*}
Z^{(N)}(t) & =X^{(N)}(t)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)-f(t) \tag{25}\\
& =-\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right), t \geq t_{1},
\end{align*}
$$

which can be rewritten as follows

$$
\begin{equation*}
Z^{(N)}(t)=-p_{j}(t) G_{1}\left(x\left(\beta_{j}(t)\right)\right) \leq 0, t \geq t_{1} \tag{26}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, m\}$. Then we conclude that $Z^{(N)}(t)$ is nonincreasing, and $Z(t), Z^{\prime}(t), \ldots, Z^{(N-1)}(t)$ are monotonic and single sign for $t \geq t_{1}$.

If N is odd, then

$$
Z(t)=X(t)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}+F(t)
$$

and $\lim _{t \rightarrow \infty} Z(t)=\mu \in[-\infty, \infty]$ exists.
Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ such that (18) holds. Hence we see that

$$
Z\left(t_{\bar{n}}\right) \geq\left(1-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x\left(t_{\bar{n}}\right)+F\left(t_{\bar{n}}\right) .
$$

Taking limit as $\bar{n} \rightarrow \infty$, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} Z\left(t_{\bar{n}}\right) \\
& \geq\left(1-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty}!\cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) \lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq 0
\end{aligned}
$$

which is a contradiction. Consequently, $x(t)$ is bounded from above. There exists a positive constant L such that (7) holds. Then we have

$$
Z(t) \geq x(t)-M L \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}+F(t)
$$

Taking superior limit as $t \rightarrow \infty$ yields

$$
\lim _{t \rightarrow \infty} Z(t) \geq\left(1-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) L \geq 0
$$

This is a contradiction.
Case 2. $\mu=0$. From the same proof of Theorem 1 , it follows that

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} X(t)=\lim _{t \rightarrow \infty} Z^{(i)}=0(i=0,1, \ldots, N-1)
$$

Thus there exists a small number $\varepsilon>0$ such that (10). Hence we see that

$$
\begin{aligned}
Z^{\prime}(t)-F^{\prime}(t) & \leq X^{\prime}(t) \\
& \leq Z^{\prime}(t)+\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{2}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& Z^{\prime \prime}(t)-\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{3}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{3}-F^{\prime \prime}(t) \\
& \quad \leq X^{\prime \prime}(t) \leq Z^{\prime \prime}(t)-F^{\prime \prime}(t)
\end{aligned}
$$

By the similar proof of Theorem 1, we state that

$$
\lim _{t \rightarrow \infty} X^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

Integrating (25) and ($\tilde{\mathrm{E}}_{+}$) N-times yields

$$
\begin{aligned}
X(t) & -\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
& +\sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=-F(t)
\end{aligned}
$$

and

$$
Z(t)-\sum_{i=1}^{m} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} p_{i}(\xi) G_{1}\left(x\left(\beta_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}=0
$$

Substituting the above equations into

$$
Z(t) \leq X(t)+F(t)
$$

we can lead to the contradiction (11).
Case 3. $\mu \in(0, \infty]$. From Lemma we see that

$$
Z^{(N-1)}(t)>0, t \geq t_{1}
$$

for some $t_{1} \geq t_{0}$. There exists a constant $k_{0}>0$ such that

$$
Z(t) \geq k_{0}, t \geq t_{2}
$$

for some $t_{2} \geq t_{1}$. Then we see that

$$
\begin{aligned}
k_{0} & \leq X(t)+F(t) \\
& \leq x(t)+\sum_{i=1}^{l} h_{i} x\left(\alpha_{i}(t)\right)+F(t)
\end{aligned}
$$

Taking inferior limit as $t \rightarrow \infty$ yields (12) holds. By integrating (26) over $\left[t_{2}, t\right]$, we have

$$
G_{1}\left(\frac{k_{1}}{2}\right) \int_{t_{2}}^{t} p_{j}(s) d s \leq-Z^{(N-1)}(t)+Z^{(N-1)}\left(t_{2}\right)<\infty
$$

which is a contradiction.
Proof. If N is even, then

$$
\begin{aligned}
Z(t)= & X(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
& -F(t)+\varepsilon_{F}
\end{aligned}
$$

which means that $Z(t) \geq x(t)>0$. Using the similar proof of Theorem 1 , we can prove the rest part of this proof, and hence we omit its proof. We complete the proof of Theorem.

Example 1. Consider the equation

$$
\begin{align*}
{\left[x(t)+\frac{3}{4} x(t-\pi)\right]^{(4)} } & +\left(\frac{1}{4}+e^{-t}\right) x(t-3 \pi) \tag{27}\\
& -\frac{1}{2} e^{-t} x(t-\pi)=-\frac{1}{2} e^{-t} \cos t, t>0
\end{align*}
$$

It is easy to see that all conditions of Theorem 3 holds. Therefore, every solutions of (27) oscillates. In fact, $x(t)=\cos t$ is such a solution.

5. Oscillatory solutions of equations (\tilde{E}_{-})

Theorem 4. If all the conditions of Theorem 2 hold, then every solution of ($\tilde{\mathrm{E}}_{-}$) oscillates.

Proof. Suppose that $x(t)$ is a nonoscillatory solution of ($\left.\tilde{\mathrm{E}}_{-}\right)$. We may assume that $x(t)>0, t \geq t_{0}$ for some $t_{0}>0$. The function $W(t)$ defined with

$$
\begin{equation*}
W(t)=w(t)+\tilde{F}, t \geq t_{1} \tag{28}
\end{equation*}
$$

where \tilde{F} is defined by (24). Differentiating (28) N-times and using ($\tilde{\mathrm{E}}_{-}$), we obtain

$$
\begin{align*}
W^{(N)}(t) & =Y^{(N)}(t)-\sum_{i=1}^{n} q_{i}(t) G_{2}\left(x\left(\gamma_{i}(t)\right)\right)-f(t) \tag{29}\\
& =-\sum_{i=1}^{m} p_{i}(t) G_{1}\left(x\left(\beta_{i}(t)\right)\right)
\end{align*}
$$

Rewrite (29) in the form

$$
\begin{equation*}
W^{(N)}(t) \leq-p_{j}(t) G_{1}\left(x\left(\beta_{j}(t)\right)\right) \leq 0, t \geq t_{0} \tag{30}
\end{equation*}
$$

for some $j \in\{1,2, \ldots, m\}$. Therefore, $W(t), W^{\prime}(t), \ldots, W^{(N-1)}(t)$ are monotonic and single sign for $t \geq t_{1}$.

If N is odd, then

$$
W(t)=Y(t)-\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}+F(t)
$$

and $\lim _{t \rightarrow \infty} W(t)=\mu \in[-\infty, \infty]$ exists.

Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ satisfying (18). Then we obtain

$$
\begin{aligned}
W\left(t_{\bar{n}}\right) \geq & \left(1-\sum_{i=1}^{l} h_{i}\right. \\
& \left.-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x\left(t_{\bar{n}}\right)+F\left(t_{\bar{n}}\right) .
\end{aligned}
$$

Taking limit as $\bar{n} \rightarrow \infty$ yields

$$
\begin{aligned}
& \lim _{\bar{n} \rightarrow \infty} W\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right. \\
& \left.\quad-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) \lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq 0,
\end{aligned}
$$

which is a contradiction. Next, we assume that $x(t)$ is bounded from above. There exists a positive constant L such that (7) holds. Then it is clear that

$$
\begin{aligned}
W(t) \geq & x(t)-L \sum_{i=1}^{l} h_{i} \\
& -M L \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}+F(t),
\end{aligned}
$$

and taking superior limit as $t \rightarrow \infty$ yields

$$
\begin{aligned}
\lim _{t \rightarrow \infty} W(t) \geq & \left(1-\sum_{i=1}^{l} h_{i}\right. \\
& \left.-M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) L \geq 0
\end{aligned}
$$

This is a contradiction.
Case 2. $\mu=0$. From the same proof of Theorem 2, we see that (10) and

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} Y(t)=\lim _{t \rightarrow \infty} W^{(i)}(t)=0(i=0,1, \ldots, N-1) .
$$

for sufficiently small $\varepsilon>0$. Hence, we obtain

$$
\begin{aligned}
& W^{\prime}(t)-F^{\prime}(t) \leq Y^{\prime}(t) \\
& \quad \leq W^{\prime}(t)+\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{2}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{2}-F^{\prime}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& W^{\prime \prime}(t)-\varepsilon M \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{3}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{3}-F^{\prime \prime}(t) \\
& \quad \leq Y^{\prime \prime}(t) \leq W^{\prime \prime}(t)-F^{\prime \prime}(t) .
\end{aligned}
$$

From the same proof of Theorem 2 we have

$$
\lim _{t \rightarrow \infty} Y^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

Integrating (29) and ($\tilde{\mathrm{E}}_{-}$) N-times and noting $W(t) \leq Y(t)+F(t)$, we obtain (11), which is a contradiction.

Case 3. $\mu \in(0, \infty]$. It follows from Lemma 1 that

$$
W^{(N-1)}(t)>0, t \geq t_{2}
$$

for some $t_{2} \geq t_{1}$. There exists a constant $k_{0}>0$ such that

$$
x(t)+F(t) \geq W(t) \geq k_{0}, t \geq t_{2}
$$

By taking inferior limit as $t \rightarrow \infty$, we show that (12) holds for some $t_{3} \geq t_{2}$. Therefore we obtain the contradiction

$$
\begin{equation*}
G_{1}\left(\frac{k_{1}}{2}\right) \int_{t_{3}}^{t} p_{j}(s) d s \leq-W^{(N-1)}(t)+W^{(N-1)}\left(t_{3}\right)<\infty \tag{31}
\end{equation*}
$$

by integrating (30) over $\left[t_{3}, t\right]$.
If N is even, then

$$
\begin{aligned}
W(t)= & Y(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1} \\
& -F(t)+\varepsilon_{F}
\end{aligned}
$$

and $\lim _{t \rightarrow \infty} W(t)=\mu \in[-\infty, \infty]$ exists.
Case 1. $\mu \in[-\infty, 0)$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ such that (18) holds. Hence we obtain

$$
W\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) x\left(t_{\bar{n}}\right)
$$

that is,

$$
\lim _{\bar{n} \rightarrow \infty} W\left(t_{\bar{n}}\right) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) \lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq 0
$$

This is a contradiction. Therefore $x(t)$ is bounded from above. There exists a constant $L>0$ satisfies (7). It is obvious that

$$
W(t) \geq x(t)-L \sum_{i=1}^{l} h_{i}
$$

Taking superior limit as $t \rightarrow \infty$ yields

$$
\lim _{t \rightarrow \infty} W(t) \geq\left(1-\sum_{i=1}^{l} h_{i}\right) L \geq 0
$$

which is a contradiction.
Case 2. $\mu=0$. From the same proof of the case when N is odd, we obtain

$$
\lim _{t \rightarrow \infty} Y^{(i)}(t)=\lim _{t \rightarrow \infty} W^{(i)}(t)=0(i=0,1, \ldots, N-1)
$$

Integrating (29) and ($\tilde{\mathrm{E}}_{-}$) N times and noting $W(t) \geq Y(t)-F(t)+\varepsilon_{F}$, we can lead to the contradiction

$$
-\varepsilon_{F} \geq \sum_{i=1}^{n} \int_{t}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) G_{2}\left(x\left(\gamma_{i}(\xi)\right)\right) d \xi d s_{N-1} \cdots d s_{1}
$$

Case 3. $\mu \in(0, \infty]$. There exists a constant $k_{1}>0$ such that

$$
W(t) \geq k_{1}, t \geq t_{4}
$$

for some $t_{4} \geq t_{0}$. If $x(t)$ is not bounded from above, there exists a sequence $\left\{t_{\bar{n}}\right\}_{\bar{n}=1}^{\infty}$ such that (18) is satisfied. Then we obtain

$$
\begin{aligned}
k_{1} \leq & \left(1+M \sum_{i=1}^{n} \int_{0}^{\infty} \int_{s_{1}}^{\infty} \cdots \int_{s_{N-1}}^{\infty} q_{i}(\xi) d \xi d s_{N-1} \cdots d s_{1}\right) x\left(t_{\bar{n}}\right) \\
& -F\left(t_{\bar{n}}\right)+\varepsilon_{F} \\
\leq & 2 x\left(t_{\bar{n}}\right)-F\left(t_{\bar{n}}\right)+\varepsilon_{F}
\end{aligned}
$$

Proof. Taking limit as $\bar{n} \rightarrow \infty$ yields

$$
\lim _{\bar{n} \rightarrow \infty} x\left(t_{\bar{n}}\right) \geq \frac{\left(k_{1}-\varepsilon_{F}\right)}{2}
$$

for $k_{1}>\varepsilon_{F}>0$. If we choose $\varepsilon_{F}=k_{1} / 2$, then we see that (12) holds. Taking the account into $W^{(N-1)}(t)>0$, we obtain the contradiction (31). Hence, $x(t)$ is bounded from above. Applying the same proof of Theorem 2, we can lead to a contradiction. Therefore we complete the proof.

Example 2. Consider the equation

$$
\begin{align*}
{\left[x(t)-\frac{1}{2} x(t-2 \pi)\right]^{\prime \prime \prime} } & +\frac{1}{2}\left(1-e^{-t}\right) x\left(t-\frac{3}{2} \pi\right) \tag{32}\\
& -\frac{1}{4} e^{-t} x\left(t-\frac{\pi}{2}\right)=-\frac{1}{4} e^{-t} \cos t, t>0
\end{align*}
$$

It is easy to see that all conditions of Theorem 4 holds. Therefore, every solutions of (32) oscillates. In fact, $x(t)=\sin t$ is such a solution.

References

[1] Agarwal R.P., Grace S.R., O'Regan D., Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, 2000.
[2] Ahmad F., Linear delay differential equations with a positive and a negative term, Electronic J. Diff. Equ., 2003(2003), 1-6.
[3] Berezansky L., Braverman E., Oscillation for equations with positive and negative coefficients and with distributed delay I: General Results, Electronic J. Diff. Equ., 2003(2003), 1-21.
[4] Chuanxi Q., Ladas G., Oscillation in differential equations with positive and negative coefficients, Canad. Math. Bull., 33(1990), 442-450.
[5] Chuanxi Q., Ladas G., Linearized oscillations for equations with positive and negative coefficients, Hiroshima Math. J., 20(1990), 331-340.
[6] Kulenović M.R., Hadžiomersphaić S., Existence of nonoscillatory solution of second order linear neutral delay equation, J. Math. Anal. Appl., 228 (1998), 436-448.
[7] Kurpuz B., Manojlovic, Öcalan Ö., Shoukaku Y., Oscillation criteria for a class of second order neutral delay differential equations, Appl. Math.Comput., 210(2009), 303-312.
[8] Kurpuz B., Narayan L., Rath R., Oscillation and asymptotic behavior of a higher order neutral differential equation with positive and negative coefficients, Electonic J. Diff. Equ., 2008(2008), 1-15.
[9] Ladde G.S., Lakshmikantham V., Zhang B.G., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker INC., New York, 1987.
[10] Manoulović J., Shoukaku Y., Tanigawa T., Yoshida N., Oscillation criteria for second order differential equations with positive and negative coefficients, Appl. Math. Comput., 181(2006), 853-863.
[11] Öcalan Ö., Oscillation of neutral differential equation with positive and negative coefficients, J. Math. Anal. Appl., 331(2007), 644-654.
[12] Padhi S., Oscillation and asymptotic behavior of solutions of second order neutral differential equations with positive and negative coefficients, Fasc. Math., 38(2007), 105-114.
[13] Padhi S., Oscillation and asymptotic behavior of solutions off second order homogeneous neutral differential equations with positive and negative coefficients, Funct. Differ. Equ., 14(2007), 363-371.
[14] Parhi N., Chand S., Oscillation of second order neutral delay differential equations with positive and negative coefficients, J. Ind. Math. Soc., 66(1999), 227-235.
[15] Parhi N., Chand S., On second order neutral delay differential equations with positive and negative coefficients, Bull. Cal. Math. Soc., 94(2002), 7-16.
[16] Rath R.N., Mishra P.P., Padhy L.N., On oscillation and asymptotic behavior of a neutral differential equation of first order with positive and negative coefficients, Electronic J. Diff. Equ., 2007(2007), 1-7.
[17] Weng A., Sun J., Oscillation of second order delay differential equations, Appl. Math. Comput., 198(2007), 930-935.

Yutaka Shoukaku
Faculty of Engineering
Kanazawa University
Kanazawa 920-1192, Japan
e-mail: shoukaku@se.kanazawa-u.ac.jp

Received on 07.12.2018 and, in revised form, on 16.10.2019.

