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NORMAL FAMILIES AND SHARED FUNCTION II

Abstract. Let k, n ∈ N, l ∈ N\ {1} ,m ∈ N ∪ {0}, and a(z)( ̸≡ 0)
be a holomorphic function, all of whose zeros have multiplicities
at most m. Let F be a family of meromorphic functions in D such
that multiplicities of zeros of each f ∈ F are at least k + m. If
for f, g ∈ F satisfy f l(f (k))n and gl(g(k))n share a(z), then F is
normal in D. The examples are provided to show that the result
is sharp. The result extends the related theorems [9,10,12]. we
also omit the conditions “m is divisible by n+ l” and “all poles of
f have multiplicities at least m+1” in the result due to Meng, Liu
and Xu [12] [Journal of Computational Analysis and Applications
27(3)(2019), 511-526].
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1. Introduction and main results

Let D be a domain in C and F be a family of meromorphic functions
in D. A family F is said to be normal in D, if for each sequence fn in F
there exists a subsequence fnj converges spherically locally uniformly to a
meromorphic function or ∞ in D.

Let f(z) and g(z) be two meromorphic functions in D. Given a function
φ(z), if f(z)−φ(z) and g(z)−φ(z) have the same zeros without multiplicity
in D, we said that f(z) and g(z) share a function φ(z) IM.

In 1967, Hayman proposed the following normal conjecture.

Theorem A. [1]. Let n ∈ N, and a ∈ C\ {0}. let F be a family of
meromorphic function in D. If fnf ′ ̸= a, for each f ∈ F , then F is normal
in D.

This normal conjecture was showed by L. Yang and G. Zhang [2] (for
n ≥ 5), Y. X. Gu [3] (for n = 4, 3), X. C. Pang [4] (for n ≥ 2) and Chen and
Fang [5] (for n = 1).

In 1999, Pang and Zalcman proved the following result.
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Theorem B. [6]. Let k, n ∈ N, and a ∈ C\ {0}. Let F be a family of
holomorphic functions in a unit disc ∆ such that each f ∈ F has only zeros
of multiplicity at least k. If fnf (k) ̸= a for each f ∈ F in ∆, then F is
normal in ∆.

In 2008, using the shared values, Zhang proved.

Theorem C. Let n ∈ N\ {1}, a ∈ C \ {0}. Let F be a family of mero-
morphic functions in D. If for f, g ∈ F , fnf ′ and gng′ share a, then F is
normal in D.

In 2009, Meng and Hu [8] extended Theorem B-C, later Deng, Lei and
Fang [9] improved Meng’s result and obtained.

Theorem D. Let k ∈ N, n ∈ N\ {1} ,m ∈ N ∪ {0}, and let a(z)(̸≡ 0) be
a holomorphic function, all zeros of a(z) have multiplicities at most m. Let
F be a family of meromorphic functions in D. If for each f ∈ F , the zeros
of f have multiplicity at least k + m, and for f, g ∈ F , fnf (k) and gng(k)

share a(z), then F is normal in D.

In 2011, Jiang and Gao [10] considered the case of f(f (k))n and proved.

Theorem E. Let k ∈ N\ {1} ,m ∈ N ∪ {0} , n(≥ 2m + 2) ∈ N, and let
a(z)(̸≡ 0) be a holomorphic function, all zeros of a(z) have multiplicities
at most m, which is divisible by n + 1. Let F be a family of meromorphic
functions in D. If for each f ∈ F , the zeros of f have multiplicity at least
max{k + m, 2m + 2}, and for f, g ∈ F , f(f (k))n and g(g(k))n share a(z),
then F is normal in D.

In 2013, Ding, Ding and Yuan [11] studied the general case of f l(f (k))n

and obtained.

Theorem F. Let k, l ∈ N, n ∈ N\ {1} , a ∈ C\ {0}. Let F be a family
of meromorphic functions in D. If for each f ∈ F , the zeros of f have
multiplicity at least max{k, 2}, and for f, g ∈ F , f l(f (k))n and gl(g(k))n

share a, then F is normal in D.

Recently, Meng, Liu and Xu [12] considered the case of sharing a holo-
morphic function and promoted Ding’s result.

Theorem G. Let k, l ∈ N, n ∈ N\ {1} ,m ∈ N ∪ {0}, and let a(z)(̸≡ 0)
be a holomorphic function, all zeros of a(z) have multiplicities at most m,
which is divisible by n + l. Let F be a family of meromorphic functions in
D. If for each f ∈ F , the zeros of f have multiplicities at least k+m+1 and
all poles of f are of multiplicity at least m + 1, and for f, g ∈ F , f l(f (k))n

and gl(g(k))n share a(z), then F is normal in D.

According to the above results, naturally, we ask the following questions.
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Question 1. Can we omit the conditions “all zeros of a(z) have multi-
plicity divisible by n+ l” and “all poles of f have multiplicity at least m+1”
in Theorem G?

Question 2. Can we reduce the condition “the multiplicity of the zeros
from k +m+ 1 to k +m” in Theorem G?

In this paper, our main goal is to solve the above questions and obtain
the following results.

Theorem 1. Let k, n ∈ N, l ∈ N\ {1} ,m ∈ N ∪ {0}, and let a(z)(̸≡ 0)
be a holomorphic function, all of whose zeros have multiplicity at most m.
Let F be a family of meromorphic functions in D. If for every f ∈ F , the
zeros of f have multiplicity at least k +m, and for f, g ∈ F , f l(f (k))n and
gl(g(k))n share a(z), then F is normal in D.

Theorem 2. Let k, n ∈ N, l ∈ N\ {1} ,m ∈ N∪{0}, and let a(z)(̸≡ 0) be
a holomorphic function, all zeros of a(z) have multiplicities at most m. Let
F be a family of meromorphic functions in D. If for each f ∈ F , the zeros
of f have multiplicity at least k+m, and for f ∈ F , f l(f (k))n − a(z) has at
most one zero in D, then F is normal in D.

Example 1. Let D = {z : |z| < 1} and a(z) ≡ 0. Let F = {fj(z)},
where

fj(z) = ejz, z ∈ D, j = 1, 2 · · · .

Then f l
j (z)

(
f
(k)
j

)n
(z) − a(z) does not have zero in D, however F is not

normal at z = 0. This shows that a(z) ̸≡ 0 is necessary in Theorem 1 and
2.

Example 2. Let D = {z : |z| < 1} and a(z) = 1
zl+k+n . Let F = {fj(z)},

where

fj(z) =
1

jz
, z ∈ D, j = 1, 2 · · · , jl+n ̸= (−1)kk!.

Then f l
j (z)

(
f
(k)
j

)n
(z) − a(z) does not have zero in D, however F is not

normal at z = 0. This shows that Theorem 1 and 2 are not valid if a(z) is
a meromorphic function in D.

Example 3. Let D = {z : |z| < 1}, a(z) = a. Let F = {fj(z)}, where

fj(z) = jzk−1, z ∈ D, j = 1, 2 · · · .

Then f l
j (z)

(
f
(k)
j

)n
(z)−a, which has no zero in D , however F is not normal

at z = 0. This shows that the condition “ all zeros of f have multiplicity at
least k +m ” in Theorem 1 and 2 is sharp.
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Example 4. Let D = {z : |z| < 1}, a(z) = a. Let F = {fj(z)}, where

fj(z) = jzk, z ∈ D, j = 1, 2 · · · .

Then f l
j (z)

(
f
(k)
j

)n
(z) − a = jl+n(k!)nzlk − a, which has at least l ≥ 2

distinct zeros in D , however F is not normal at z = 0. This shows that the
condition ”f l(f (k))n−a(z) has at most one zero” in Theorem 2 is necessary.

2. Some lemmas

Lemma 1 ([13]). Let F be a family of functions meromorphic in the
unit disc ∆, all of whose zeros have multiplicity at least k. Then if F is not
normal in any neighbourhood of z0 ∈ ∆, there exist, for each α, 0 ≤ α < k,

(i) points zn, zn → z0, z0 ∈ ∆;
(ii) functions fn ∈ F ; and
(iii) positive numbers ρn → 0+, such that gn(ξ) = ρ−α

n fn(zn+ρnξ) → g(ξ)
spherically uniformly on compact subsets of C, where g is a non-constant
meromorphic function, all of whose zeros have multiplicity at least k.

Lemma 2 ([14]). Let k, n ∈ N, l ∈ N\ {1}, a ∈ C \ {0}, and let f(z) be
a non-constant meromorphic with all zeros that have multiplicity at least k.
Then f l(z)(f (k))n(z)− a has at least two distinct zeros.

Using the idea of Chang[15], we get the following lemma.

Lemma 3. Let k, l, n,m ∈ N, let q(z) be a polynomial of degree m,
and let f(z) be a non-constant rational function with f(z) ̸= 0. Then
f l(z)(f (k))n(z)− q(z) has at least l + kn+ n distinct zeros.

The proof of Lemma 3 is almost exactly the same with Lemma 11 in
Deng etc. [16], here, we omit the detail.

Lemma 4 ([17]). Let fj(j = 1, 2) be nonconstant meromorphic function,
then

N(r, f1f2)−N(r,
1

f1f2
) = N(r, f1) +N(r, f2)−N(r,

1

f1
)−N(r,

1

f2
).

Lemma 5. Let k,m, n ∈ N, l ∈ N\ {1}, let q(z) be a polynomial of degree
m, and let f(z) be a non-constant meromorphic function in C, the zeros of
f(z) have multiplicities at least k +m.Then (f(z))l(f (k))n(z)− q(z) has at
least two distinct zeros.
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Proof. Since

1

f l+n
=

(
f (k)

f

)n
1

q
−

f l
(
f (k)

)n − q

qf l+n

=
f l
(
f (k)

)n
qf l+n

−

[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
qf l+n

×
f l
(
f (k)

)n − q[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n] .
Noticing that m(r, f

(k)

f ) = S(r, f), m(r, 1q ) = O(1), and m(r, q) = m
logr +O(1). Applying the First Fundamental Theorem, we get

m

(
r,

1

f l+n

)
= (l + n)m

(
r,

1

f

)

≤ m

r,

[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
qf l+n


+ m

(
r,

f l
(
f (k)

)n − q[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+ S (r, f)

≤ T

(
r,

f l
(
f (k)

)n − q[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

− N

(
r,

f l
(
f (k)

)n − q[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+ S (r, f)

≤ T

r,

[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
f l
(
f (k)

)n − q


− N

(
r,

f l
(
f (k)

)n − q[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+ S (r, f)

By Lemma 4, we can have

(l + n)m

(
r,

1

f

)
≤ m

r,

[
f l(f (k))

n−1

q

]′
f l(f (k))

n−1

q

+N

(
r,

1

f l
(
f (k)

)n − q

)
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− N
(
r, f l

(
f (k)

)n
− q
)
+N

(
r,
[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n])
−N

(
r,

1[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+m log r + S (r, f) .

This is

(l + n)m

(
r,

1

f

)
≤ N(r, f) +N

(
r,

1

f l
(
f (k)

)n − q

)

− N

(
r,

1[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+m log r + S (r, f) .

We add (l + n)N(r, 1
f ) to both sides, then

(l + n)T

(
r,

1

f

)
≤ (l + n)N(r,

1

f
) +N(r, f) +N

(
r,

1

f l
(
f (k)

)n − q

)

− N

(
r,

1[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

+m log r + S (r, f) .

Noticing that[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
=
[
f l
(
f (k)

)n
− q
]′
q − q′

[
f l
(
f (k)

)n
− q
]
,

which implies

N

(
r,

1[
f l
(
f (k)

)n]′
q − q′

[
f l
(
f (k)

)n]
)

≥ N

(
r,

1

f l
(
f (k)

)n − q

)
−N

(
r,

1

f l
(
f (k)

)n − q

)
.

Therefore, we get

(l + n)T (r, f) ≤ (kn+ 1)N(r,
1

f
) +N(r, f)

+ N

(
r,

1

f l
(
f (k)

)n − q

)
+m log r + S (r, f) .

i.e.,(
l + n− 1− kn+ 1

k +m

)
T (r, f) ≤ N

(
r,

1

f l
(
f (k)

)n − q

)
+m log r + S (r, f) ,
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where we denote

M = l + n− 1− kn+ 1

k +m
= l − 1 +

mn− 1

k +m
.

Suppose that f l(z)(f (k))n(z)− q(z) has at most one zero.
Next we complete our proof in two steps.
Step 1: n ≥ 2. By the assumptions,

M ≥ 1 +
1

k +m
.

Then

T (r, f) < MT (r, f) ≤ (m+ 1) log r + S (r, f) .

It follows that f(z) is a rational function of degree < m+1. Since the zeros of
f(z) have multiplicities at least k+m ≥ m+1, then we get f(z) ̸= 0. Thus,
by Lemma 3, we obtain that f l(z)(f (k))n(z)−q(z) has at least l+kn+n ≥ 6
distinct zeros, which is a contradiction.

Step 2: n = 1. Then M = l − k+1
k+m .

Sub-step 2.1: m ≥ 2. By the assumptions, M > 1 and

T (r, f) < (m+ 1) log r + S (r, f) .

It follows that f(z) is a rational function of degree < m+1. Since the zeros of
f(z) have multiplicities at least k+m ≥ m+1, then we get f(z) ̸= 0. Thus,
by Lemma 3, we obtain that f l(z)(f (k))n(z)− q(z) has at least l+ k+1 ≥ 4
distinct zeros, which is a contradiction.

Sub-step 2.2: m = 1. Then

(l − 1)T (r, f) ≤ N

(
r,

1

f lf (k) − q

)
+ log r + S (r, f) ,

Sub-step 2.2.1: f l(z)f (k)(z)− q(z) ̸= 0. By the assumptions, we get

T (r, f) ≤ (l − 1)T (r, f) ≤ log r + S (r, f) .

It follows that f(z) is a rational function of degree ≤ 1. Since the zeros of
f(z) have multiplicities at least k + 1 ≥ 2, then we get f(z) ̸= 0. Thus, by
Lemma 3, we obtain that f l(z)(f (k))n(z) − q(z) has at least l + k + 1 ≥ 4
distinct zeros, which is a contradiction.

Sub-step 2.2.2: f l(z)f (k)(z) − q(z) = 0. By the assumptions, we get
f l(z)f (k)(z)− q(z) has only one zero. Then we obtain

(l − 1)T (r, f) ≤ 2 log r + S (r, f) .
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Sub-step 2.2.2.1: l ≥ 3, then

T (r, f) ≤ log r + S (r, f) .

It follows that f(z) is a rational function of degree ≤ 1. Since the zeros of
f(z) have multiplicities at least k + 1 ≥ 2, then we get f(z) ̸= 0. Thus, by
Lemma 3, we obtain that f l(z)(f (k))n(z) − q(z) has at least l + k + 1 ≥ 5
distinct zeros, which is a contradiction.

Sub-step 2.2.2.2: l = 2, then

T (r, f) ≤ 2 log r + S (r, f) .

It follows that f(z) is a rational function of degree ≤ 2.
Sub-step 2.2.2.2.1: k ≥ 2. Since the zeros of f(z) have multiplicities

at least k+1 ≥ 3, then we get f(z) ̸= 0. Thus, by Lemma 3, we obtain that
f l(z)(f (k))n(z) − q(z) has at least l + k + 1 ≥ 5 distinct zeros, which is a
contradiction.

Sub-step 2.2.2.2.2: k = 1. Then we get f(z) ̸= 0 or f(z) has only one
zero with multiplicity 2.

The former case can be ruled out from Lemma 3. Hence f(z) has the
following forms:

(i) f(z) = A(z − z0)
2;

(ii) f(z) = A(z−z0)2

(z−z1)
;

(iii) f(z) = A(z−z0)2

(z−z1)2
;

(iv) f(z) = A(z−z0)2

(z−z1)(z−z2)
,

where A, z0 are nonzero constants, and z1, z2 are distinct constants. Clearly,
z0 ̸= z1, z0 ̸= z2, and T (r, f) = 2 log r +O(1).

We now show (i). Obviously, N(r, 1
f ) ≤

1
2T (r, f) +O(1). Noticing that

3T (r, f) ≤ 2N(r,
1

f
) +N(r, f) + 2 log r + S(r, f).

Then
T (r, f) ≤ log r + S(r, f),

a contradiction.
We now show (ii) or (iii). Obviously, N(r, 1

f ) ≤
1
2T (r, f)+O(1), N(r, f) =

log r or N(r, f) ≤ 1
2T (r, f) +O(1). Noticing that

3T (r, f) ≤ 2N(r,
1

f
) +N(r, f) + 2 log r + S(r, f).

Then

T (r, f) ≤ 4

3
log r + S(r, f),
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we also get a contradiction.
We now show (iv). Then

f2 (z) f ′ (z) =
A3 (z − z0)

5 [(2z0 − (z1 + z2)) z + 2z1z2 − z0 (z1 + z2)]

(z − z1)
4 (z − z2)

4 .

Since q(z) = Bz+C, where B ̸= 0, C are constants, and f l(z)f (k)(z)− q(z)
has only one zero. Then we have

f2(z)f ′(z) = Bz + C +
d(z − Z0)

t

(z − z1)
4 (z − z2)

4 .

Obviously, By calculation, we get d = −B, t = 9, and Z0 ̸= z0.
Differentiating the above two equations separately, we obtain

[f2(z)f ′(z)]
′′
=

(z − z0)
3g(z)

(z − z1)
6 (z − z2)

6 ,

where g(z) is a polynomial of degree ≤ 5, and

[f2(z)f ′(z)]
′′
=

(z − Z0)
7h(z)

(z − z1)
6 (z − z2)

6 ,

where h(z) is a polynomial of degree ≤ 4.
Since z0 ̸= Z0, then (z−Z0)

7 is a factor of g(z). Thus g(z) is a polynomial
of degree ≥ 7, which is impossible. �

Lemma 6. Let k, n ∈ N, l ∈ N\ {1}, and let F = {fm} be a sequence of
meromorphic functions, gm(z) be a sequence of holomorphic functions in D
such that gm(z) −→ g(z), where g(z)(̸= 0) be a holomorphic function. If all

zeros of function fm(z) have multiplicity at least k, and f l
m(z)(f

(k)
m (z))n −

gn(z) has at most one zero, then F is normal in D.

Proof. Suppose that F is not normal at z0 ∈ D. By Lemma 1, there
exists zm → z0, ρm → 0+, and fm ∈ F such that

hm(ξ) =
fm(zm + ρmξ)

ρ
kn
l+n
m

−→ h(ξ)

locally uniformly on compact subsets of C, where h(ξ) is a non-constant
meromorphic function in C. By Hurwitz’s theorem, all zeros of h(ξ) have
multiplicity at least k.

For each ξ ∈ C/{h−1(∞)}, we have

hlm(ξ)(h(k)m (ξ))n − gm(zm + ρmξ) = f l
m(zm + ρmξ)(f (k)

m )n(zm + ρmξ)

− gm(zm + ρmξ) −→ hl(ξ)(h(k))n(ξ)− g(z0).
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Claim 1: hl(ξ)(h(k))n(ξ)− g(z0) ̸≡ 0.
Suppose that hl(ξ)(h(k))n(ξ)− g(z0) ≡ 0, then h(ξ) ̸= 0 since g(z0) ̸= 0.

It follows that
1

hl+n(ξ)
≡ 1

g(z0)
[
h(k)(ξ)

h(ξ)
]n.

Thus

(l + n)m(r,
1

h
) = m(r,

1

g(z0)
[
h(k)(ξ)

h(ξ)
]n) = S(r, h).

Then T (r, h) = S(r, h) since h ̸= 0. we can deduce that h(ξ) is a constant,
a contradiction. The claim is proved.

Claim 2: hl(ξ)(h(k))n(ξ)− g(z0) has at most one zero.
Otherwise, suppose that ξ1, ξ2 are two distinct zeros of hl(ξ)(h(k))n(ξ)−

g(z0). We choose a positive number δ small enough such that D1 ∩D2 = ∅
and hl(ξ)(h(k))n(ξ)− g(z0) has no other zeros in D1 ∪D2 except for ξ1 and
ξ2,where D1 = {ξ : |ξ − ξ1| < δ} and D2 = {ξ : |ξ − ξ2| < δ}.

By Hurwitz’s theorem, for sufficiently large m, there exist points ξ1,m →
ξ1 and ξ2,m → ξ2 such that

f l
m(zm + ρmξ1,m)(f (k)

m )
n
(zm + ρmξ1,m)− gm(zm + ρmξ1,m) = 0,

and

f l
m(zm + ρmξ2,m)(f (k)

m )
n
(zm + ρmξ2,m)− gm(zm + ρmξ2,m) = 0.

Since f l
m(z)(f

(k)
m (z))n − gm(z) has at most one zero in D, then

zm + ρmξ1,m = zm + ρmξ2,m,

this is

ξ1,m = ξ2,m =
z0 − zm

ρm
,

which contradicts the fact D1 ∩D2 = ∅. The claim is proved.
From Lemma 2, we get hl(z)(h(k))n(z) − g(z0) has at least two distinct

zeros, a contradiction. Therefore F is normal in D. �

3. Proof of Theorem 2

Proof. Suppose that F is not normal at z0. From Lemma 6, we obtain
a(z0) = 0. Without loss of generality, we assume that z0 = 0 and a(z) =
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ztb(z), where 1 ≤ t ≤ m, b(0) = 1. Then by Lemma 1, there exists zj −→ 0,
fj ∈ F and ρj −→ 0+ such that

gj(ξ) =
fj(zj + ρjξ)

ρ
kn+t
l+n

j

−→ g(ξ)

locally uniformly on compact subsets of C, where g(ξ) is a non-constant
meromorphic functions in C. By Hurwitz’s theorem, all zeros of g(ξ) have
multiplicity at least k +m.

We now consider the following two steps.
Step I. Let zn

ρn
→ α, α ∈ C.

For each ξ ∈ C/{g−1(∞)}, we can be easily calculated that

glj (ξ) (g
(k)
j (ξ))n −

(
ξ +

zj
ρj

)t

b (zj + ρjξ)

=
f l
j (zj + ρjξ) (f

(k)
j (zj + ρjξ))

n − a (zj + ρjξ)

ρtj

−→ gl (ξ) (g(k) (ξ))n − (ξ + α)t .

Since for sufficiently large j, f l
j (zj + ρjξ) (f

(k)
j (zj + ρjξ))

n − a (zj + ρjξ)

has one zero, from the proof Lemma 6, we can deduce that gl (ξ) (g(k) (ξ))n−
(ξ + α)t has at most one distinct zero.

By Lemma 5, gl (ξ) (g(k) (ξ))n − (ξ + α)t have at least two distinct zeros.
Thus g(ξ) is a constant, we can get a contradiction.

Step II. Let zn
ρn

→ ∞.
Set

Fj(ξ) =
fj(zj + ρjξ)

ρ
kn+t
l+n

j

.

It follows that

F l
j(ξ)(F

(k)
j (ξ))n − (1 + ξ)tb(zj + zjξ)

=
f l
j(zj + zjξ)(f

(k)
j (zj + zjξ))

n − a(zj + zjξ)

ztj
.

As the same argument as in Lemma 6, we can deduce that F l
j(ξ)(F

(k)
j (ξ))n−

(1 + ξ)tb(zj + zjξ) has at most one zero in ∆ = {ξ : |ξ| < 1}.
Since all zeros of Fj have multiplicity at least k +m, and (1 + ξ)tb(zj +

zjξ) → (1 + ξ)t ̸= 0 for ξ ∈ ∆. Then by Lemma 6, {Fn} is normal in ∆.
Therefore, there exists a subsequence of {Fn(z)}(we still express it as

{Fn(z)}) such that {Fn(z)} converges spherically locally uniformly to a
meromorphic function F (z) or ∞.



152 Chengxiong Sun

If F (0) ̸= ∞, then, for each ξ ∈ C/{g−1(∞)}, we have

g(k+m−1) (ξ) = lim
j→∞

g
(k+m−1)
j (ξ) = lim

j→∞

f
(k+m−1)
j (zj + ρjξ)

ρ
kn+t
l+n

−(k+m−1)

j

= lim
j→∞

(
ρj
zj

)k+m−1− kn+t
l+n

F
(k+m−1)
j

(
ρj
zj

ξ

)
= 0.

Hence g(k+m−1) ≡ 0. It follows that g is a polynomial of degree ≤ k+m−1.
Note that all zeros of g have multiplicity at least k +m, then we get that g
is a constant, which is a contradiction.

If F (0) = ∞, then, for each ξ ∈ C/{g−1(0)}, we get

1

Fj

(
ρj
zj
ξ
) =

z
kn+t
l+n

j

fj (zj + ρjξ)
→ 1

F (0)
= 0,

It follows that we have

1

g (ξ)
= lim

j→∞

ρ
kn+t
l+n

j

fj (zj + ρjξ)
= lim

j→∞

(
ρj
zj

) kn+t
l+n z

kn+t
l+n

j

fj (zj + ρjξ)
= 0.

Thus g(ξ) = ∞, which contradicts that g(ξ) is a non-constant meromorphic
function.

Therefore F is normal at z0 = 0. Hence F is normal in D. �

4. Proof of Theorem 1

Proof. Let z0 ∈ D, f ∈ F , we show that F is normal at z0.
Step I. If f l (z0) (f

(k) (z0))
n ̸= a (z0).

Then there exists Dδ (z0) = {z : |z − z0| < δ} such that

f l (z) (f (k) (z))n ̸= a (z)

in Dδ(z0).
Since f, g ∈ F , f l(z)(f (k)(z))n and gl(z)(g(k)(z))n share a(z) in D. So,

for each g ∈ F , gl(z)(g(k)(z))n ̸= a(z) in Dδ(z0). By Theorem 2, F is normal
in Dδ(z0). Hence F is normal at z0.

Step II. If f l (z0) (f
(k) (z0))

n = a (z0).
Then there exists Dδ (z0) = {z : |z − z0| < δ} such that

f l (z) (f (k) (z))n ̸= a (z)



Normal families and shared functions II 153

in D0
δ (z0) = {z : 0 < |z − z0| < δ}.

Since f, g ∈ F , f l(z)(f (k)(z))n and gl(z)(g(k)(z))n share a(z) in D. Thus,
for each g ∈ F , gl(z)(g(k)(z))n ̸= a(z) in D0

δ (z0) and gl(z0)(g
(k)(z0))

n =
a(z0). Therefore, gl(z)(g(k)(z))n − a(z) have only one zero in Dδ(z0). By
Theorem 2, F is normal in Dδ(z0). Thus F is normal at z0. Hence F is
normal in D. �
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