F A S C I C U L I M A T H E M A T I C I

Chengxiong Sun

NORMAL FAMILIES AND SHARED FUNCTION II

Abstract

Let $k, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}$, and $a(z)(\not \equiv 0)$ be a holomorphic function, all of whose zeros have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D such that multiplicities of zeros of each $f \in \mathcal{F}$ are at least $k+m$. If for $f, g \in \mathcal{F}$ satisfy $f^{l}\left(f^{(k)}\right)^{n}$ and $g^{l}\left(g^{(k)}\right)^{n}$ share $a(z)$, then \mathcal{F} is normal in D. The examples are provided to show that the result is sharp. The result extends the related theorems $[9,10,12]$. we also omit the conditions " m is divisible by $n+l$ " and "all poles of f have multiplicities at least $m+1$ " in the result due to Meng, Liu and Xu [12] [Journal of Computational Analysis and Applications 27(3)(2019), 511-526].

KEY WORDS: meromorphic function, normal families, shared function.

AMS Mathematics Subject Classification: 30D35, 30D45.

1. Introduction and main results

Let D be a domain in \mathbb{C} and \mathcal{F} be a family of meromorphic functions in D. A family \mathcal{F} is said to be normal in D, if for each sequence f_{n} in \mathcal{F} there exists a subsequence $f_{n_{j}}$ converges spherically locally uniformly to a meromorphic function or ∞ in D.

Let $f(z)$ and $g(z)$ be two meromorphic functions in D. Given a function $\varphi(z)$, if $f(z)-\varphi(z)$ and $g(z)-\varphi(z)$ have the same zeros without multiplicity in D, we said that $f(z)$ and $g(z)$ share a function $\varphi(z)$ IM.

In 1967, Hayman proposed the following normal conjecture.
Theorem A. [1]. Let $n \in \mathbb{N}$, and $a \in \mathbb{C} \backslash\{0\}$. let \mathcal{F} be a family of meromorphic function in D. If $f^{n} f^{\prime} \neq a$, for each $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

This normal conjecture was showed by L. Yang and G. Zhang [2] (for $n \geq 5$), Y. X. Gu [3] (for $n=4,3$), X. C. Pang [4] (for $n \geq 2$) and Chen and Fang [5] (for $n=1$).

In 1999, Pang and Zalcman proved the following result.

Theorem B. [6]. Let $k, n \in \mathbb{N}$, and $a \in \mathbb{C} \backslash\{0\}$. Let \mathcal{F} be a family of holomorphic functions in a unit disc Δ such that each $f \in \mathcal{F}$ has only zeros of multiplicity at least k. If $f^{n} f^{(k)} \neq a$ for each $f \in \mathcal{F}$ in Δ, then \mathcal{F} is normal in Δ.

In 2008, using the shared values, Zhang proved.
Theorem C. Let $n \in \mathbb{N} \backslash\{1\}, a \in \mathbb{C} \backslash\{0\}$. Let \mathcal{F} be a family of meromorphic functions in D. If for $f, g \in \mathcal{F}$, $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share a, then \mathcal{F} is normal in D.

In 2009, Meng and Hu [8] extended Theorem B-C, later Deng, Lei and Fang [9] improved Meng's result and obtained.

Theorem D. Let $k \in \mathbb{N}, n \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+m$, and for $f, g \in \mathcal{F}, f^{n} f^{(k)}$ and $g^{n} g^{(k)}$ share $a(z)$, then \mathcal{F} is normal in D.

In 2011, Jiang and Gao [10] considered the case of $f\left(f^{(k)}\right)^{n}$ and proved.
Theorem E. Let $k \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}, n(\geq 2 m+2) \in \mathbb{N}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m, which is divisible by $n+1$. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $\max \{k+m, 2 m+2\}$, and for $f, g \in \mathcal{F}, f\left(f^{(k)}\right)^{n}$ and $g\left(g^{(k)}\right)^{n}$ share $a(z)$, then \mathcal{F} is normal in D.

In 2013, Ding, Ding and Yuan [11] studied the general case of $f^{l}\left(f^{(k)}\right)^{n}$ and obtained.

Theorem F. Let $k, l \in \mathbb{N}, n \in \mathbb{N} \backslash\{1\}, a \in \mathbb{C} \backslash\{0\}$. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $\max \{k, 2\}$, and for $f, g \in \mathcal{F}, f^{l}\left(f^{(k)}\right)^{n}$ and $g^{l}\left(g^{(k)}\right)^{n}$ share a, then \mathcal{F} is normal in D.

Recently, Meng, Liu and Xu [12] considered the case of sharing a holomorphic function and promoted Ding's result.

Theorem G. Let $k, l \in \mathbb{N}, n \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m, which is divisible by $n+l$. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicities at least $k+m+1$ and all poles of f are of multiplicity at least $m+1$, and for $f, g \in \mathcal{F}, f^{l}\left(f^{(k)}\right)^{n}$ and $g^{l}\left(g^{(k)}\right)^{n}$ share $a(z)$, then \mathcal{F} is normal in D.

According to the above results, naturally, we ask the following questions.

Question 1. Can we omit the conditions "all zeros of $a(z)$ have multiplicity divisible by $n+l$ " and "all poles of f have multiplicity at least $m+1$ " in Theorem G?

Question 2. Can we reduce the condition "the multiplicity of the zeros from $k+m+1$ to $k+m$ " in Theorem G?

In this paper, our main goal is to solve the above questions and obtain the following results.

Theorem 1. Let $k, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all of whose zeros have multiplicity at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for every $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+m$, and for $f, g \in \mathcal{F}, f^{l}\left(f^{(k)}\right)^{n}$ and $g^{l}\left(g^{(k)}\right)^{n}$ share $a(z)$, then \mathcal{F} is normal in D.

Theorem 2. Let $k, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}, m \in \mathbb{N} \cup\{0\}$, and let $a(z)(\not \equiv 0)$ be a holomorphic function, all zeros of $a(z)$ have multiplicities at most m. Let \mathcal{F} be a family of meromorphic functions in D. If for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+m$, and for $f \in \mathcal{F}, f^{l}\left(f^{(k)}\right)^{n}-a(z)$ has at most one zero in D, then \mathcal{F} is normal in D.

Example 1. Let $D=\{z:|z|<1\}$ and $a(z) \equiv 0$. Let $\mathcal{F}=\left\{f_{j}(z)\right\}$, where

$$
f_{j}(z)=e^{j z}, z \in D, j=1,2 \cdots
$$

Then $f_{j}^{l}(z)\left(f_{j}^{(k)}\right)^{n}(z)-a(z)$ does not have zero in D, however \mathcal{F} is not normal at $z=0$. This shows that $a(z) \not \equiv 0$ is necessary in Theorem 1 and 2.

Example 2. Let $D=\{z:|z|<1\}$ and $a(z)=\frac{1}{z^{l+k+n}}$. Let $\mathcal{F}=\left\{f_{j}(z)\right\}$, where

$$
f_{j}(z)=\frac{1}{j z}, z \in D, j=1,2 \cdots, j^{l+n} \neq(-1)^{k} k!
$$

Then $f_{j}^{l}(z)\left(f_{j}^{(k)}\right)^{n}(z)-a(z)$ does not have zero in D, however \mathcal{F} is not normal at $z=0$. This shows that Theorem 1 and 2 are not valid if $a(z)$ is a meromorphic function in D.

Example 3. Let $D=\{z:|z|<1\}, a(z)=a$. Let $\mathcal{F}=\left\{f_{j}(z)\right\}$, where

$$
f_{j}(z)=j z^{k-1}, z \in D, j=1,2 \cdots
$$

Then $f_{j}^{l}(z)\left(f_{j}^{(k)}\right)^{n}(z)-a$, which has no zero in D, however \mathcal{F} is not normal at $z=0$. This shows that the condition " all zeros of f have multiplicity at least $k+m$ " in Theorem 1 and 2 is sharp.

Example 4. Let $D=\{z:|z|<1\}, a(z)=a$. Let $\mathcal{F}=\left\{f_{j}(z)\right\}$, where

$$
f_{j}(z)=j z^{k}, \quad z \in D, j=1,2 \cdots
$$

Then $f_{j}^{l}(z)\left(f_{j}^{(k)}\right)^{n}(z)-a=j^{l+n}(k!)^{n} z^{l k}-a$, which has at least $l \geq 2$ distinct zeros in D, however \mathcal{F} is not normal at $z=0$. This shows that the condition " $f^{l}\left(f^{(k)}\right)^{n}-a(z)$ has at most one zero" in Theorem 2 is necessary.

2. Some lemmas

Lemma 1 ([13]). Let \mathcal{F} be a family of functions meromorphic in the unit disc Δ, all of whose zeros have multiplicity at least k. Then if \mathcal{F} is not normal in any neighbourhood of $z_{0} \in \Delta$, there exist, for each $\alpha, 0 \leq \alpha<k$,
(i) points $z_{n}, z_{n} \rightarrow z_{0}, z_{0} \in \Delta$;
(ii) functions $f_{n} \in \mathcal{F}$; and
(iii) positive numbers $\rho_{n} \rightarrow 0^{+}$, such that $g_{n}(\xi)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right) \rightarrow g(\xi)$ spherically uniformly on compact subsets of \mathbb{C}, where g is a non-constant meromorphic function, all of whose zeros have multiplicity at least k.

Lemma 2 ([14]). Let $k, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}, a \in \mathbb{C} \backslash\{0\}$, and let $f(z)$ be a non-constant meromorphic with all zeros that have multiplicity at least k. Then $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-a$ has at least two distinct zeros.

Using the idea of Chang[15], we get the following lemma.
Lemma 3. Let $k, l, n, m \in \mathbb{N}$, let $q(z)$ be a polynomial of degree m, and let $f(z)$ be a non-constant rational function with $f(z) \neq 0$. Then $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k n+n$ distinct zeros.

The proof of Lemma 3 is almost exactly the same with Lemma 11 in Deng etc. [16], here, we omit the detail.

Lemma $4([17])$. Let $f_{j}(j=1,2)$ be nonconstant meromorphic function, then

$$
N\left(r, f_{1} f_{2}\right)-N\left(r, \frac{1}{f_{1} f_{2}}\right)=N\left(r, f_{1}\right)+N\left(r, f_{2}\right)-N\left(r, \frac{1}{f_{1}}\right)-N\left(r, \frac{1}{f_{2}}\right) .
$$

Lemma 5. Let $k, m, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}$, let $q(z)$ be a polynomial of degree m, and let $f(z)$ be a non-constant meromorphic function in \mathbb{C}, the zeros of $f(z)$ have multiplicities at least $k+$ m. Then $(f(z))^{l}\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least two distinct zeros.

Proof. Since

$$
\begin{aligned}
\frac{1}{f^{l+n}}= & \left(\frac{f^{(k)}}{f}\right)^{n} \frac{1}{q}-\frac{f^{l}\left(f^{(k)}\right)^{n}-q}{q f^{l+n}} \\
= & \frac{f^{l}\left(f^{(k)}\right)^{n}}{q f^{l+n}}-\frac{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}{q f^{l+n}} \\
& \times \frac{f^{l}\left(f^{(k)}\right)^{n}-q}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]} .
\end{aligned}
$$

Noticing that $m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f), m\left(r, \frac{1}{q}\right)=O(1)$, and $m(r, q)=m$ $\operatorname{logr}+O(1)$. Applying the First Fundamental Theorem, we get

$$
\begin{aligned}
m\left(r, \frac{1}{f^{l+n}}\right)= & (l+n) m\left(r, \frac{1}{f}\right) \\
\leq & m\left(r, \frac{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}{q f^{l+n}}\right) \\
& +m\left(r, \frac{f^{l}\left(f^{(k)}\right)^{n}-q}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+S(r, f) \\
\leq & T\left(r, \frac{f^{l}\left(f^{(k)}\right)^{n}-q}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right) \\
& -N\left(r, \frac{f^{l}\left(f^{(k)}\right)^{n}-q}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+S(r, f) \\
\leq & T\left(r, \frac{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}{f^{l}\left(f^{(k)}\right)^{n}-q}\right) \\
& -N\left(r, \frac{f^{l}\left(f^{(k)}\right)^{n}-q}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+S(r, f)
\end{aligned}
$$

By Lemma 4, we can have

$$
(l+n) m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{\left[\frac{f^{l}\left(f^{(k)}\right)^{n}-1}{q}\right]^{\prime}}{\frac{f^{l}\left(f^{(k)}\right)^{n}-1}{q}}\right)+N\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right)
$$

$$
\begin{aligned}
& -N\left(r, f^{l}\left(f^{(k)}\right)^{n}-q\right)+N\left(r,\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]\right) \\
& -N\left(r, \frac{1}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+m \log r+S(r, f)
\end{aligned}
$$

This is

$$
\begin{aligned}
& (l+n) m\left(r, \frac{1}{f}\right) \leq \bar{N}(r, f)+N\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right) \\
& \quad-N\left(r, \frac{1}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+m \log r+S(r, f)
\end{aligned}
$$

We add $(l+n) N\left(r, \frac{1}{f}\right)$ to both sides, then

$$
\begin{aligned}
& (l+n) T\left(r, \frac{1}{f}\right) \leq(l+n) N\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right) \\
& \quad-N\left(r, \frac{1}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right)+m \log r+S(r, f)
\end{aligned}
$$

Noticing that

$$
\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]=\left[f^{l}\left(f^{(k)}\right)^{n}-q\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}-q\right]
$$

which implies

$$
\begin{aligned}
& N\left(r, \frac{1}{\left[f^{l}\left(f^{(k)}\right)^{n}\right]^{\prime} q-q^{\prime}\left[f^{l}\left(f^{(k)}\right)^{n}\right]}\right) \\
& \quad \geq N\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right)-\bar{N}\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
(l+n) T(r, f) \leq & (k n+1) \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f) \\
& +\bar{N}\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right)+m \log r+S(r, f)
\end{aligned}
$$

i.e.,

$$
\left(l+n-1-\frac{k n+1}{k+m}\right) T(r, f) \leq \bar{N}\left(r, \frac{1}{f^{l}\left(f^{(k)}\right)^{n}-q}\right)+m \log r+S(r, f)
$$

where we denote

$$
M=l+n-1-\frac{k n+1}{k+m}=l-1+\frac{m n-1}{k+m} .
$$

Suppose that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at most one zero.
Next we complete our proof in two steps.
Step 1: $n \geq 2$. By the assumptions,

$$
M \geq 1+\frac{1}{k+m}
$$

Then

$$
T(r, f)<M T(r, f) \leq(m+1) \log r+S(r, f)
$$

It follows that $f(z)$ is a rational function of degree $<m+1$. Since the zeros of $f(z)$ have multiplicities at least $k+m \geq m+1$, then we get $f(z) \neq 0$. Thus, by Lemma 3 , we obtain that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k n+n \geq 6$ distinct zeros, which is a contradiction.

Step 2: $n=1$. Then $M=l-\frac{k+1}{k+m}$.
Sub-step 2.1: $m \geq 2$. By the assumptions, $M>1$ and

$$
T(r, f)<(m+1) \log r+S(r, f)
$$

It follows that $f(z)$ is a rational function of degree $<m+1$. Since the zeros of $f(z)$ have multiplicities at least $k+m \geq m+1$, then we get $f(z) \neq 0$. Thus, by Lemma 3 , we obtain that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k+1 \geq 4$ distinct zeros, which is a contradiction.

Sub-step 2.2: $m=1$. Then

$$
(l-1) T(r, f) \leq \bar{N}\left(r, \frac{1}{f^{l} f^{(k)}-q}\right)+\log r+S(r, f)
$$

Sub-step 2.2.1: $f^{l}(z) f^{(k)}(z)-q(z) \neq 0$. By the assumptions, we get

$$
T(r, f) \leq(l-1) T(r, f) \leq \log r+S(r, f)
$$

It follows that $f(z)$ is a rational function of degree ≤ 1. Since the zeros of $f(z)$ have multiplicities at least $k+1 \geq 2$, then we get $f(z) \neq 0$. Thus, by Lemma 3, we obtain that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k+1 \geq 4$ distinct zeros, which is a contradiction.

Sub-step 2.2.2: $f^{l}(z) f^{(k)}(z)-q(z)=0$. By the assumptions, we get $f^{l}(z) f^{(k)}(z)-q(z)$ has only one zero. Then we obtain

$$
(l-1) T(r, f) \leq 2 \log r+S(r, f)
$$

Sub-step 2.2.2.1: $l \geq 3$, then

$$
T(r, f) \leq \log r+S(r, f)
$$

It follows that $f(z)$ is a rational function of degree ≤ 1. Since the zeros of $f(z)$ have multiplicities at least $k+1 \geq 2$, then we get $f(z) \neq 0$. Thus, by Lemma 3, we obtain that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k+1 \geq 5$ distinct zeros, which is a contradiction.

Sub-step 2.2.2.2: $l=2$, then

$$
T(r, f) \leq 2 \log r+S(r, f)
$$

It follows that $f(z)$ is a rational function of degree ≤ 2.
Sub-step 2.2.2.2.1: $k \geq 2$. Since the zeros of $f(z)$ have multiplicities at least $k+1 \geq 3$, then we get $f(z) \neq 0$. Thus, by Lemma 3 , we obtain that $f^{l}(z)\left(f^{(k)}\right)^{n}(z)-q(z)$ has at least $l+k+1 \geq 5$ distinct zeros, which is a contradiction.

Sub-step 2.2.2.2.2: $k=1$. Then we get $f(z) \neq 0$ or $f(z)$ has only one zero with multiplicity 2 .

The former case can be ruled out from Lemma 3. Hence $f(z)$ has the following forms:
(i) $f(z)=A\left(z-z_{0}\right)^{2}$;
(ii) $f(z)=\frac{A\left(z-z_{0}\right)^{2}}{\left(z-z_{1}\right)}$;
(iii) $f(z)=\frac{A\left(z-z_{0}\right)^{2}}{\left(z-z_{1}\right)^{2}}$;
(iv) $f(z)=\frac{A\left(z-z_{0}\right)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)}$,
where A, z_{0} are nonzero constants, and z_{1}, z_{2} are distinct constants. Clearly, $z_{0} \neq z_{1}, z_{0} \neq z_{2}$, and $T(r, f)=2 \log r+O(1)$.

We now show (i). Obviously, $\bar{N}\left(r, \frac{1}{f}\right) \leq \frac{1}{2} T(r, f)+O(1)$. Noticing that

$$
3 T(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+2 \log r+S(r, f)
$$

Then

$$
T(r, f) \leq \log r+S(r, f)
$$

a contradiction.
We now show (ii) or (iii). Obviously, $\bar{N}\left(r, \frac{1}{f}\right) \leq \frac{1}{2} T(r, f)+O(1), \bar{N}(r, f)=$ $\log r$ or $\bar{N}(r, f) \leq \frac{1}{2} T(r, f)+O(1)$. Noticing that

$$
3 T(r, f) \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+2 \log r+S(r, f)
$$

Then

$$
T(r, f) \leq \frac{4}{3} \log r+S(r, f)
$$

we also get a contradiction.
We now show (iv). Then

$$
f^{2}(z) f^{\prime}(z)=\frac{A^{3}\left(z-z_{0}\right)^{5}\left[\left(2 z_{0}-\left(z_{1}+z_{2}\right)\right) z+2 z_{1} z_{2}-z_{0}\left(z_{1}+z_{2}\right)\right]}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}}
$$

Since $q(z)=B z+C$, where $B \neq 0, C$ are constants, and $f^{l}(z) f^{(k)}(z)-q(z)$ has only one zero. Then we have

$$
f^{2}(z) f^{\prime}(z)=B z+C+\frac{d\left(z-Z_{0}\right)^{t}}{\left(z-z_{1}\right)^{4}\left(z-z_{2}\right)^{4}}
$$

Obviously, By calculation, we get $d=-B, t=9$, and $Z_{0} \neq z_{0}$.
Differentiating the above two equations separately, we obtain

$$
\left[f^{2}(z) f^{\prime}(z)\right]^{\prime \prime}=\frac{\left(z-z_{0}\right)^{3} g(z)}{\left(z-z_{1}\right)^{6}\left(z-z_{2}\right)^{6}}
$$

where $g(z)$ is a polynomial of degree ≤ 5, and

$$
\left[f^{2}(z) f^{\prime}(z)\right]^{\prime \prime}=\frac{\left(z-Z_{0}\right)^{7} h(z)}{\left(z-z_{1}\right)^{6}\left(z-z_{2}\right)^{6}}
$$

where $h(z)$ is a polynomial of degree ≤ 4.
Since $z_{0} \neq Z_{0}$, then $\left(z-Z_{0}\right)^{7}$ is a factor of $g(z)$. Thus $g(z)$ is a polynomial of degree ≥ 7, which is impossible.

Lemma 6. Let $k, n \in \mathbb{N}, l \in \mathbb{N} \backslash\{1\}$, and let $\mathcal{F}=\left\{f_{m}\right\}$ be a sequence of meromorphic functions, $g_{m}(z)$ be a sequence of holomorphic functions in D such that $g_{m}(z) \longrightarrow g(z)$, where $g(z)(\neq 0)$ be a holomorphic function. If all zeros of function $f_{m}(z)$ have multiplicity at least k, and $f_{m}^{l}(z)\left(f_{m}^{(k)}(z)\right)^{n}-$ $g_{n}(z)$ has at most one zero, then \mathcal{F} is normal in D.

Proof. Suppose that \mathcal{F} is not normal at $z_{0} \in D$. By Lemma 1, there exists $z_{m} \rightarrow z_{0}, \rho_{m} \rightarrow 0^{+}$, and $f_{m} \in \mathcal{F}$ such that

$$
h_{m}(\xi)=\frac{f_{m}\left(z_{m}+\rho_{m} \xi\right)}{\rho_{m}^{\frac{k n}{l+n}}} \longrightarrow h(\xi)
$$

locally uniformly on compact subsets of \mathbb{C}, where $h(\xi)$ is a non-constant meromorphic function in \mathbb{C}. By Hurwitz's theorem, all zeros of $h(\xi)$ have multiplicity at least k.

For each $\xi \in \mathbb{C} /\left\{h^{-1}(\infty)\right\}$, we have

$$
\begin{aligned}
h_{m}^{l}(\xi)\left(h_{m}^{(k)}(\xi)\right)^{n} & -g_{m}\left(z_{m}+\rho_{m} \xi\right)=f_{m}^{l}\left(z_{m}+\rho_{m} \xi\right)\left(f_{m}^{(k)}\right)^{n}\left(z_{m}+\rho_{m} \xi\right) \\
& -g_{m}\left(z_{m}+\rho_{m} \xi\right)
\end{aligned} \longrightarrow h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-g\left(z_{0}\right) .
$$

Claim 1: $h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-g\left(z_{0}\right) \not \equiv 0$.
Suppose that $h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-g\left(z_{0}\right) \equiv 0$, then $h(\xi) \neq 0$ since $g\left(z_{0}\right) \neq 0$. It follows that

$$
\frac{1}{h^{l+n}(\xi)} \equiv \frac{1}{g\left(z_{0}\right)}\left[\frac{h^{(k)}(\xi)}{h(\xi)}\right]^{n}
$$

Thus

$$
(l+n) m\left(r, \frac{1}{h}\right)=m\left(r, \frac{1}{g\left(z_{0}\right)}\left[\frac{h^{(k)}(\xi)}{h(\xi)}\right]^{n}\right)=S(r, h)
$$

Then $T(r, h)=S(r, h)$ since $h \neq 0$. we can deduce that $h(\xi)$ is a constant, a contradiction. The claim is proved.

Claim 2: $h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-g\left(z_{0}\right)$ has at most one zero.
Otherwise, suppose that ξ_{1}, ξ_{2} are two distinct zeros of $h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-$ $g\left(z_{0}\right)$. We choose a positive number δ small enough such that $D_{1} \cap D_{2}=\emptyset$ and $h^{l}(\xi)\left(h^{(k)}\right)^{n}(\xi)-g\left(z_{0}\right)$ has no other zeros in $D_{1} \cup D_{2}$ except for ξ_{1} and ξ_{2}, where $D_{1}=\left\{\xi:\left|\xi-\xi_{1}\right|<\delta\right\}$ and $D_{2}=\left\{\xi:\left|\xi-\xi_{2}\right|<\delta\right\}$.

By Hurwitz's theorem, for sufficiently large m, there exist points $\xi_{1, m} \rightarrow$ ξ_{1} and $\xi_{2, m} \rightarrow \xi_{2}$ such that

$$
f_{m}^{l}\left(z_{m}+\rho_{m} \xi_{1, m}\right)\left(f_{m}^{(k)}\right)^{n}\left(z_{m}+\rho_{m} \xi_{1, m}\right)-g_{m}\left(z_{m}+\rho_{m} \xi_{1, m}\right)=0
$$

and

$$
f_{m}^{l}\left(z_{m}+\rho_{m} \xi_{2, m}\right)\left(f_{m}^{(k)}\right)^{n}\left(z_{m}+\rho_{m} \xi_{2, m}\right)-g_{m}\left(z_{m}+\rho_{m} \xi_{2, m}\right)=0
$$

Since $f_{m}^{l}(z)\left(f_{m}^{(k)}(z)\right)^{n}-g_{m}(z)$ has at most one zero in D, then

$$
z_{m}+\rho_{m} \xi_{1, m}=z_{m}+\rho_{m} \xi_{2, m}
$$

this is

$$
\xi_{1, m}=\xi_{2, m}=\frac{z_{0}-z_{m}}{\rho_{m}}
$$

which contradicts the fact $D_{1} \cap D_{2}=\emptyset$. The claim is proved.
From Lemma 2, we get $h^{l}(z)\left(h^{(k)}\right)^{n}(z)-g\left(z_{0}\right)$ has at least two distinct zeros, a contradiction. Therefore \mathcal{F} is normal in D.

3. Proof of Theorem 2

Proof. Suppose that \mathcal{F} is not normal at z_{0}. From Lemma 6, we obtain $a\left(z_{0}\right)=0$. Without loss of generality, we assume that $z_{0}=0$ and $a(z)=$
$z^{t} b(z)$, where $1 \leq t \leq m, b(0)=1$. Then by Lemma 1 , there exists $z_{j} \longrightarrow 0$, $f_{j} \in \mathcal{F}$ and $\rho_{j} \longrightarrow 0^{+}$such that

$$
g_{j}(\xi)=\frac{f_{j}\left(z_{j}+\rho_{j} \xi\right)}{\rho_{j}^{\frac{k n+t}{l+n}}} \longrightarrow g(\xi)
$$

locally uniformly on compact subsets of \mathbb{C}, where $g(\xi)$ is a non-constant meromorphic functions in \mathbb{C}. By Hurwitz's theorem, all zeros of $g(\xi)$ have multiplicity at least $k+m$.

We now consider the following two steps.
Step I. Let $\frac{z_{n}}{\rho_{n}} \rightarrow \alpha, \alpha \in \mathbb{C}$.
For each $\xi \in \mathbb{C} /\left\{g^{-1}(\infty)\right\}$, we can be easily calculated that

$$
\begin{aligned}
& g_{j}^{l}(\xi)\left(g_{j}^{(k)}(\xi)\right)^{n}-\left(\xi+\frac{z_{j}}{\rho_{j}}\right)^{t} b\left(z_{j}+\rho_{j} \xi\right) \\
& \quad=\frac{f_{j}^{l}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}-a\left(z_{j}+\rho_{j} \xi\right)}{\rho_{j}^{t}} \\
& \quad \longrightarrow g^{l}(\xi)\left(g^{(k)}(\xi)\right)^{n}-(\xi+\alpha)^{t}
\end{aligned}
$$

Since for sufficiently large $j, f_{j}^{l}\left(z_{j}+\rho_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \xi\right)\right)^{n}-a\left(z_{j}+\rho_{j} \xi\right)$ has one zero, from the proof Lemma 6 , we can deduce that $g^{l}(\xi)\left(g^{(k)}(\xi)\right)^{n}-$ $(\xi+\alpha)^{t}$ has at most one distinct zero.

By Lemma $5, g^{l}(\xi)\left(g^{(k)}(\xi)\right)^{n}-(\xi+\alpha)^{t}$ have at least two distinct zeros. Thus $g(\xi)$ is a constant, we can get a contradiction.

Step II. Let $\frac{z_{n}}{\rho_{n}} \rightarrow \infty$.
Set

$$
F_{j}(\xi)=\frac{f_{j}\left(z_{j}+\rho_{j} \xi\right)}{\rho_{j}^{\frac{k n+t}{l+n}}}
$$

It follows that

$$
\begin{aligned}
& F_{j}^{l}(\xi)\left(F_{j}^{(k)}(\xi)\right)^{n}-(1+\xi)^{t} b\left(z_{j}+z_{j} \xi\right) \\
& \quad=\frac{f_{j}^{l}\left(z_{j}+z_{j} \xi\right)\left(f_{j}^{(k)}\left(z_{j}+z_{j} \xi\right)\right)^{n}-a\left(z_{j}+z_{j} \xi\right)}{z_{j}^{t}}
\end{aligned}
$$

As the same argument as in Lemma 6, we can deduce that $F_{j}^{l}(\xi)\left(F_{j}^{(k)}(\xi)\right)^{n}-$ $(1+\xi)^{t} b\left(z_{j}+z_{j} \xi\right)$ has at most one zero in $\Delta=\{\xi:|\xi|<1\}$.

Since all zeros of F_{j} have multiplicity at least $k+m$, and $(1+\xi)^{t} b\left(z_{j}+\right.$ $\left.z_{j} \xi\right) \rightarrow(1+\xi)^{t} \neq 0$ for $\xi \in \Delta$. Then by Lemma $6,\left\{F_{n}\right\}$ is normal in Δ.

Therefore, there exists a subsequence of $\left\{F_{n}(z)\right\}$ (we still express it as $\left.\left\{F_{n}(z)\right\}\right)$ such that $\left\{F_{n}(z)\right\}$ converges spherically locally uniformly to a meromorphic function $F(z)$ or ∞.

If $F(0) \neq \infty$, then, for each $\xi \in \mathbb{C} /\left\{g^{-1}(\infty)\right\}$, we have

$$
\begin{aligned}
g^{(k+m-1)}(\xi) & =\lim _{j \rightarrow \infty} g_{j}^{(k+m-1)}(\xi)=\lim _{j \rightarrow \infty} \frac{f_{j}^{(k+m-1)}\left(z_{j}+\rho_{j} \xi\right)}{\rho_{j}^{\frac{k n+t}{l+n}-(k+m-1)}} \\
& =\lim _{j \rightarrow \infty}\left(\frac{\rho_{j}}{z_{j}}\right)^{k+m-1-\frac{k n+t}{l+n}} F_{j}^{(k+m-1)}\left(\frac{\rho_{j}}{z_{j}} \xi\right)=0 .
\end{aligned}
$$

Hence $g^{(k+m-1)} \equiv 0$. It follows that g is a polynomial of degree $\leq k+m-1$. Note that all zeros of g have multiplicity at least $k+m$, then we get that g is a constant, which is a contradiction.

If $F(0)=\infty$, then, for each $\xi \in \mathbb{C} /\left\{g^{-1}(0)\right\}$, we get

$$
\frac{1}{F_{j}\left(\frac{\rho_{j}}{z_{j}} \xi\right)}=\frac{z_{j}^{\frac{k n+t}{l+n}}}{f_{j}\left(z_{j}+\rho_{j} \xi\right)} \rightarrow \frac{1}{F(0)}=0
$$

It follows that we have

$$
\frac{1}{g(\xi)}=\lim _{j \rightarrow \infty} \frac{\rho_{j}^{\frac{k n+t}{l+n}}}{f_{j}\left(z_{j}+\rho_{j} \xi\right)}=\lim _{j \rightarrow \infty}\left(\frac{\rho_{j}}{z_{j}}\right)^{\frac{k n+t}{l+n}} \frac{z_{j}^{\frac{k n+t}{l+n}}}{f_{j}\left(z_{j}+\rho_{j} \xi\right)}=0
$$

Thus $g(\xi)=\infty$, which contradicts that $g(\xi)$ is a non-constant meromorphic function.

Therefore \mathcal{F} is normal at $z_{0}=0$. Hence \mathcal{F} is normal in D.

4. Proof of Theorem 1

Proof. Let $z_{0} \in D, f \in \mathcal{F}$, we show that \mathcal{F} is normal at z_{0}.
Step I. If $f^{l}\left(z_{0}\right)\left(f^{(k)}\left(z_{0}\right)\right)^{n} \neq a\left(z_{0}\right)$.
Then there exists $D_{\delta}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\delta\right\}$ such that

$$
f^{l}(z)\left(f^{(k)}(z)\right)^{n} \neq a(z)
$$

in $D_{\delta}\left(z_{0}\right)$.
Since $f, g \in \mathcal{F}, f^{l}(z)\left(f^{(k)}(z)\right)^{n}$ and $g^{l}(z)\left(g^{(k)}(z)\right)^{n}$ share $a(z)$ in D. So, for each $g \in \mathcal{F}, g^{l}(z)\left(g^{(k)}(z)\right)^{n} \neq a(z)$ in $D_{\delta}\left(z_{0}\right)$. By Theorem $2, \mathcal{F}$ is normal in $D_{\delta}\left(z_{0}\right)$. Hence \mathcal{F} is normal at z_{0}.

Step II. If $f^{l}\left(z_{0}\right)\left(f^{(k)}\left(z_{0}\right)\right)^{n}=a\left(z_{0}\right)$.
Then there exists $D_{\delta}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\delta\right\}$ such that

$$
f^{l}(z)\left(f^{(k)}(z)\right)^{n} \neq a(z)
$$

in $D_{\delta}^{0}\left(z_{0}\right)=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$.
Since $f, g \in \mathcal{F}, f^{l}(z)\left(f^{(k)}(z)\right)^{n}$ and $g^{l}(z)\left(g^{(k)}(z)\right)^{n}$ share $a(z)$ in D. Thus, for each $g \in \mathcal{F}, g^{l}(z)\left(g^{(k)}(z)\right)^{n} \neq a(z)$ in $D_{\delta}^{0}\left(z_{0}\right)$ and $g^{l}\left(z_{0}\right)\left(g^{(k)}\left(z_{0}\right)\right)^{n}=$ $a\left(z_{0}\right)$. Therefore, $g^{l}(z)\left(g^{(k)}(z)\right)^{n}-a(z)$ have only one zero in $D_{\delta}\left(z_{0}\right)$. By Theorem $2, \mathcal{F}$ is normal in $D_{\delta}\left(z_{0}\right)$. Thus \mathcal{F} is normal at z_{0}. Hence \mathcal{F} is normal in D.

Acknowledgment. The author wish to thank the managing editor and referees for their very helpful comments and useful suggestions to this paper.

References

[1] Hayman W.K., Research Problems of Function Theory, London: Athlone Press of Univ of London, 1967.
[2] Yang L., Zhang G., Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples, Un nouveau critère et quelques applications, Sci. Sinica Ser, A 14(1965), 1258-1271.
[3] Gu Y.X., On normal families of meromorphic functions, Sci. Sinica Ser, A 4(1978), 373-384.
[4] Pang X.C., Bloch's principle and normal criterion, Sci. Sinica Ser, A 11 (1988), 1153-1159.
[5] Fang M.L., On the value distribution of $f^{n} f^{\prime}$, Sci. China Ser, A 38(1995), 789-798.
[6] Chen H.H., Zalcman L., On theorems of Hayman and Clunie, New Zealand J. Math., 28(1999),71-75.
[7] Zhang Q.C., Some normality criteria of meromorphic functions, Comp. Var. Ellip. Equat., 53(1)(2008),791-795.
[8] Hu P.C., Meng D.W., Normality criteria of meromorphic functions with multiple zeros, J. Math. Anal. Appl., 357(2009),323-329.
[9] Deng B.M., Lei C.L., Fang M.L., Normal families and shared functions concerning Hayman's question, Bull. Malays. Math. Sci. Soc., 42(3) (2019),847-857.
[10] Jiang Y.B., Gao Z.S., Normal families of meromorphic functions sharing a holomorphic function and the converse of the Bloch principle, Acta. Math. Sci, 32B(2011), 1503-1512.
[11] Ding J.J., Ding L.W., Yuan W.J., Normal families of meromorphic functions concerning shared values, Complex Var. Elliptic Equ., 58(1)(2013), 113-121.
[12] Meng D.W., Liu S.Y., Xu H.Y., Normal criteria of meromorphic functions concerning holomorphic functions, Journal of Computational Analysis and Applications, 27(3)(2019), 511-524.
[13] Pang X.C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 32(2000), 325-331.
[14] Sun C.X., Normal families and shared values of meromorphic functions, (in Chinese), Chinese Ann. Math. Ser. A, 34(2)(2013), 205-210.
[15] Chang J.M., Normality and quasinormality of zero-free meromorphic functions, Acta Mathematica Sinica, 28(2012), 707-716.
[16] Deng B.M., Fang M.L., Liu D., Normal families of zero-free meromorphic functions, J. Aust. Math. Soc., 91(2011), 313-322.
[17] Yang L., Value Distribution Theory, Springer, Berlin, 1993.

Chengxiong Sun
Xuanwei No. 9 Senior High School Yunnan, People's Republic of China
e-mail: aatram@aliyun.com

Received on 16.10.2018 and, in revised form, on 16.10.2019.

