F A S C I C U L I M A T H E M A T I C I

Nr 63

Rakesh Batra

COMMON BEST PROXIMITY POINTS FOR PROXIMALLY F-DOMINATED MAPPINGS

Abstract

The principal aim of this work is to formulate an extension and improvement of the common best proximity point theorem for a pair of non-self mappings, one of which is dominated by the other as proved by Basha. The proposed extension discusses a common best proximity point theorem for a pair of non-self mappings, one of which is F-dominated by the other proximally, for a function F as defined by Wardowski.

KEY WORDS: global optimal approximate solution, common best proximity point, common fixed point, proximally F-dominated mappings.
AMS Mathematics Subject Classification: 47H10, 46B40, 54H25, 55M20.

1. Introduction

Banach's fixed point theory deals with finding a solution to an equation $f x=x$, wherein f is a self map defined on a complete metric space X. The equation $f x=x$ may not have a solution if f is not a self mapping. In that case, one may focus on the problem of searching an element x that is in close proximity to $f x$ in some sense. Best approximation theorems and best proximity point theorems have been developed in recent times to solve above mentioned problem. The following best approximation theorem was established by Fan [6] in 1969.

Theorem 1 ([6]). For a nonempty convex compact subset K of a Hausdorff locally convex topological vector space X with a continuous semi-norm p and for a non self continuous map $f: K \rightarrow X$, there exists an element $x \in K$ called a best approximant in K such that $p(x-f x)=d_{P}(f x, K)=$ $\inf \{p(f x-y): y \in K\}$.

The preceding best approximation theorem has been generalized in various directions by many authors.

A best proximity point theorem for contractive map has been proved by Sadiq Basha [9]. Anthony Eldred et al. [5] and thereafter Sankar Raj and Veeramani [11] have elicited a best proximity point theorem for relatively non expansive mappings. A best proximity point theorem for proximal pointwise contraction has been discussed by Anuradha and Veeramani [3]. Best proximity point theorems for many variants of contractions have been studied by many other authors also in $[14,13,9,10,17,18,19,21,20,22$, $23,24,8,12,2,1]$.

Sadiq Basha [25] mooted a common best proximity point theorem for a pair of non self mappings, one of which dominates the other proximally.

Wardowski [27] introduced a generalized contraction which he named as an F-contraction, in which he took F as a real valued function defined on the set of positive real numbers and meeting with certain requirements.

The main objective of this paper is to establish a common best proximity point theorem for a pair of non self mappings, one of which is F-dominated by the other proximally. Consequently, the common best proximity point theorem proved in this article guarantees a common optimal solution at which both the real valued multi objective functions $x \rightarrow d(x, f x)$ and $x \rightarrow$ $d(x, g x)$ attain the global minimal value $d(A, B)$, thereby giving rise to a common optimal approximate solution to the fixed point equations $f x=x$ and $g x=x$, where the mapping $f: A \rightarrow B$ is proximally F-dominated by $g: A \rightarrow B$. Moreover, common best proximity point theorem due to Sadiq Basha for a pair of non self mappings (with an improvement of the statement in line with the actual proof of Basha's main theorem) is a special case of the aforementioned best proximity point theorem.

2. Preliminaries

Consider two nonempty subsets A and B of a metric space (X, d). Let $d(A, B):=\inf \{d(a, b): a \in A$ and $b \in B\}, A_{0}:=\{a \in A: d(a, b)=$ $d(A, B)$ for some $b \in B\}$ and $B_{0}:=\{b \in B: d(a, b)=d(A, B)$ for some $a \in$ $A\}$.

Definition 1 ([16]). Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_{0} \neq \phi$. Then the pair (A, B) is said to have the P-property if and only if

$$
\left.\begin{array}{l}
d\left(x_{1}, y_{1}\right)=d(A, B) \\
d\left(x_{2}, y_{2}\right)=d(A, B)
\end{array}\right\} \Rightarrow d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{2}\right)
$$

where $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}$.
Example 1 ([16]). The pair (A, B) satisfies P-property for any two nonempty closed and convex subsets A and B of a Hilbert space X.

Example 2 ([16]). The pair (A, B) satisfies P-property for any two nonempty subsets A and B of a metric space (X, d) such that $A_{0} \neq \phi$ and $d(A, B)=0$.

Example 3 ([13]). The pair (A, B) satisfies P-property for any two nonempty, closed, bounded and convex subsets A and B of a uniformly convex Banach space X.

Definition 2. Given non self mappings $f: A \rightarrow B$ and $g: A \rightarrow B$, an element x in A is called a common best proximity point of the mappings f and g if $d(x, f x)=d(x, g x)=d(A, B)$.

It can be observed that a common best proximity point is the one at which both the functions $x \rightarrow d(x, f x)$ and $x \rightarrow d(x, g x)$ attain global minimum, as $d(x, f x) \geq d(A, B)$ and $d(x, g x) \geq d(A, B)$ for all $x \in A$.

Definition 3. The mappings $f: A \rightarrow B$ and $g: A \rightarrow B$ are said to commute proximally if $d(u, f x)=d(v, g x)=d(A, B) \Rightarrow f v=g u$ for all $x, u, v \in A$.

It can be observed that proximal commutativity of two self mappings means their commutativity and a common best proximity point of two self mappings is precisely a common fixed point of the two mappings.

Let \mathcal{F} be the set of all mappings $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ that satisfy the following conditions:
(F1) F is strictly increasing, that is, $F(a)<F(b)$ whenever $a, b \in \mathbb{R}^{+}$and $a<b$.

1. For any sequence of positive real numbers a_{n} we have $\lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(a_{n}\right)=-\infty$.
2. There exists a real number k with $0<k<1$ and $\lim _{a \rightarrow 0^{+}} a^{k} F(a)=0$.

These mappings have been used by Wardowski [27] to define an F-contraction which generalises the Banach's contraction [4].

Definition 4. A mapping $g: A \rightarrow B$ is said to be dominating another mapping $f: A \rightarrow B$ proximally if there exists a number $k \in[0,1)$ such that

$$
\left.\begin{array}{r}
d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B) \tag{1}\\
d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B)
\end{array}\right\} \Rightarrow d\left(u_{1}, u_{2}\right) \leq k d\left(v_{1}, v_{2}\right)
$$

for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A.
Definition 5. For $F \in \mathcal{F}$, a mapping $f: X \rightarrow X$ is said to be F-dominated by another mapping $g: X \rightarrow X$ if there exists a number $\tau>0$ such that for all x, y in X,

$$
f x \neq f y \Rightarrow\left\{\begin{array}{l}
g x \neq g y \quad \text { and } \\
\tau+F(d(f x, f y)) \leq F(d(g x, g y))
\end{array}\right.
$$

Definition 5 can be extended to cover non self-mappings $f: A \rightarrow B$ and $g: A \rightarrow B$ also.

Definition 6. For $F \in \mathcal{F}$, a mapping $f: A \rightarrow B$ is said to be F-dominated by another mapping $g: A \rightarrow B$ if there exists a number $\tau>0$ such that for all x, y in A,

$$
f x \neq f y \Rightarrow\left\{\begin{array}{l}
g x \neq g y \quad \text { and } \\
\tau+F(d(f x, f y)) \leq F(d(g x, g y))
\end{array}\right.
$$

Remark 1. For $F \in \mathcal{F}$, if f is F-dominated by g according to Definition 5 or Definition 6 then we have for all $x, y \in X($ resp. for all $x, y \in A)$,

$$
d(f x, f y) \leq d(g x, g y)
$$

Definition 7. For a function $F \in \mathcal{F}$, a mapping $g: A \rightarrow B$ is said to be F-dominating another mapping $f: A \rightarrow B$ proximally if there exists a number $\tau>0$ such that

$$
\left.\begin{array}{c}
d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B) \\
d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B) \\
u_{1} \neq u_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
v_{1} \neq v_{2} \quad \text { and } \\
\tau+F\left(d\left(u_{1}, u_{2}\right)\right) \leq F\left(d\left(v_{1}, v_{2}\right)\right)
\end{array}\right.
$$

for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A.
In the Definition 7, we obtain a variety of proximal dominations for various types of mapping F. Consider the following examples:

Example 4. Let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be given by $F(a)=\ln a$. Clearly F satisfies all the three conditions for being an F-contraction, specially $(F 3)$ for any $k \in(0,1)$. A mapping $g: A \rightarrow B$ is said to F-dominate another mapping $f: A \rightarrow B$ proximally if and only if there exists a number $\tau>0$ such that

$$
\left.\begin{array}{rl}
d\left(u_{1}, f x_{1}\right)= & d\left(u_{2}, f x_{2}\right)=d(A, B) \tag{2}\\
d\left(v_{1}, g x_{1}\right)= & d\left(v_{2}, g x_{2}\right)=d(A, B) \\
& u_{1} \neq u_{2}
\end{array}\right\} \Rightarrow d\left(u_{1}, u_{2}\right) \leq \exp (-\tau) d\left(v_{1}, v_{2}\right)
$$

for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A. In particular, if a mapping $f: A \rightarrow B$ is proximally dominated by another mapping $g: A \rightarrow B$, then by (1), we see that (2) holds for $\tau=\ln (1 / k)$. So the mapping $f: A \rightarrow B$ is F-dominated by the mapping $g: A \rightarrow B$ proximally. Conversely, if a mapping $f: A \rightarrow B$ is F-dominated by another mapping $g: A \rightarrow B$ proximally, then by (2), we observe that (1) holds for $k=\exp (-\tau)$. So $f: A \rightarrow B$ becomes proximally dominated by $g: A \rightarrow B$.

Example 5. Let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be given by $F(a)=\ln a+a$. It is clear that F satisfies all the three conditions for being an F-contraction. A mapping $f: A \rightarrow B$ is said to be F-dominated by another mapping $g: A \rightarrow B$ proximally if and only if there exists a number $\tau>0$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
\begin{align*}
& d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B) \\
& d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B) \tag{3}\\
& u_{1} \neq u_{2} \\
\Rightarrow & d\left(u_{1}, u_{2}\right) \exp \left(d\left(u_{1}, u_{2}\right)-d\left(v_{1}, v_{2}\right)\right) \leq \exp (-\tau) d\left(v_{1}, v_{2}\right)
\end{align*}
$$

In particular, if there exists a number $k \in[0,1)$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
\begin{align*}
& d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B) \\
& d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B) \tag{4}\\
\Rightarrow & d\left(u_{1}, u_{2}\right) \exp \left(d\left(u_{1}, u_{2}\right)-d\left(v_{1}, v_{2}\right)\right) \leq k d\left(v_{1}, v_{2}\right)
\end{align*}
$$

then by (4), we see that (3) holds for $\tau=\ln (1 / k)$. So the mapping $f: A \rightarrow B$ is F-dominated by the mapping $g: A \rightarrow B$ proximally. Conversely, if a mapping $f: A \rightarrow B$ is F-dominated by another mapping $g: A \rightarrow B$ proximally, then by (3), we observe that (4) holds for $k=\exp (-\tau)$.

Example 6. Let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be given by $F(a)=-1 / \sqrt{a}$. Then F satisfies all the three conditions for being an F-contraction. A mapping $f: A \rightarrow B$ is said to be F-dominated by another mapping $g: A \rightarrow B$ proximally if and only if there exists a number $\tau>0$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A with $u_{1} \neq u_{2}, d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B)$ and $d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B)$ we have

$$
\begin{equation*}
d\left(u_{1}, u_{2}\right) \leq\left(1+\tau \sqrt{d\left(v_{1}, v_{2}\right)}\right)^{-2} d\left(v_{1}, v_{2}\right) \tag{5}
\end{equation*}
$$

In particular, if there exists a function $\alpha: A \times A \rightarrow[0,1)$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A with $d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B)$ and $d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B)$ we have

$$
\begin{equation*}
d\left(u_{1}, u_{2}\right) \leq \alpha\left(v_{1}, v_{2}\right) d\left(v_{1}, v_{2}\right) \tag{6}
\end{equation*}
$$

then by (6), we see that (5) holds for $\tau=\left(1 / \sqrt{d\left(v_{1}, v_{2}\right)}\right)\left[\left(1 / \sqrt{\alpha\left(v_{1}, v_{2}\right)}\right)-1\right]$. So the mapping $f: A \rightarrow B$ is F-dominated by the mapping $g: A \rightarrow B$ proximally. Conversely, if a mapping $f: A \rightarrow B$ is F-dominated by another mapping $g: A \rightarrow B$ proximally, then by (5), we observe that (6) holds for $\alpha\left(v_{1}, v_{2}\right)=\left(1+\tau \sqrt{d\left(v_{1}, v_{2}\right)}\right)^{-2}$.

Example 7. Let $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be given by $F(a)=\ln \left(a^{2}+a\right)$. Then F satisfies all the three conditions for being an F-contraction. A mapping $f: A \rightarrow B$ is said to be F-dominated by another mapping $g: A \rightarrow B$ proximally if and only if there exists a number $\tau>0$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A with $u_{1} \neq u_{2}, d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B)$ and $d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=d(A, B)$ we have

$$
\begin{equation*}
d\left(u_{1}, u_{2}\right)\left(d\left(u_{1}, u_{2}\right)+1\right) \leq \exp (-\tau) d\left(v_{1}, v_{2}\right)\left(d\left(v_{1}, v_{2}\right)+1\right) \tag{7}
\end{equation*}
$$

In particular, if there exists a number $k \in[0,1)$ such that for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A with $d\left(u_{1}, f x_{1}\right)=d\left(u_{2}, f x_{2}\right)=d(A, B)$ and $d\left(v_{1}, g x_{1}\right)=d\left(v_{2}, g x_{2}\right)=$ $d(A, B)$ we have

$$
\begin{equation*}
d\left(u_{1}, u_{2}\right)\left(d\left(u_{1}, u_{2}\right)+1\right) \leq k d\left(v_{1}, v_{2}\right)\left(d\left(v_{1}, v_{2}\right)+1\right) \tag{8}
\end{equation*}
$$

then by (8), we see that (7) holds for $\tau=\ln (1 / k)$. So the mapping $f: A \rightarrow B$ is F-dominated by the mapping $g: A \rightarrow B$ proximally. Conversely, if a mapping $f: A \rightarrow B$ is F-dominated by another mapping $g: A \rightarrow B$ proximally, then by (7), we observe that (8) holds for $k=\exp (-\tau)$.

Remark 2. Let $F_{1}, F_{2} \in \mathcal{F}$ be arbitrary. Suppose $F_{1}(a) \leq F_{2}(a)$ for all $a>0$ and a mapping $G=F_{2}-F_{1}$ is nondecreasing, then a mapping $f: A \rightarrow B$ is F_{2}-dominated by another mapping $g: A \rightarrow B$ proximally whenever $f: A \rightarrow B$ is F_{1}-dominated by $g: A \rightarrow B$.

Indeed, by Definition 7 , there exists a number $\tau>0$ such that

$$
\left.\begin{array}{rl}
d\left(u_{1}, f x_{1}\right)= & d\left(u_{2}, f x_{2}\right)=d(A, B) \\
d\left(v_{1}, g x_{1}\right)= & d\left(v_{2}, g x_{2}\right)=d(A, B) \\
& u_{1} \neq u_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
v_{1} \neq v_{2} \text { and } \\
\tau+F_{1}\left(d\left(u_{1}, u_{2}\right)\right) \leq F_{1}\left(d\left(v_{1}, v_{2}\right)\right)
\end{array}\right.
$$

for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A. This because F_{1} is nondecreasing, gives $d\left(u_{1}, u_{2}\right) \leq d\left(v_{1}, v_{2}\right)$. Now

$$
\begin{aligned}
\tau+F_{2}\left(d\left(u_{1}, u_{2}\right)\right) & =\tau+F_{1}\left(d\left(u_{1}, u_{2}\right)\right)+G\left(d\left(u_{1}, u_{2}\right)\right) \\
& \leq F_{1}\left(d\left(v_{1}, v_{2}\right)\right)+G\left(d\left(v_{1}, v_{2}\right)\right)=F_{2}\left(d\left(v_{1}, v_{2}\right)\right)
\end{aligned}
$$

3. Main results

Theorem 2. Let A and B be nonempty subsets of a complete metric space (X, d) such that A_{0} is nonempty as well as closed. Let $F \in \mathcal{F}$ and the non self mappings $f: A \rightarrow B$ and $g: A \rightarrow B$ satisfy the following conditions:
(a) f is proximally F-dominated by g.
(b) f and g commute proximally.
(c) f and g are continuous.
(d) $f\left(A_{0}\right) \subseteq B_{0}$.
(e) $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$.

Then, there exists a unique common best proximity point of f and g.
Proof. Choose an element $x_{0} \in A_{0}$ arbitrarily. Since $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$, therefore, there exists an element $x_{1} \in A_{0}$ such that $f x_{0}=g x_{1}$. Again, since $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$, there exists an element $x_{2} \in A_{0}$ such that $f x_{1}=g x_{2}$. This process can be continued. Proceeding inductively, it can easily be asserted that there exists a sequence $\left\{x_{n}\right\}$ in A_{0} satisfying

$$
f x_{n-1}=g x_{n}
$$

for all positive integers n. This is because of the fact that $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$.
On account of the fact that $f\left(A_{0}\right) \subseteq B_{0}$, there exists an element u_{n} in A_{0} such that

$$
\begin{equation*}
d\left(f x_{n}, u_{n}\right)=d(A, B) \tag{9}
\end{equation*}
$$

for all nonnegative integers n. Further, by the way we have chosen x_{n} and u_{n}, it follows that

$$
\begin{align*}
d\left(f x_{n+1}, u_{n+1}\right) & =d(A, B) \tag{10}\\
d\left(g x_{n}, u_{n-1}\right) & =d(A, B) \tag{11}\\
d\left(g x_{n+1}, u_{n}\right) & =d(A, B) . \tag{12}
\end{align*}
$$

Let $d_{n}=d\left(u_{n}, u_{n+1}\right)$ for all nonnegative integer values of n. If $u_{n}=u_{n+1}=$ u for some nonnegative integer n then by (10) and (12) and using proximal commutativity of f and g we obtain $f u=g u$ for some $u \in A$. Let us now assume that the sequence $\left\{u_{n}\right\}$ is such that any two consecutive terms are distinct. That is, $u_{n} \neq u_{n+1}$ for all nonnegative integers n. So $d_{n}>0$ for all nonnegative integers n. Since f is F-dominated by g proximally, there exists a number $\tau>0$ such that for every positive integer n,

$$
\begin{equation*}
F\left(d_{n}\right) \leq F\left(d_{n-1}\right)-\tau \leq F\left(d_{n-2}\right)-2 \tau \leq \ldots \leq F\left(d_{0}\right)-n \tau \tag{13}
\end{equation*}
$$

By (13), we get $\lim _{n \rightarrow \infty} F\left(d_{n}\right)=-\infty$ which together with (F2) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n}=0 \tag{14}
\end{equation*}
$$

By using $(F 3)$, we can find a $k \in(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d_{n}^{k} F\left(d_{n}\right)=0 \tag{15}
\end{equation*}
$$

By (13), the following holds for all positive integers n :

$$
\begin{equation*}
d_{n}^{k} F\left(d_{n}\right)-d_{n}^{k} F\left(d_{0}\right) \leq d_{n}^{k}\left(F\left(d_{0}\right)-n \tau\right)-d_{n}^{k} F\left(d_{0}\right)=-d_{n}^{k} n \tau \leq 0 \tag{16}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (16), and using (14) and (15), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n d_{n}^{k}=0 \tag{17}
\end{equation*}
$$

Now, by (17), there exists a positive integer p such that $n d_{n}^{k} \leq 1$ for all $n \geq p$. Consequently we have for all $n \geq p$,

$$
\begin{equation*}
d_{n} \leq 1 / n^{1 / k} \tag{18}
\end{equation*}
$$

Let us choose positive integers m and n such that $m>n \geq p$. By (18), we get

$$
d\left(u_{m}, u_{n}\right) \leq d_{m-1}+d_{m-2}+\ldots+d_{n}<\sum_{i=n}^{\infty} d_{i} \leq \sum_{i=n}^{\infty}\left(1 / i^{1 / k}\right)
$$

By the convergence of the series $\sum_{i=1}^{\infty}\left(1 / i^{1 / k}\right)$, we obtain that $\left\{u_{n}\right\}$ is a Cauchy sequence in A_{0}. Since A_{0} is a closed subset of a complete metric space, therefore, there exists an element $u \in A_{0}$ such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$. Because of proximal commutativity of f and g and for all positive integers n, we have by (9) and (11),

$$
g u_{n}=f u_{n-1}
$$

Continuity of f and g now gives $f u=g u$.
Thus irrespective of the nature of the sequence $\left\{u_{n}\right\}$, we get an element $u \in A$ such that $f u=g u$.

In view of the fact that $f\left(A_{0}\right) \subseteq B_{0}$, there exists an element x in A such that

$$
\begin{align*}
d(x, f u) & =d(A, B) \tag{19}\\
d(x, g u) & =d(A, B) \tag{20}
\end{align*}
$$

Since f and g commute proximally, by (19) and (20) we get $f x=g x$.
Again since $f\left(A_{0}\right) \subseteq B_{0}$, there exists an element z in A such that

$$
\begin{align*}
d(z, f x) & =d(A, B) \tag{21}\\
d(z, g x) & =d(A, B) \tag{22}
\end{align*}
$$

If $x \neq z$ then by F-domination of f proximally by g and by (19), (20), (21) and (22) we obtain,

$$
\tau+F(d(x, z)) \leq F(d(x, z))
$$

But this is not true. So we must have $x=z$. Thus, it follows that

$$
\begin{align*}
& d(x, g x)=d(z, g x)=d(A, B) \tag{23}\\
& d(x, f x)=d(z, f x)=d(A, B) \tag{24}
\end{align*}
$$

Thus, x becomes a common best proximity point of non self mappings f and g.

To prove uniqueness, suppose that x^{*} is another common best proximity point of the mappings f and g. then we have

$$
\begin{gather*}
d\left(x^{*}, f x^{*}\right)=d(A, B) \tag{25}\\
d\left(x^{*}, g x^{*}\right)=d(A, B) \tag{26}
\end{gather*}
$$

If $x \neq x^{*}$, then by F-domination of the mapping f proximally by the mapping g and by (23), (24), (25) and (26) we get,

$$
\tau+F\left(d\left(x, x^{*}\right)\right) \leq F\left(d\left(x, x^{*}\right)\right)
$$

But this is not true. So we must have $x=x^{*}$.
This completes the proof of the theorem.
Remark 3. Conclusion of Theorem 2 remains valid even if the proximal F-domination of f by g is replaced by F-domination provided the pair (A, B) satisfies the P-property and rest of the conditions in Theorem 2 remain unchanged. This is simply because the P-property together with F-domination of $f: A \rightarrow B$ by $g: A \rightarrow B$ implies proximal F-domination. Further, in this situation, continuity of f is not to be explicitly stated as it is implied by continuity of g by Remark 1. Also the conditions that A, B and A_{0} are nonempty may be omitted because these are implied by the condition that the pair (A, B) satisfies the P-property.

Thus we may state the discussion in Remark 3 in the form of the following theorem.

Theorem 3. Let A and B be subsets of a complete metric space (X, d) such that the pair (A, B) satisfies the P-property and A_{0} is closed. Let $F \in \mathcal{F}$ and the non self mappings $f: A \rightarrow B$ and $g: A \rightarrow B$ satisfy the following conditions:
(a) f is F-dominated by g.
(b) f and g commute proximally.
(c) g is continuous.
(d) $f\left(A_{0}\right) \subseteq B_{0}$.
(e) $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$.

Then, there exists a unique common best proximity point of f and g.

If we take $A=B=X$ in Theorem 2 or in Theorem 3, then we get the following result.

Corollary 1. Let (X, d) be a complete metric space and $F \in \mathcal{F}$. Let $f: X \rightarrow X$ and $g: X \rightarrow X$ satisfy the following conditions:
(a) f is F-dominated by g.
(b) f and g are commuting.
(c) g is continuous.
(d) $f(X) \subseteq g(X)$.

Then, there exists a unique common fixed point of f and g.
In Corollary 1 we have not assumed continuity of f as it follows by continuity of g by Remark 1 .

Taking $F(a)=\ln a$ for all $a>0$ in Theorem 2 we get the following result which is similar to the one in Sadiq Basha [25] with a little variation in the statement. Sadiq Basha has not assumed that A_{0} is closed. Instead he has assumed that both A and B are closed. But in the proof, A_{0} is required to be closed and A and B need not be closed. Further nonemptiness of B_{0} is implied by nonemptiness of A_{0} in his result, as $f\left(A_{0}\right) \subseteq B_{0}$.

Corollary 2. Let A and B be nonempty subsets of a complete metric space (X, d) such that A_{0} is nonempty and closed. Let $f: A \rightarrow B$ and $g: A \rightarrow B$ satisfy the following conditions:
(a) f is proximally dominated by g.
(b) f and g commute proximally.
(c) f and g are continuous.
(d) $f\left(A_{0}\right) \subseteq B_{0}$.
(e) $f\left(A_{0}\right) \subseteq g\left(A_{0}\right)$.

Then, there exists a unique common best proximity point of f and g.
The following result due to Jungck [7] for common fixed point of two self mappings on a complete metric space can be proved by taking $F(a)=\ln a$ in Corollary 1.

Corollary 3. Let (X, d) be a complete metric space and the mappings $f: X \rightarrow X$ and $g: X \rightarrow X$ satisfy the following conditions:
(a) There exists a number $\alpha \in[0,1)$ satisfying $d(f x, f y) \leq \alpha d(g x, g y)$ for all $x, y \in X$.
(b) f and g are commuting.
(c) g is continuous.
(d) $f(X) \subseteq g(X)$.

Then, there exists a unique common fixed point of f and g.
Example 8. Consider the sequence $\left\{s_{n}\right\}$ given by $s_{n}=1+2+\ldots+n=$ $n(n+1) / 2$ for all $n \in \mathbb{N}$. Let $X=\mathbb{R} \times\left\{s_{n}: n \in \mathbb{N}\right\}=\left\{\left(x, s_{n}\right): x \in \mathbb{R}, n \in\right.$
$\mathbb{N}\}$. Let us consider Euclidean metric d on X. Then (X, d) is a complete metric space. Let $A:=\left\{\left(x, s_{n}\right): x \leq-1, n \in \mathbb{N}\right\}$ and $B:=\left\{\left(x, s_{n}\right): x \geq\right.$ $1, n \in \mathbb{N}\}$. Clearly A and B are nonempty and closed subsets of X such that $d(A, B)=2$. Also $A_{0}=\left\{\left(-1, s_{n}\right): n \in \mathbb{N}\right\}$ and $B_{0}=\left\{\left(1, s_{n}\right): n \in \mathbb{N}\right\}$.

Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be defined by

$$
f\left(x, s_{n}\right)=\left\{\begin{array}{l}
\left(-x, s_{1}\right) \text { if } n \text { is odd } \\
\left(-x, s_{n-1}\right) \text { if } n \text { is even }
\end{array}\right.
$$

and

$$
g\left(x, s_{n}\right)=\left\{\begin{array}{l}
\left(-x, s_{1}\right) \text { if } n \text { is odd } \\
\left(-x, s_{n+1}\right) \text { if } n \text { is even }
\end{array}\right.
$$

Then both f and g are continuous on A. Now, for any $\left(x, s_{n}\right),\left(u, s_{m}\right)$ and $\left(v, s_{k}\right) \in A, d\left(f\left(x, s_{n}\right),\left(u, s_{m}\right)\right)=d(A, B)$ and $d\left(g\left(x, s_{n}\right),\left(v, s_{k}\right)\right)=d(A, B)$, we have $d\left(\left(-x, s_{1}\right),\left(u, s_{m}\right)\right)=d\left(\left(-x, s_{1}\right),\left(v, s_{k}\right)\right)=d(A, B)$ if n is odd and $d\left(\left(-x, s_{n-1}\right),\left(u, s_{m}\right)\right)=d\left(\left(-x, s_{n+1}\right),\left(v, s_{k}\right)\right)=d(A, B)$ if n is even. Since $\mathrm{d}(\mathrm{A}, \mathrm{B})=2$, therefore, $\left(-x, s_{1}\right) \in B_{0}$ and $\left(u, s_{m}\right),\left(v, s_{k}\right) \in A_{0}$ if n is odd and also $\left(-x, s_{n-1}\right),\left(-x, s_{n+1}\right) \in B_{0}$ and $\left(u, s_{m}\right),\left(v, s_{k}\right) \in A_{0}$ if n is even. This gives $x=u=v=-1, s_{1}=s_{m}=s_{k}$ if n is odd and $x=u=v=-1, s_{n-1}=$ $s_{m}, s_{n+1}=s_{k}$ if n is even. Now $f\left(v, s_{k}\right)=f\left(-1, s_{k}\right)=f\left(-1, s_{1}\right)=\left(1, s_{1}\right)=$ $g\left(-1, s_{m}\right)=g\left(u, s_{m}\right)$ if n is odd and $f\left(v, s_{k}\right)=f\left(-1, s_{n+1}\right)=\left(1, s_{1}\right)=$ $g\left(-1, s_{n-1}\right)=g\left(u, s_{m}\right)$ if n is even. Thus $d\left(f\left(x, s_{n}\right),\left(u, s_{m}\right)\right)=d(A, B)$ and $d\left(g\left(x, s_{n}\right),\left(v, s_{k}\right)\right)=d(A, B) \Rightarrow f\left(v, s_{k}\right)=g\left(u, s_{m}\right)$ for all $n \in \mathbb{N}$. This implies that f and g are proximally commutative. Now,

$$
f\left(-1, s_{n}\right)= \begin{cases}\left(1, s_{1}\right) & \text { if } n \text { is odd and } \\ \left(1, s_{n-1}\right) & \text { if } n \text { is even }\end{cases}
$$

So it is implied that $f\left(A_{0}\right) \subseteq B_{0}$. Further we have

$$
f\left(A_{0}\right)=g\left(A_{0}\right)=\left\{\left(1, s_{2 n-1}\right): n \in \mathbb{N}\right\}
$$

Take $F_{1} \in \mathcal{F}$ as in Example 4. The mapping f is not proximally F_{1}-dominated by g (which means f is not proximally dominated by g). Indeed if we take $\left(-1, s_{n}\right),\left(-1, s_{m}\right),\left(-1, s_{p}\right),\left(-1, s_{q}\right),\left(-1, s_{k}\right),\left(-1, s_{l}\right)$ in A_{0} satisfying

$$
\begin{aligned}
& d\left(\left(-1, s_{n}\right), f\left(-1, s_{k}\right)\right)=d\left(\left(-1, s_{m}\right), f\left(-1, s_{l}\right)\right)=d(A, B)=2 \\
& d\left(\left(-1, s_{p}\right), g\left(-1, s_{k}\right)\right)=d\left(\left(-1, s_{q}\right), g\left(-1, s_{l}\right)\right)=d(A, B)=2 \\
& \left(-1, s_{n}\right) \neq\left(-1, s_{m}\right)
\end{aligned}
$$

then $f\left(-1, s_{k}\right)=\left(1, s_{n}\right)$ and $\left.f\left(-1, s_{l}\right)\right)=\left(1, s_{m}\right)$. Also, we get $g\left(-1, s_{k}\right)=$ $\left(1, s_{p}\right)$ and $\left.g\left(-1, s_{l}\right)\right)=\left(1, s_{q}\right)$. If k is even but l is odd then we get

$$
\begin{aligned}
& f\left(-1, s_{k}\right)=\left(1, s_{k-1}\right)=\left(1, s_{n}\right) \\
& g\left(-1, s_{k}\right)=\left(1, s_{k+1}\right)=\left(1, s_{p}\right) \\
& \left.f\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{m}\right) \text { and } \\
& \left.g\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{q}\right)
\end{aligned}
$$

This gives $k-1=n, k+1=p, m=1$ and $q=1$. So

$$
\begin{aligned}
\frac{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)}{d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right.} & =\frac{\left|s_{n}-s_{m}\right|}{\left|s_{p}-s_{q}\right|}=\frac{s_{k-1}-s_{1}}{s_{k+1}-s_{1}} \\
& =\frac{k^{2}-k-2}{k^{2}+3 k} \rightarrow 1 \text { as } k \rightarrow \infty
\end{aligned}
$$

Thus f is not proximally F_{1}-dominated by g. Hence Theorem 3.1 of [25] can not be applied. Let $F_{2} \in \mathcal{F}$ be taken as in Example 5. We obtain that f is F_{2}-dominated by g with $\tau=2$. To see this, consider the following calculations: First, let us choose $\left(-1, s_{n}\right),\left(-1, s_{m}\right),\left(-1, s_{p}\right),\left(-1, s_{q}\right),\left(-1, s_{k}\right)$, $\left(-1, s_{l}\right)$ in A_{0} satisfying

$$
\begin{aligned}
& d\left(\left(-1, s_{n}\right), f\left(-1, s_{k}\right)\right)=d\left(\left(-1, s_{m}\right), f\left(-1, s_{l}\right)\right)=d(A, B)=2 \\
& d\left(\left(-1, s_{p}\right), g\left(-1, s_{k}\right)\right)=d\left(\left(-1, s_{q}\right), g\left(-1, s_{l}\right)\right)=d(A, B)=2 \\
& \left(-1, s_{n}\right) \neq\left(-1, s_{m}\right)
\end{aligned}
$$

This implies that $f\left(-1, s_{k}\right)=\left(1, s_{n}\right)$ and $\left.f\left(-1, s_{l}\right)\right)=\left(1, s_{m}\right)$. Also, we get $g\left(-1, s_{k}\right)=\left(1, s_{p}\right)$ and $\left.g\left(-1, s_{l}\right)\right)=\left(1, s_{q}\right)$. If both k and l are odd then we get

$$
\begin{aligned}
& f\left(-1, s_{k}\right)=\left(1, s_{1}\right)=\left(1, s_{n}\right) \\
& \left.f\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{m}\right) \\
& g\left(-1, s_{k}\right)=\left(1, s_{1}\right)=\left(1, s_{p}\right) \text { and } \\
& \left.g\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{q}\right)
\end{aligned}
$$

This gives $n=m=p=q=1$, which is not possible as $n \neq m$. If k is even but l is odd then we get

$$
\begin{aligned}
& f\left(-1, s_{k}\right)=\left(1, s_{k-1}\right)=\left(1, s_{n}\right) \\
& g\left(-1, s_{k}\right)=\left(1, s_{k+1}\right)=\left(1, s_{p}\right) \\
& \left.f\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{m}\right) \text { and } \\
& \left.g\left(-1, s_{l}\right)\right)=\left(1, s_{1}\right)=\left(1, s_{q}\right)
\end{aligned}
$$

This gives $k-1=n, k+1=p, m=1$ and $q=1$. So

$$
\begin{aligned}
& \frac{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)}{\left.d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)\right)} e^{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)-d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)} \\
& \quad=\frac{\left|s_{n}-s_{m}\right|}{\left|s_{p}-s_{q}\right|} e^{\left|s_{n}-s_{m}\right|-\left|s_{p}-s_{q}\right|}=\frac{s_{k-1}-s_{1}}{s_{k+1}-s_{1}} e^{s k-1-s_{k+1}} \\
& \quad=\frac{k^{2}-k-2}{k^{2}+3 k} e^{-2 k-1}<e^{-2}
\end{aligned}
$$

Now if k is odd but l is even then we get

$$
\begin{aligned}
& f\left(-1, s_{k}\right)=\left(1, s_{1}\right)=\left(1, s_{n}\right) \\
& g\left(-1, s_{k}\right)=\left(1, s_{1}\right)=\left(1, s_{p}\right) \\
& \left.f\left(-1, s_{l}\right)\right)=\left(1, s_{l-1}\right)=\left(1, s_{m}\right) \text { and } \\
& \left.g\left(-1, s_{l}\right)\right)=\left(1, s_{l+1}\right)=\left(1, s_{q}\right)
\end{aligned}
$$

This gives $l-1=m, l+1=q, n=1$ and $p=1$. So

$$
\begin{aligned}
& \frac{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)}{d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)} e^{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)-d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)} \\
& \quad=\frac{\left|s_{n}-s_{m}\right|}{\left|s_{p}-s_{q}\right|} e^{\left|s_{n}-s_{m}\right|-\left|s_{p}-s_{q}\right|}=\frac{s_{l-1}-s_{1}}{s_{l+1}-s_{1}} e^{s_{l-1}-s_{l+1}} \\
& \quad=\frac{l^{2}-l-2}{l^{2}+3 l} e^{-2 l-1}<e^{-2}
\end{aligned}
$$

Now assume that both k and l are even. Then we obtain

$$
\begin{aligned}
& f\left(-1, s_{k}\right)=\left(1, s_{k-1}\right)=\left(1, s_{n}\right) \\
& g\left(-1, s_{k}\right)=\left(1, s_{k+1}\right)=\left(1, s_{p}\right) \\
& \left.f\left(-1, s_{l}\right)\right)=\left(1, s_{l-1}\right)=\left(1, s_{m}\right) \text { and } \\
& \left.g\left(-1, s_{l}\right)\right)=\left(1, s_{l+1}\right)=\left(1, s_{q}\right)
\end{aligned}
$$

This gives $k-1=n, k+1=p, l-1=m, l+1=q$. So in case $k>l$, we have

$$
\begin{aligned}
& \frac{d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)}{d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)} e^{\left(d\left(\left(-1, s_{n}\right),\left(-1, s_{m}\right)\right)-d\left(\left(-1, s_{p}\right),\left(-1, s_{q}\right)\right)\right)} \\
& \quad=\frac{\left|s_{n}-s_{m}\right|}{\left|s_{p}-s_{q}\right|} e^{\left(\left|s_{n}-s_{m}\right|-\left|s_{p}-s_{q}\right|\right)}=\frac{s_{k-1}-s_{l-1}}{s_{k+1}-s_{l+1}} e^{s_{k-1}-s_{l-1}-s_{k+1}+s_{l+1}} \\
& \quad=\frac{k+l-1}{k+l+3} e^{-2(k-l)}<e^{-2}
\end{aligned}
$$

That inequality holds for $l>k$ also and can be proved easily by similar method as for $k>l$. Thus f is F_{2}-dominated by g. Hence all the conditions of Theorem 2 are satisfied. We observe that $\left(-1, s_{1}\right)$ is a unique common best proximity point of f and g.

References

[1] Al-Thagafi M.A., Shahzad N., Best proximity sets and equilibrium pairs for a finite family of multimaps, Fixed Point Theory Appl., (2008) : 457069, 10 pp .
[2] Al-Thagafi M.A., Shahzad N., Convergence and existence results for best proximity points, Nonlinear Anal., 70(10)(2009), 3665-3671.
[3] Anuradha J., Veeramani P., Proximal pointwise contraction, Topology Appl., 156(18)(2009), 2942-2948.
[4] Banach S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrale, Fund Math., 3(1922), 133-181.
[5] Eldred A.A., Kirk W.A., Veeramani P., Proximinal normal structure and relatively nonexpansive mappings, Studia Math., 171(3)(2005), 283-293.
[6] Fan K., Extensions of two fixed point theorems of F.E. Browder, Math. Z., 112(1969), 234-240.
[7] Jungek G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
[8] Reich S., Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62(1978), 104-113.
[9] Sadiq Basha S., Best proximity points: global optimal approximate solution, J. Global Optim., (2010), DOI:10.1007/s10898-009-9521-0.
[10] SadiQ Basha S., Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31(2010), 569-576.
[11] Sankar Raj V., Veeramani P., Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol., 10(1)(2009), 21-28.
[12] Wlodarczyk K., Plebaniak R., Banach A., Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces, Nonlinear Anal., 70(9)(2009), 3332-3341.
[13] Abkar A., Gabeleh M., Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153(2012), 298-305.
[14] Abkar A., Gabeleh M., A best proximity point theorem for Suzuki type contraction non-self-mappings, Fixed Point Theory, 14(2013), 281-288.
[15] SadiQ Basha S., Discrete optimization in partially ordered sets, J. Glob. Optim., 54(2012), 511-517.
[16] Raj V. S., A best proximity point theorem for weakly contractive non-selfmappings, Nonlinear Anal., 74,(2011), 4804-4808.
[17] Choudhury B.S., Maity P., Konar P., A global optimality result using nonself mappings, Opsearch, 51(2014), 312-320.
[18] Choudhury B.S., Maity P., Metiya N., Best proximity point theorems with cyclic mappings in setvalued analysis, Indian J. Math., 57(2015), 79-102.
[19] Dimri R.C., Semwal P., Best proximity results for multivalued mappings, Int. J. Math. Anal., 7(2013), 1355-1362.
[20] Gabeleh M., Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl., 158(2013), 615-625.
[21] Gabeleh M., Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl., 164(2015), 565-576.
[22] Gupta A., Rajput S.S., Kaurav P.S., Coupled best proximity point theorem in metric spaces, Int. J. Anal. Appl., 4(2014), 201-215.
[23] Hussain N., Kutbi M.A., Salimi P., Best proximity point results for modified $\alpha-\psi$-proximal rational contractions, Abstr. Appl. Anal., 2013(2013), Article ID 927457.
[24] Karapinar E., Erhan I.M., Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5(3)(2011), 558-569.
[25] SadiQ Basha S., Common best proximity points: global minimal solutions, Top, 21(1)(2013), 182-188, DOI 10.1007/s11750-011-0171-2.
[26] SadiQ Basha S., Veeramani P., Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103(2000), 119-129.
[27] Wardowski D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 94(2012).

Rakesh Batra
Department of Mathematics
Hans Raj College
University of Delhi
Delhi-110007, India
e-mail: rakeshbatra.30@gmail.com

Received on 09.09.2019 and, in revised form, on 21.04.2020.

