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Abstract. The principal aim of this work is to formulate an
extension and improvement of the common best proximity point
theorem for a pair of non-self mappings, one of which is dom-
inated by the other as proved by Basha. The proposed exten-
sion discusses a common best proximity point theorem for a pair
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proximally, for a function F as defined by Wardowski.
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1. Introduction

Banach’s fixed point theory deals with finding a solution to an equation
fx = x, wherein f is a self map defined on a complete metric space X. The
equation fx = x may not have a solution if f is not a self mapping. In
that case, one may focus on the problem of searching an element x that is
in close proximity to fx in some sense. Best approximation theorems and
best proximity point theorems have been developed in recent times to solve
above mentioned problem. The following best approximation theorem was
established by Fan [6] in 1969.

Theorem 1 ([6]). For a nonempty convex compact subset K of a Haus-
dorff locally convex topological vector space X with a continuous semi-norm
p and for a non self continuous map f : K → X, there exists an element
x ∈ K called a best approximant in K such that p(x − fx) = dP (fx,K) =
inf{p(fx− y) : y ∈ K}.

The preceding best approximation theorem has been generalized in vari-
ous directions by many authors.
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A best proximity point theorem for contractive map has been proved
by Sadiq Basha [9]. Anthony Eldred et al. [5] and thereafter Sankar Raj
and Veeramani [11] have elicited a best proximity point theorem for rela-
tively non expansive mappings. A best proximity point theorem for proximal
pointwise contraction has been discussed by Anuradha and Veeramani [3].
Best proximity point theorems for many variants of contractions have been
studied by many other authors also in [14, 13, 9, 10, 17, 18, 19, 21, 20, 22,
23, 24, 8, 12, 2, 1].

Sadiq Basha [25] mooted a common best proximity point theorem for a
pair of non self mappings, one of which dominates the other proximally.

Wardowski [27] introduced a generalized contraction which he named as
an F -contraction, in which he took F as a real valued function defined on
the set of positive real numbers and meeting with certain requirements.

The main objective of this paper is to establish a common best proximity
point theorem for a pair of non self mappings, one of which is F -dominated
by the other proximally. Consequently, the common best proximity point
theorem proved in this article guarantees a common optimal solution at
which both the real valued multi objective functions x→ d(x, fx) and x→
d(x, gx) attain the global minimal value d(A,B), thereby giving rise to a
common optimal approximate solution to the fixed point equations fx = x
and gx = x, where the mapping f : A → B is proximally F -dominated by
g : A → B. Moreover, common best proximity point theorem due to Sadiq
Basha for a pair of non self mappings (with an improvement of the statement
in line with the actual proof of Basha’s main theorem ) is a special case of
the aforementioned best proximity point theorem.

2. Preliminaries

Consider two nonempty subsets A and B of a metric space (X, d). Let
d(A,B) := inf{d(a, b) : a ∈ A and b ∈ B}, A0 := {a ∈ A : d(a, b) =
d(A,B) for some b ∈ B} and B0 := {b ∈ B : d(a, b) = d(A,B) for some a ∈
A}.

Definition 1 ([16]). Let (A,B) be a pair of nonempty subsets of a metric
space (X, d) with A0 ̸= ϕ. Then the pair (A,B) is said to have the P -property
if and only if

d(x1, y1) = d(A,B)
d(x2, y2) = d(A,B)

}
⇒ d(x1, x2) = d(y1, y2)

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 1 ([16]). The pair (A,B) satisfies P -property for any two
nonempty closed and convex subsets A and B of a Hilbert space X.
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Example 2 ([16]). The pair (A,B) satisfies P -property for any two
nonempty subsets A and B of a metric space (X, d) such that A0 ̸= ϕ and
d(A,B) = 0.

Example 3 ([13]). The pair (A,B) satisfies P -property for any two
nonempty, closed, bounded and convex subsets A and B of a uniformly
convex Banach space X.

Definition 2. Given non self mappings f : A → B and g : A → B, an
element x in A is called a common best proximity point of the mappings f
and g if d(x, fx) = d(x, gx) = d(A,B).

It can be observed that a common best proximity point is the one at which
both the functions x → d(x, fx) and x → d(x, gx) attain global minimum,
as d(x, fx) ≥ d(A,B) and d(x, gx) ≥ d(A,B) for all x ∈ A.

Definition 3. The mappings f : A → B and g : A → B are said to
commute proximally if d(u, fx) = d(v, gx) = d(A,B) ⇒ fv = gu for all
x, u, v ∈ A.

It can be observed that proximal commutativity of two self mappings
means their commutativity and a common best proximity point of two self
mappings is precisely a common fixed point of the two mappings.

Let F be the set of all mappings F : R+ → R that satisfy the following
conditions:
(F1) F is strictly increasing, that is, F (a) < F (b) whenever a, b ∈ R+ and

a < b.
1. For any sequence of positive real numbers an we have limn→∞ an = 0 if

and only if limn→∞ F (an) = −∞.
2. There exists a real number k with 0 < k < 1 and lima→0+ a

kF (a) = 0.
These mappings have been used byWardowski [27] to define an F -contraction
which generalises the Banach’s contraction [4].

Definition 4. A mapping g : A → B is said to be dominating another
mapping f : A→ B proximally if there exists a number k ∈ [0, 1) such that

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)

}
⇒ d(u1, u2) ≤ kd(v1, v2)(1)

for all u1, u2, v1, v2, x1, x2 in A.

Definition 5. For F ∈ F , a mapping f : X → X is said to be
F -dominated by another mapping g : X → X if there exists a number τ > 0
such that for all x, y in X,

fx ̸= fy ⇒

{
gx ̸= gy and

τ + F (d(fx, fy)) ≤ F (d(gx, gy))
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Definition 5 can be extended to cover non self-mappings f : A → B and
g : A→ B also.

Definition 6. For F ∈ F , a mapping f : A→ B is said to be F -dominated
by another mapping g : A→ B if there exists a number τ > 0 such that for
all x, y in A,

fx ̸= fy ⇒

{
gx ̸= gy and

τ + F (d(fx, fy)) ≤ F (d(gx, gy))

Remark 1. For F ∈ F , if f is F -dominated by g according to Definition
5 or Definition 6 then we have for all x, y ∈ X (resp. for all x, y ∈ A) ,

d(fx, fy) ≤ d(gx, gy).

Definition 7. For a function F ∈ F , a mapping g : A → B is said to
be F -dominating another mapping f : A → B proximally if there exists a
number τ > 0 such that

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)

u1 ̸= u2

 ⇒

{
v1 ̸= v2 and

τ + F (d(u1, u2)) ≤ F (d(v1, v2))

for all u1, u2, v1, v2, x1, x2 in A.

In the Definition 7, we obtain a variety of proximal dominations for var-
ious types of mapping F . Consider the following examples:

Example 4. Let F : R+ → R be given by F (a) = ln a. Clearly F
satisfies all the three conditions for being an F -contraction, specially (F3)
for any k ∈ (0, 1). A mapping g : A → B is said to F -dominate another
mapping f : A → B proximally if and only if there exists a number τ > 0
such that

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)

u1 ̸= u2

 ⇒ d(u1, u2) ≤ exp(−τ)d(v1, v2)(2)

for all u1, u2, v1, v2, x1, x2 in A. In particular, if a mapping f : A → B is
proximally dominated by another mapping g : A → B, then by (1), we see
that (2) holds for τ = ln(1/k). So the mapping f : A → B is F -dominated
by the mapping g : A→ B proximally. Conversely, if a mapping f : A→ B
is F -dominated by another mapping g : A→ B proximally, then by (2), we
observe that (1) holds for k = exp(−τ). So f : A → B becomes proximally
dominated by g : A→ B.
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Example 5. Let F : R+ → R be given by F (a) = ln a+a. It is clear that
F satisfies all the three conditions for being an F -contraction. A mapping
f : A → B is said to be F -dominated by another mapping g : A → B
proximally if and only if there exists a number τ > 0 such that for all
u1, u2, v1, v2, x1, x2 in A,

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)
u1 ̸= u2

⇒ d(u1, u2) exp (d(u1, u2)− d(v1, v2)) ≤ exp (−τ)d(v1, v2)

(3)

In particular, if there exists a number k ∈ [0, 1) such that for all u1, u2, v1, v2, x1, x2
in A,

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)

⇒ d(u1, u2) exp (d(u1, u2)− d(v1, v2)) ≤ kd(v1, v2)
(4)

then by (4), we see that (3) holds for τ = ln(1/k). So the mapping f : A→ B
is F -dominated by the mapping g : A → B proximally. Conversely, if a
mapping f : A → B is F -dominated by another mapping g : A → B
proximally, then by (3), we observe that (4) holds for k = exp (−τ).

Example 6. Let F : R+ → R be given by F (a) = −1/
√
a. Then F

satisfies all the three conditions for being an F -contraction. A mapping
f : A → B is said to be F -dominated by another mapping g : A → B
proximally if and only if there exists a number τ > 0 such that for all
u1, u2, v1, v2, x1, x2 in A with u1 ̸= u2, d(u1, fx1) = d(u2, fx2) = d(A,B)
and d(v1, gx1) = d(v2, gx2) = d(A,B) we have

d(u1, u2) ≤ (1 + τ
√
d(v1, v2))

−2d(v1, v2).(5)

In particular, if there exists a function α : A × A → [0, 1) such that for
all u1, u2, v1, v2, x1, x2 in A with d(u1, fx1) = d(u2, fx2) = d(A,B) and
d(v1, gx1) = d(v2, gx2) = d(A,B) we have

d(u1, u2) ≤ α(v1, v2)d(v1, v2)(6)

then by (6), we see that (5) holds for τ = (1/
√
d(v1, v2))[(1/

√
α(v1, v2))−1].

So the mapping f : A → B is F -dominated by the mapping g : A → B
proximally. Conversely, if a mapping f : A→ B is F -dominated by another
mapping g : A → B proximally, then by (5), we observe that (6) holds for
α(v1, v2) = (1 + τ

√
d(v1, v2))

−2.
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Example 7. Let F : R+ → R be given by F (a) = ln(a2 + a). Then
F satisfies all the three conditions for being an F -contraction. A mapping
f : A → B is said to be F -dominated by another mapping g : A → B
proximally if and only if there exists a number τ > 0 such that for all
u1, u2, v1, v2, x1, x2 in A with u1 ̸= u2, d(u1, fx1) = d(u2, fx2) = d(A,B)
and d(v1, gx1) = d(v2, gx2) = d(A,B) we have

d(u1, u2)(d(u1, u2) + 1) ≤ exp (−τ)d(v1,v2)(d(v1, v2) + 1).(7)

In particular, if there exists a number k ∈ [0, 1) such that for all u1, u2, v1, v2, x1, x2
in A with d(u1, fx1) = d(u2, fx2) = d(A,B) and d(v1, gx1) = d(v2, gx2) =
d(A,B) we have

d(u1, u2)(d(u1, u2) + 1) ≤ kd(v1,v2)(d(v1, v2) + 1)(8)

then by (8), we see that (7) holds for τ = ln(1/k). So the mapping f : A→ B
is F -dominated by the mapping g : A → B proximally. Conversely, if a
mapping f : A → B is F -dominated by another mapping g : A → B
proximally, then by (7), we observe that (8) holds for k = exp (−τ).

Remark 2. Let F1, F2 ∈ F be arbitrary. Suppose F1(a) ≤ F2(a) for
all a > 0 and a mapping G = F2 − F1 is nondecreasing, then a mapping
f : A → B is F2-dominated by another mapping g : A → B proximally
whenever f : A→ B is F1-dominated by g : A→ B.

Indeed, by Definition 7, there exists a number τ > 0 such that

d(u1, fx1) = d(u2, fx2) = d(A,B)
d(v1, gx1) = d(v2, gx2) = d(A,B)

u1 ̸= u2

 ⇒

{
v1 ̸= v2 and

τ + F1(d(u1, u2)) ≤ F1(d(v1, v2))

for all u1, u2, v1, v2, x1, x2 in A. This because F1 is nondecreasing, gives
d(u1, u2) ≤ d(v1, v2). Now

τ + F2(d(u1, u2)) = τ + F1(d(u1, u2)) +G(d(u1, u2))

≤ F1(d(v1, v2)) +G(d(v1, v2)) = F2(d(v1, v2)).

3. Main results

Theorem 2. Let A and B be nonempty subsets of a complete metric
space (X, d) such that A0 is nonempty as well as closed. Let F ∈ F and
the non self mappings f : A → B and g : A → B satisfy the following
conditions:
(a) f is proximally F -dominated by g.
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(b) f and g commute proximally.
(c) f and g are continuous.
(d) f(A0) ⊆ B0.
(e) f(A0) ⊆ g(A0).

Then, there exists a unique common best proximity point of f and g.

Proof. Choose an element x0 ∈ A0 arbitrarily. Since f(A0) ⊆ g(A0),
therefore, there exists an element x1 ∈ A0 such that fx0 = gx1. Again, since
f(A0) ⊆ g(A0), there exists an element x2 ∈ A0 such that fx1 = gx2. This
process can be continued. Proceeding inductively, it can easily be asserted
that there exists a sequence {xn} in A0 satisfying

fxn−1 = gxn

for all positive integers n. This is because of the fact that f(A0) ⊆ g(A0).
On account of the fact that f(A0) ⊆ B0, there exists an element un in

A0 such that

d(fxn, un) = d(A,B)(9)

for all nonnegative integers n. Further, by the way we have chosen xn and
un, it follows that

d(fxn+1, un+1) = d(A,B)(10)

d(gxn, un−1) = d(A,B)(11)

d(gxn+1, un) = d(A,B).(12)

Let dn = d(un, un+1) for all nonnegative integer values of n. If un = un+1 =
u for some nonnegative integer n then by (10) and (12) and using proximal
commutativity of f and g we obtain fu = gu for some u ∈ A. Let us now
assume that the sequence {un} is such that any two consecutive terms are
distinct. That is, un ̸= un+1 for all nonnegative integers n. So dn > 0 for
all nonnegative integers n. Since f is F -dominated by g proximally, there
exists a number τ > 0 such that for every positive integer n,

F (dn) ≤ F (dn−1)− τ ≤ F (dn−2)− 2τ ≤ . . . ≤ F (d0)− nτ.(13)

By (13), we get limn→∞ F (dn) = −∞ which together with (F2) gives

lim
n→∞

dn = 0.(14)

By using (F3), we can find a k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.(15)



30 Rakesh Batra

By (13), the following holds for all positive integers n:

dknF (dn)− dknF (d0) ≤ dkn(F (d0)− nτ)− dknF (d0) = −dknnτ ≤ 0.(16)

Letting n→ ∞ in (16), and using (14) and (15), we get

lim
n→∞

ndkn = 0(17)

Now, by (17), there exists a positive integer p such that ndkn ≤ 1 for all
n ≥ p. Consequently we have for all n ≥ p,

dn ≤ 1/n1/k(18)

Let us choose positive integers m and n such that m > n ≥ p. By (18), we
get

d(um, un) ≤ dm−1 + dm−2 + . . .+ dn <

∞∑
i=n

di ≤
∞∑
i=n

(1/i1/k).

By the convergence of the series
∑∞

i=1(1/i
1/k), we obtain that {un} is a

Cauchy sequence in A0. Since A0 is a closed subset of a complete metric
space, therefore, there exists an element u ∈ A0 such that un → u as n→ ∞.
Because of proximal commutativity of f and g and for all positive integers
n, we have by (9) and (11),

gun = fun−1

Continuity of f and g now gives fu = gu.
Thus irrespective of the nature of the sequence {un}, we get an element

u ∈ A such that fu = gu.
In view of the fact that f(A0) ⊆ B0, there exists an element x in A such

that

d(x, fu) = d(A,B)(19)

d(x, gu) = d(A,B)(20)

Since f and g commute proximally, by (19) and (20) we get fx = gx.
Again since f(A0) ⊆ B0, there exists an element z in A such that

d(z, fx) = d(A,B)(21)

d(z, gx) = d(A,B)(22)

If x ̸= z then by F -domination of f proximally by g and by (19), (20), (21)
and (22) we obtain,

τ + F (d(x, z)) ≤ F (d(x, z)).
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But this is not true. So we must have x = z. Thus, it follows that

d(x, gx) = d(z, gx) = d(A,B),(23)

d(x, fx) = d(z, fx) = d(A,B).(24)

Thus, x becomes a common best proximity point of non self mappings f
and g.

To prove uniqueness, suppose that x∗ is another common best proximity
point of the mappings f and g. then we have

d(x∗, fx∗) = d(A,B)(25)

d(x∗, gx∗) = d(A,B).(26)

If x ̸= x∗, then by F -domination of the mapping f proximally by the map-
ping g and by (23), (24), (25) and (26) we get,

τ + F (d(x, x∗)) ≤ F (d(x, x∗)).

But this is not true. So we must have x = x∗.
This completes the proof of the theorem. �

Remark 3. Conclusion of Theorem 2 remains valid even if the proxi-
mal F -domination of f by g is replaced by F -domination provided the pair
(A,B) satisfies the P -property and rest of the conditions in Theorem 2
remain unchanged. This is simply because the P -property together with
F -domination of f : A → B by g : A → B implies proximal F -domination.
Further, in this situation, continuity of f is not to be explicitly stated as it is
implied by continuity of g by Remark 1. Also the conditions that A,B and
A0 are nonempty may be omitted because these are implied by the condition
that the pair (A,B) satisfies the P -property.

Thus we may state the discussion in Remark 3 in the form of the following
theorem.

Theorem 3. Let A and B be subsets of a complete metric space (X, d)
such that the pair (A,B) satisfies the P -property and A0 is closed. Let
F ∈ F and the non self mappings f : A → B and g : A → B satisfy the
following conditions:
(a) f is F -dominated by g.
(b) f and g commute proximally.
(c) g is continuous.
(d) f(A0) ⊆ B0.
(e) f(A0) ⊆ g(A0).

Then, there exists a unique common best proximity point of f and g.
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If we take A=B=X in Theorem 2 or in Theorem 3, then we get the
following result.

Corollary 1. Let (X, d) be a complete metric space and F ∈ F . Let
f : X → X and g : X → X satisfy the following conditions:

(a) f is F -dominated by g.
(b) f and g are commuting.
(c) g is continuous.
(d) f(X) ⊆ g(X).

Then, there exists a unique common fixed point of f and g.

In Corollary 1 we have not assumed continuity of f as it follows by
continuity of g by Remark 1.

Taking F (a) = ln a for all a > 0 in Theorem 2 we get the following result
which is similar to the one in Sadiq Basha [25] with a little variation in the
statement. Sadiq Basha has not assumed that A0 is closed. Instead he has
assumed that both A and B are closed. But in the proof, A0 is required to
be closed and A and B need not be closed. Further nonemptiness of B0 is
implied by nonemptiness of A0 in his result, as f(A0) ⊆ B0.

Corollary 2. Let A and B be nonempty subsets of a complete metric
space (X, d) such that A0 is nonempty and closed. Let f : A → B and
g : A→ B satisfy the following conditions:
(a) f is proximally dominated by g.
(b) f and g commute proximally.
(c) f and g are continuous.
(d) f(A0) ⊆ B0.
(e) f(A0) ⊆ g(A0).

Then, there exists a unique common best proximity point of f and g.

The following result due to Jungck [7] for common fixed point of two self
mappings on a complete metric space can be proved by taking F (a) = ln a
in Corollary 1.

Corollary 3. Let (X, d) be a complete metric space and the mappings
f : X → X and g : X → X satisfy the following conditions:

(a) There exists a number α ∈ [0, 1) satisfying d(fx, fy) ≤ αd(gx, gy)
for all x, y ∈ X.

(b) f and g are commuting.
(c) g is continuous.
(d) f(X) ⊆ g(X).

Then, there exists a unique common fixed point of f and g.

Example 8. Consider the sequence {sn} given by sn = 1+2+ . . .+n =
n(n+ 1)/2 for all n ∈ N. Let X = R× {sn : n ∈ N} = {(x, sn) : x ∈ R, n ∈
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N}. Let us consider Euclidean metric d on X. Then (X, d) is a complete
metric space. Let A := {(x, sn) : x ≤ −1, n ∈ N} and B := {(x, sn) : x ≥
1, n ∈ N}. Clearly A and B are nonempty and closed subsets of X such that
d(A,B) = 2. Also A0 = {(−1, sn) : n ∈ N} and B0 = {(1, sn) : n ∈ N}.

Let f : A→ B and g : A→ B be defined by

f(x, sn) =

{
(−x, s1) if n is odd,

(−x, sn−1) if n is even

and

g(x, sn) =

{
(−x, s1) if n is odd,

(−x, sn+1) if n is even.

Then both f and g are continuous on A. Now, for any (x, sn), (u, sm) and
(v, sk) ∈ A, d(f(x, sn), (u, sm)) = d(A,B) and d(g(x, sn), (v, sk)) = d(A,B),
we have d((−x, s1), (u, sm)) = d((−x, s1), (v, sk)) = d(A,B) if n is odd and
d((−x, sn−1), (u, sm)) = d((−x, sn+1), (v, sk)) = d(A,B) if n is even. Since
d(A,B)=2, therefore, (−x, s1) ∈ B0 and (u, sm), (v, sk) ∈ A0 if n is odd and
also (−x, sn−1), (−x, sn+1) ∈ B0 and (u, sm), (v, sk) ∈ A0 if n is even. This
gives x = u = v = −1, s1 = sm = sk if n is odd and x = u = v = −1, sn−1 =
sm, sn+1 = sk if n is even. Now f(v, sk) = f(−1, sk) = f(−1, s1) = (1, s1) =
g(−1, sm) = g(u, sm) if n is odd and f(v, sk) = f(−1, sn+1) = (1, s1) =
g(−1, sn−1) = g(u, sm) if n is even. Thus d(f(x, sn), (u, sm)) = d(A,B) and
d(g(x, sn), (v, sk)) = d(A,B) ⇒ f(v, sk) = g(u, sm) for all n ∈ N. This
implies that f and g are proximally commutative. Now,

f(−1, sn) =

{
(1, s1) if n is odd and

(1, sn−1) if n is even.

So it is implied that f(A0) ⊆ B0. Further we have

f(A0) = g(A0) = {(1, s2n−1) : n ∈ N}.

Take F1 ∈ F as in Example 4. The mapping f is not proximally F1-dominated
by g (which means f is not proximally dominated by g). Indeed if we take
(−1, sn), (−1, sm), (−1, sp), (−1, sq), (−1, sk), (−1, sl) in A0 satisfying

d((−1, sn), f(−1, sk)) = d((−1, sm), f(−1, sl)) = d(A,B) = 2

d((−1, sp), g(−1, sk)) = d((−1, sq), g(−1, sl)) = d(A,B) = 2

(−1, sn) ̸= (−1, sm)
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then f(−1, sk) = (1, sn) and f(−1, sl)) = (1, sm). Also, we get g(−1, sk) =
(1, sp) and g(−1, sl)) = (1, sq). If k is even but l is odd then we get

f(−1, sk) = (1, sk−1) = (1, sn),

g(−1, sk) = (1, sk+1) = (1, sp),

f(−1, sl)) = (1, s1) = (1, sm) and

g(−1, sl)) = (1, s1) = (1, sq).

This gives k − 1 = n, k + 1 = p, m = 1 and q = 1. So

d((−1, sn), (−1, sm))

d((−1, sp), (−1, sq)
=

|sn − sm|
|sp − sq|

=
sk−1 − s1
sk+1 − s1

=
k2 − k − 2

k2 + 3k
→ 1 as k → ∞.

Thus f is not proximally F1-dominated by g. Hence Theorem 3.1 of [25] can
not be applied. Let F2 ∈ F be taken as in Example 5. We obtain that f
is F2-dominated by g with τ = 2. To see this, consider the following calcu-
lations: First, let us choose (−1, sn), (−1, sm), (−1, sp), (−1, sq), (−1, sk),
(−1, sl) in A0 satisfying

d((−1, sn), f(−1, sk)) = d((−1, sm), f(−1, sl)) = d(A,B) = 2

d((−1, sp), g(−1, sk)) = d((−1, sq), g(−1, sl)) = d(A,B) = 2

(−1, sn) ̸= (−1, sm)

This implies that f(−1, sk) = (1, sn) and f(−1, sl)) = (1, sm). Also, we get
g(−1, sk) = (1, sp) and g(−1, sl)) = (1, sq). If both k and l are odd then we
get

f(−1, sk) = (1, s1) = (1, sn),

f(−1, sl)) = (1, s1) = (1, sm),

g(−1, sk) = (1, s1) = (1, sp) and

g(−1, sl)) = (1, s1) = (1, sq).

This gives n = m = p = q = 1, which is not possible as n ̸= m. If k is even
but l is odd then we get

f(−1, sk) = (1, sk−1) = (1, sn),

g(−1, sk) = (1, sk+1) = (1, sp),

f(−1, sl)) = (1, s1) = (1, sm) and

g(−1, sl)) = (1, s1) = (1, sq).
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This gives k − 1 = n, k + 1 = p, m = 1 and q = 1. So

d((−1, sn), (−1, sm))

d((−1, sp), (−1, sq)))
ed((−1,sn),(−1,sm))−d((−1,sp),(−1,sq))

=
|sn − sm|
|sp − sq|

e|sn−sm|−|sp−sq | =
sk−1 − s1
sk+1 − s1

esk−1−sk+1

=
k2 − k − 2

k2 + 3k
e−2k−1 < e−2.

Now if k is odd but l is even then we get

f(−1, sk) = (1, s1) = (1, sn),

g(−1, sk) = (1, s1) = (1, sp),

f(−1, sl)) = (1, sl−1) = (1, sm) and

g(−1, sl)) = (1, sl+1) = (1, sq).

This gives l − 1 = m, l + 1 = q, n = 1 and p = 1. So

d((−1, sn), (−1, sm))

d((−1, sp), (−1, sq))
ed((−1,sn),(−1,sm))−d((−1,sp),(−1,sq))

=
|sn − sm|
|sp − sq|

e|sn−sm|−|sp−sq | =
sl−1 − s1
sl+1 − s1

esl−1−sl+1

=
l2 − l − 2

l2 + 3l
e−2l−1 < e−2.

Now assume that both k and l are even. Then we obtain

f(−1, sk) = (1, sk−1) = (1, sn),

g(−1, sk) = (1, sk+1) = (1, sp),

f(−1, sl)) = (1, sl−1) = (1, sm) and

g(−1, sl)) = (1, sl+1) = (1, sq).

This gives k − 1 = n, k + 1 = p, l − 1 = m, l + 1 = q. So in case k > l, we
have

d((−1, sn), (−1, sm))

d((−1, sp), (−1, sq))
e(d((−1,sn),(−1,sm))−d((−1,sp),(−1,sq)))

=
|sn − sm|
|sp − sq|

e(|sn−sm|−|sp−sq |) =
sk−1 − sl−1

sk+1 − sl+1
esk−1−sl−1−sk+1+sl+1

=
k + l − 1

k + l + 3
e−2(k−l) < e−2.

That inequality holds for l > k also and can be proved easily by similar
method as for k > l. Thus f is F2-dominated by g. Hence all the conditions
of Theorem 2 are satisfied. We observe that (−1, s1) is a unique common
best proximity point of f and g.
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