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1. Introduction

The concept of Probabilistic Metric Space (or Statistical Metric Spaces),
which is a generalization of the metric space was introduced initially by
Menger [8] in 1942. Especially, the theory of Probabilistic Metric Spaces
has fundamental importance in probabilistic functional analysis. In 1958,
Schweizer and Sklar [1] has developed this theory extensively. In 1972,
Sehgal and Reid [18] generalized the Banach contraction condition in metric
space into Menger space. Since then a spat of results in the area of fixed
point theory and applications established.
Let (X, d) be a metric space and T be a mapping from X into itself such
that for all x, y ∈ X.

(1) d(Tx, Ty) ≤ αd(x, y)

where α ∈ (0, 1) condition (1) is the putting of PM-space was as under

(2) FTx,Ty(αt) ≥ Fx,y(t)

t ∈ [0, 1] and α ∈ (0, 1).
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Jungck’s 1976 paper [4] initiative to introduce a pair of commuting maps
in a complete metric space has given a new dimension among the group of
fixed point theorist to rethink the generalization of Banach Contraction Con-
dition for obtaining common fixed points not only in metric spaces,normed
linear but also in other abstract spaces. Further Sessa [13] in 1982 introduced
the concept of weaker condition of commutativity which is called as weakly
pair of maps commuting maps in a metric space. Variety of weakly com-
muting pair of maps in PM spaces are Compatible maps [15], Compatible
maps of type (A) [21], Weakly compatible maps [5], Biased maps [6] and
altering distance function [17]. We also ask the readers to refer ([2, 3, 11]),
we shall define a new class of implicit relations for obtaining common fixed
points in the next section.

2. Preliminaries

Definition 1 ([1]). A mapping F : R → [0, 1] is called a distribution
function if it satisfies the following conditions:

(a) F is nondecreasing;

(b) F is left continuous, with inf{F (t) : t ∈ R} = 0 and sup{F (t) : t ∈
R} = 1.

We shall denote by D the set of all distribution functions while H will
always denote the specific distribution function defined by

[1] H(x) =

{
0 if x ≤ 0
1 if x > 0

.

Definition 2 ([1]). A probabilistic metric space is a pair (X,F ),where
X is a non empty set and F is a function defined F : X ×X → D (the set
of all distribution function) satisfying the following properties hold:

(PM1) Fx,y(0) = 0,

(PM2) Fx,y(t) = H(t),iff x = y,

(PM3) Fx,y(t) = Fy,x(t), and

(PM4) Fx,y(s) = 1 and Fy,z(t) = 1, then Fx,z(s+t) = 1 for all x, y, z ∈
X and s, t > 0.

Definition 3 ([1]). A mapping ∆ : [0, 1]× [0, 1] → [0, 1]) is said to be a
triangular norm (briefly t-norm) if for every a, b, c ∈ [0, 1],

(a) ∆(a, 1) = a for every a ∈ [0, 1],

(b) ∆(0, 0) = 0,
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(c) ∆(a, b) = ∆(b, a) for every a, b ∈ [0, 1], and

(d) c ≥ a and d ≥ b, then ∆(c, d) ≥ ∆(a, b) (a, b, c, d ∈ [0, 1]),

(e) ∆(a,∆(b, c)) = ∆(∆(a, b), c).

Example of basic ∆-norm :

1). The minimum t-norm : ∆m(a,b) = min{a, b},

2). The product t-norm :∆p(a,b) = a.b

3). The Likasiewicz t-norm : ∆L(a, b) = max{a+ b− 1, 0}.

4). The weakest t-norm, the Drastic product:

∆D(a, b) =

{
min(x, y) if max(x, y) = 1,
1 if otherwise

.

Definition 4 ([1]). A Menger PM-Space is a triplet (X,F,∆), where
(X,F ) is a PM-space and T is a t-norm with the following condition:

Fx,z(s+ t) ≥ ∆(Fx,y(s), Fy,z(t)) for all x, y, z ∈ X and s, t > 0

This inequality is known as Menger’s triangle inequality.

Definition 5 ([1]). Let (X,F,∆) be a PM-space. Then,
(a) a sequence {xn} in X is said to be convergent to a point x ∈ X , if
for every ϵ > 0 and 0 < λ < 1 there exists a positive integer Z+ such that
Fxn ,x (ϵ) > 1− λ whenever n ≥ Z+;

(b) a sequence {xn} in X is called a cauchy sequence if for every ϵ > 0
and λ > 0 we can find a positive integerZ+ such that Fxn ,xm (ϵ) > 1 − λ
whenever n,m ≥ Z+;

(c) a Menger PM-space is said to be complete if every Cauchy sequence
is convergent to a point in X:

In 1991, Mishra [15] introduced Compatible Mappings in PM-Space set-
ting.

Definition 6 ([15]). Let (X,F,∆) be a Menger space such that the t-norm
∆ is continuous and A, S ne mappings from X into itself. Then, S and T
are said to be compatible if

lim
n→∞

FASxn
,SAxn

(t) = 1,

for all t > 0, whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.
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In 1992, Cho, Murthy and Stojakovic [21] introduced the following.

Definition 7 ([21]). Let (X,F,∆) be a Menger space such that T-norm
t is continuous and A, S be mapping X into itself compatible maps of type
(A) if

lim
n→∞

FSAxn
,AAxn

(t) = 1,

and
lim
n→∞

FASxn
,SSxn

(t) = 1,

for all t > 0, whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.

Recently, Amari and Moutawaki [9] introduced a generalization of non
compatible maps as property (E.A).

Definition 8 ([9]). Let A and S be two self-maps of a metric space
(X, d). The pair (A,S) is said to satisfy property (E.A), if there exists a
sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t,

for some t ∈ X.

In a similar way we state property (E.A) in Menger probabilistic metric
spaces.

Definition 9 ([9]). A pair of self-mappings(f, g) of a Manger probabilis-
tic metric space (X,F,∆) is said to satisfy property (E.A), if there exists a
sequence {xn} in X such that

lim
n→∞

Ffxn,gxn(t) = 1,

for all t > 0.
lim
n→∞

fxn = lim
n→∞

gxn = t,

for some t ∈ X.

Inspired by Lie, Ali and Khan [20] M.Imdad,M.Tanveer and M.Hasan
[10] introduce common property (E.A) in PM-space setting.

Definition 10 ([10]). Two pairs (A,S) and (B, T ) of self mappings of
a Menger PM space (X,F,∆) are said to satisfy the common property E.A.
If there exist two sequence {xn}, {xy} in X and some t ∈ X such that,

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = t.
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In fact, Pathak and Jungck [6] introduced the Biased maps concept in
Metric Space setting which is weaker notion of compatible and after long
time P.P. Murthy, M.R. Singh and L.S. Singh [12] are generalization weakly
compatible maps in metric space. Inspired by of this paper we shall intro-
duce biased maps in PM-Space.

Definition 11. Let A and S be self-maps of Menger space (X,F,∆).
Then the pair (A,S) is S-biased iff whenever {xn} is a sequence in X and
Axn,Sxn → t ∈ X, then

αFSAxn ,Sxn (t) ≥ αFASxn ,Axn (t)

if α = lim inf and if α = lim sup.

Definition 12. Let A and S be self-maps of Menger space (X,F,∆).
The pair (A,S) is said to be S-biased of type (A) and A-biased of type (A)
if,

αFSSxn ,Axn (t) ≥ αFASxn ,Sxn (t),

αFAAxn ,Sxn (t) ≥ αFSAxn ,Axn (t),

whenever {xn} is a sequence in X and Axn,Sxn → t ∈ X, then if α = lim inf
and if α = lim sup.

Definition 13. Let A, S are self maps on PM space X. The pair (A,S) is
said to be weakly S-biased iff Aa = Sa implies FSAa,Sa(t) ≥ FASa,Aa(t), for
some a ∈ X.

Similarly, if the roles of A and S are interchange in above definition, then
the pair (A,S) is said to be a weakly A-biased .

Definition 14. Let A, S are self maps on PM space X. The pair (A,S)
is said to be weakly S-biased of type (A) if Aa = Sa implies FSSa,Aa(t) ≥
FASa,Sa(t), for some a ∈ X.

Similarly, if the roles of A and S are replace in about definition,then the
pair (A,S) is said to be a weakly A-biased of type(A).

The following example shows that weakly biased maps and weakly biased
maps of type(A) are independent.

Example 1. Let A, S be self mappings on Menger Probabilistic Metric
Space X = [0, 1] with usual metric define by d(x, y) = |x− y| and (X,F,∆)
be the induced Manger space with F (x, y)t = Fx,y(t) = H(t− d(x, y) for all
x, y ∈ X and for all t > 0. Define mapping A,S : X → X by

S(x) =

{
2− 2x for x ∈ [0, 12 ]
1 for x ∈ (12 , 1],
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A(x) =

{
2x for x ∈ [0, 12 ]
1
2 for x ∈ (12 , 1].

At x = 1
2 , we getA(

1
2)=S(

1
2)=1 and SS(12) = S(1) = 1, AA(12) = A(1) = 1

2 ,
AS(12) = A(1) = 1

2 , SA(
1
2) = S(1) = 1,

Now, consider xn = {1
2} ∀ n.

lim
n→∞

FSAxn ,Sxn (t) = lim
n→∞

F1,1 (t) = 1,

lim
n→∞

FASxn ,Axn (t) = H(t− d(ASxn −Axn) = H(t− 1

2
) ̸= 1.

Therefore,
lim
n→∞

FASxn ,Axn (t) < 1.

Thus, (A,S) is weakly S-biased.

lim
n→∞

FSSxn
,Axn

(t) = lim
n→∞

F1, 1
2
(t) ̸= 1.

Therefore,
lim
n→∞

FSSxn
,Axn

(t) < 1,

and
lim
n→∞

FASxn
,Sxn

(t) = lim
n→∞

F 1
2
,1 (t) ̸= 1.

Therefore,
lim
n→∞

FASxn
,SSxn

(t) < 1.

Then, (A,S) is not weakly S-biased of type (A).

Example 2. Let A, S be self mappings on Menger Probabilistic Metric
Space X = [0, 1] with usual metric define by d(x, y) = |x− y| and (X,F,∆)
be the induced Manger space with F (x, y)t = Fx,y(t) = H(t− d(x, y) for all
x, y ∈ X and for all t > 0. Define mapping A,S : X → X by

S(x) =

{
1− x for x ∈ [0, 12 ]
1 for x ∈ (12 , 1],

A(x) =

{
1
2 for x ∈ [0, 12 ]
x for x ∈ (12 , 1].

Now, Ax = Sx at x = 1
2 .

Since A(12) = S(12) =
1
2 .

SS(12) = S(12) = 1
2 , AA(

1
2) = A(12) = 1

2 , AS(
1
2) = A(12) = 1, SA(12) =

S(1) = 1, we get,
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FSSxn ,Axn (t) = lim
n→∞

F 1
2
, 1
2
(t) = 1, t > 0,

FASxn ,Sxn (t) = lim
n→∞

F1, 1
2
(t) < 1, t > 0.

The pair (A,S) is weakly S-biased of type(A).

lim
n→∞

FSAxn ,Sxn (t) = lim
n→∞

F1, 1
2
(t) ̸= 1,

lim
n→∞

FASxn ,Axn (t) = lim
n→∞

F1, 1
2
(t) ̸= 1.

Then, (A,S) is not weakly S-biased maps.

3. A class of implicit relation

In this section,we introduce a new class of implicit function which is
different from Popa [19] and furnish example to substantiate the worth of
this definition.

Let F5 be the set of all real continuous functions and increasing on its
each variables. Let f : [0, 1]5 → R satisfies the following conditions:

(f1) f(1, 1, u, 1, u) > u for all u ∈ (0, 1),

(f2) f(1, u, 1, u, 1) > u for all u ∈ (0, 1),

(f3) f(u, u, 1, u, u) > u for all u ∈ (0, 1) ,

(f4) f(u, 1, u, u, u) > u for all u ∈ (0, 1) ,

(f5) f(u, 1, 1, u, u) > u for all u ∈ (0, 1) .

Example 3. Define f(t1, t2, t3, t4, t5) : [0, 1]
5 → R as, f(t1, t2, t3, t4, t5) =

t1 + ψ(min{t2, t3, t4, t5}), where ψ : [0, 1] → [0, 1] is increasing and continu-
ous such that ψ(t) ≥ t.

(f1) f(1, 1,
1
2 , 1,

1
2) = 1 + ψ(12) = 1 + 1

2 = 3
2 ,

i.e;

f(1, 1,
1

2
, 1,

1

2
) >

1

2
.

(f2) f(1,
1
2 , 1,

1
2 , 1) = 1 + ψ(12) = 1 + 1

2 = 3
2 ,

i.e;

f(1,
1

2
, 1,

1

2
, 1) >

1

2
.

(f3) f(
1
2 ,

1
2 , 1,

1
2 ,

1
2) =

1
2 + ψ(12) =

1
2 + 1

2 = 1,
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i.e;

f(
1

2
,
1

2
, 1,

1

2
,
1

2
) >

1

2
.

(f4) f(
1
2 , 1,

1
2 ,

1
2 ,

1
2) =

1
2 + ψ(12) >

1
2 + 1

2 = 1,

i.e;

f(
1

2
, 1,

1

2
,
1

2
>

1

2
.

(f5) f(
1
2 , 1, 1,

1
2 ,

1
2) =

1
2 + ψ(12) >

1
2 + 1

2 = 1,

i.e;

f(
1

2
, 1, 1,

1

2
,
1

2
) >

1

2
.

Clearly f ∈ F5.

Lemma 1. Let A, B, S and T be self mapping of a Menger space
(X,F,∆) satisfying the following:

Either (i) A(X) ⊂ T (X) and the pair (A,S) satisfies the property (E.A);

or (ii) B(X) ⊂ S(X) and the pair (B, T ) satisfies the property (E.A);

(iii) for any x, y ∈ X, f ∈ F5 and for any t > 0;

(3) FAx,By (t) ≥ f(FSx,Ty (t), FSx,Ax (t), FTy,By (t), FAx,Ty (t), FSx,By (t)).

Then the pairs (A,S) and (B, T ) share common property (E.A).

Proof. Assume (i) holds: Suppose that the pair (A,S) has the property
(E.A), then there exists a sequence {xn} in X such that

(4) lim
n→∞

Axn = lim
n→∞

Sxn = u, for some u ∈ X.

Since A(X) ⊂ T (X), hence for each {xn} in X there exists a sequence
{yn} ∈ X such that Axn = Tyn, from (4), we get,

(5) lim
n→∞

Tyn = lim
n→∞

Axn = u, for some u ∈ X.

Now, we have to prove that Byn → u as n→ ∞. Assume that lim
n→∞

Byn ̸= u.

On taking x = xn and y = yn in (3), we obtain that

f(FSxn ,Tyn (t), FSxn ,Axn (t), FTyn ,Byn (t), FAxn ,Tyn (t), FSxn ,Byn (t))

≤ FAxn ,Byn (t).

On taking limits as n→ ∞, then we get

f(Fu,u(t), Fu,u(t), Fu, lim
n→∞

Byn(t), Fu,u(t), Fu, lim
n→∞

Byn(t)) ≤ Fu, lim
n→∞

Byn(t),
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f(1, 1, Fu, lim
n→∞

Byn(t), 1, Fu, lim
n→∞

Byn(t)) ≤ Fu, lim
n→∞

Byn(t)

which is a contradiction from the condition (f1) and therefore

(6) lim
n→∞

Byn = u.

From (4)− (6).

Hence the pairs (A,S) and (B, T ) enjoys common property (E.A).

Similarly, proof is same if condition (ii) holds. �

4. Main results

Now we prove our main result.

Theorem 1. Let A,B, S and T be self mapping of a Manger space
(X,F,∆) satisfying the condition (3) and

Either (i) the pair (A,S) satisfies the property (E.A) and A(X) ⊂ T (X)
and S(X) is a closed subset of X.

Or (ii) the pair (B, T ) satisfies the property (E.A) and B(X) ⊂ S(X)
and T (X) is a closed subset of X.

Then A, B, S and T have common coincidence point in X.

Proof. Assume (i) holds in the view of Lemma 1, the pairs (A,S) and
(B, T ) share the common property (E.A), that is there exist two sequence
{xn} and {yn}in X such that

(7) lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = u

for some u ∈ X.
Since S(X) is closed subset of X then there is a u ∈ X such that Sa = u

for some a ∈ X. Assume that Aa ̸= u for some a ∈ X then putting x = xn
and y = yn in (3), we obtain

FAa,Byn (t) ≥ f(FSa,Tyn (t), FSa,Aa (t), FTyn ,Byn (t),(8)

FAa,Tyn (t), FSa,Byn (t)).

On taking limits as n→ ∞ and using (7), we get

FAa,u(t) ≥ f(Fu,u(t), Fu,Aa(t), Fu,u(t), FAa,u(t), Fu,u(t)),

≥ f(1, Fu,Aa(t), 1, Fu,Aa(t), 1),

a contradiction from (f2).
Thus

(9) Aa = Sa = u.
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Since A(X) ⊂ T (X), there exist b ∈ X, such that

(10) Aa = Tb = u.

Now, we have to show that Bb = u, assume that Bb ̸= u, then putting x = a
and y = b in (3), we obtain that

(11) FAa,Bb (t) ≥ f(FSa,Tb (t), FSa,Aa (t), FTb,Bb (t), FAa,Tb (t), FSa,Bb (t)).

Now using (9) and (10) in (11), we get

Fu,Bb(t) ≥ f(Fu,u(t), Fu,u(t), Fu,Bb(t), Fu,u(t), Fu,Bb(t)),

≥ f(1, 1, Fu,Bb(t), 1, Fu,Bb(t)),

a contradiction from (f1). Therefore

Bb = Aa = Sa = Tb = u.

Therefore, A, B, S and T have common coincidence point in X. �

Theorem 2. In addition to the Theorem 1, if the pairs (A,S) and (B, T )
are satisfying weakly S-biased and weakly T -biased respectively. Then A, B,
S and T have a unique common fixed point in X.

Proof. From Theorem 1, we get

(12) Bb = Aa = Sa = Tb = u.

First, we show that Au = u, assume that Au ̸= u. On taking x = u and
y = yn in (3), we get

FAu,Byn (t) ≥ f(FSu,Tyn (t), FSu,Au (t), FTyn ,Byn (t),(13)

FAu,Tyn (t), FSu,Byn (t)),

On taking limits as n→ ∞ and using (12) in (13), we have

FAu,u (t) ≥ f(FSu,u (t), FSu,Au (t), Fu,u(t), FAu,u (t), FSu,u (t))(14)

≥ f(FSu,u (t),min{FAu,u (t), FSu,u (t)},
1, FAu,u (t), FSu,u (t)).

Since the pair (A,S) is weakly S-biased type of (A), then

Aa = Sa ⇒ FSSa,Aa(t) ≥ FAAa,Sa(t),(15)

⇒ FSu,u(t) ≥ FAu,u(t).
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Substitute (15) in (14), we have

FAu,u (t) ≥ f(FAu,u (t), FAu,u (t), 1, FAu,u (t), FAu,u (t)).

a contradiction from (f3), hence

(16) Au = u.

From (15) and (16), we get,
Su = u.

Therefore,

(17) Au = Su = u.

Now, we have to show that Bu = u Assume that Bu ̸= u, then we have on
taking x = a and y = u in (3) we get

FAa,Bu (t) ≥ f(FSa,Tu (t), FSa,Aa (t), FTu,Bu (t),(18)

FAa,Tu (t), FSa,Bu (t))

Since the pair (B, T ) is weakly T -biased map,then

Bb = Tb ⇒ FTBb,T b(t) ≥ FBTb,Bb(t),(19)

⇒ FTu,u(t) ≥ FBu,u(t).

From (12), (19) and using tiangular inequality, we have

Fu,Bu (t) ≥ f(Fu,Tu (t), Fu,u (t), Fu,Bu (t), Fu,Tu (t), Fu,Bu (t)),(20)

Fu,Bu (t) ≥ f(Fu,Tu (t), 1, Fu,Tu (t), Fu,Bu (t), Fu,Bu (t)),

a contradiction from (f4). Therefore

(21) FBu,u (t) ≥ 1 ⇒ Bu = u.

Since the pair (B, T ) is weakly T -biased map, then we have

FTu,u(t) ≥ FBu,u(t) = Fu,u(t).

This leads to

(22) FTu,u (t) ≥ 1 ⇒ Tu = u.

From (21) and (22), we get

Bu = Tu = u.

Hence, A, B, S and T have a common fixed point in X. �
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Theorem 3. In addition to the Theorem 1, if the pairs (A,S) and (B, T )
are satisfying weakly S-biased of type (A) and weakly T-biased of type (A)
respectively. Then A, B, S and T have a unique common fixed point in X

Proof. From Theorem 1, we get

(23) Bb = Aa = Sa = Tb = u.

Now, we have to show that Au = u, if assume that Au ̸= u.

On taking x = u and y = yn in (3), we get

FAu,Byn (t) ≥ f(FSu,Tyn (t), FSu,Au (t), FTyn ,Byn (t),(24)

FAu,Tyn (t), FSu,Byn (t)).

On taking limits as n→ ∞ and using (7) in (24), we have

FAu,u (t) ≥ f(FSu,u (t), FSu,Au (t), Fu,u(t), FAu,u (t), FSu,u (t)),(25)

≥ f(FSu,u (t),min{FAu,u (t), FSu,u (t)},
1, FAu,u (t), FSu,u (t)).

Since the pair (A,S) is weakly S-biased type of (A), then

Aa = Sa(= u) ⇒ FSSa,Aa(t) ≥ FAAa,Sa(t),(26)

⇒ FSu,u(t) ≥ FAu,u(t).

Substitute (26) in (25), we have

FAu,u (t) ≥ f(FAu,u (t), FAu,u (t), 1, FAu,u (t), FAu,u (t)),

a contradiction from (f3). Hence

Au = u,

and from (26),
Su = u.

Therefore,

(27) Au = Su = u.

Now, we have to show that Bu = u if Assume that Bu ̸= u. On taking
x = a and y = u in (3), we get

FAa,Bu (t) ≥ f(FSa,Tu (t), FSa,Aa (t), FTu,Bu (t),(28)

FAa,Tu (t), FSa,Bu (t)).
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Since the pair (B, T ) is weakly T -biased type of (A),then

Bb = Tb⇒ FTTb,Bb(t) ≥ FBBb,Tb(t) ⇒ FTu,u(t) ≥ FBu,u(t).

From (23), (27) and (28) and using tiangular inequality, we have

Fu,Bu (t) ≥ f(Fu,Tu (t), Fu,u (t), Fu,Bu (t), Fu,Tu (t), Fu,Bu (t)),

≥ f(Fu,Tu (t), 1, Fu,Tu (t), Fu,Bu (t), Fu,Bu (t)),

a contradiction from (f4). Therefore,

FBu,u (t) ≥ 1 ⇒ Bu = u.

Since the pair (B, T ) is weakly T-biased of type(A),

FTu,u(t) ≥ FBu,u(t) = Fu,u(t).

This leads to
FTu,u (t) ≥ 1 ⇒ Tu = u.

Therefore,

(29) Bu = Tu = u.

Hence from (27) and (29) A, B, S and T have common fixed point in X. �

Uniqueness. Let u and w be two the fixed points such that

Au = Su = Tu = Bu = u,

and
Aw = Sw = Tw = Bw = w.

Putting x = u and y = w in (3), we obtain

FAu,Bw (t) ≥ f(FSu,Tw (t), FSu,Au (t), FTw,Bw (t), FAu,Tw (t), FSu,Bu (t)),

Fu,w (t) ≥ f(Fu,w (t), Fu,u (t), Fw,w (t), Fu,w (t), Fu,w (t)),

≥ f(Fu,w (t), 1, 1, Fu,w (t), Fu,w (t)),

a contradiction (f5), therefore Fu,w(t) ≥ 1, then u = w.

This completes the proof.
Now we are ready to four Corollaries based on our main theorem:
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5. Corollaries and example

Corollary 1 ([10]). Let A, B, S and T be self-mappings on a Menger
PM space (X,F, δ) satisfying inequality

f(FAx,By (t), FSx,Ty (t), FSx,Ax (t), FTy,By (t), FSx,By (t), FAx,Ty (t)) ≥ 0,

where f ∈ F6(page no.5 in [7]). Suppose that

i) the pair (A,S) (or (B, T )) enjoys the property (E.A),

ii) AX ⊂ TX (or BX ⊂ SX),

iii) SX (or TX )is a closed subset of X.

Then the pairs A, S and B, T have a point of coincidence each. Moreover,
A, B, S and T have a unique common fixed point provided that both the pairs
(A,S) and (B, T ) are weakly compatible.

Corollary 2. Let A and S be self mappings of a Manger space (X,F,∆)
satisfying the following:

The pair (A,S) which is weakly-S biased maps and satisfies the property
(E.A) and A(X) ⊂ S(X) and S(X) is a closed subset of X. For any x, y ∈
X, f ∈ F5 and for all t > 0,

FAx,Ay (t) ≥ f(FSx,Sy (t), FSx,Ay (t), FSy,Ay (t), FAx,Sy (t), FSx,Ay (t)).

Then A and S have a point of coincidence each. Moreover, A and S have
unique common fixed point.

Corollary 3. Let A, B, S and T be self mappings of a Manger space
(X,F,∆) satisfying the following:

(i) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(ii) the pairs (A,S) and (B, T ) satisfy common property (E.A) and com-
patible,

(iii) S(X) and T (X) are closed subspace of X,

(iv) for any x, y ∈ X, f ∈ F5 and for all t > 0.

FAx,By (t) ≥ f(FSx,Ty (t), FSx,Ay (t), FTy,By (t), FAx,Ty (t), FSx,By (t)).

Then the pairs (A,S) and (B, T ) have a point of coincidence point. More-
over, A, B, S and T have unique common fixed point.

Corollary 4. Let A and S be self mappings of a Manger space (X,F,∆)
satisfying the following:
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The pair (A,S) which is weakly-S biased maps type (A) and satisfies the
property (E.A) and A(X) ⊂ S(X) and S(X) is a closed subset of X.

For any x, y ∈ X, f ∈ F5 and for all t > 0,

FAx,Ay (t) ≥ f(FSx,Sy (t), FSx,Ay (t), FSy,Ay (t), FAx,Sy (t), FSx,Ay (t)).

Then A and S have a point of coincidence point. Moreover, A and S have
unique common fixed point.

Corollary 5. Let A, B, S and T be self mappings of a Manger space
(X,F,∆) satisfying the following:

(i) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(ii) the pairs (A,S) and (B, T ) satisfy common property (E.A) and
compatible maps of type (A),

(iii) S(X) and T (X) are closed subspace of X,

(iv) for any x, y ∈ X, f ∈ F5 and for all t > 0.

FAx,By (t) ≥ f(FSx,Ty (t), FSx,Ay (t), FTy,By (t), FAx,Ty (t), FSx,By (t)).

Then the pairs (A,S) and (B, T ) have a point of coincidence point. More-
over, A,B, S and T have unique common fixed point.

Example 4. Let X = R+ and F be defined by

Fx,y(t) =

{ t
t+|x−y| , if t >0

0, if t = 0.

Then (X,F ) is a PM Space. Let A, B, S and T be self maps on X and
defined by

Ax =

{
0, if x = 0;
1, if x > 0.

and Bx =

{
0, if x = 0 or x > 6;
1, if x ∈ (0, 6].

Sx =

{
0, if x = 0;
2, if x > 0.

and Tx =


0, if x = 0;
1, if x ∈ (0, 6];
x− 6, if x > 6.

The pair (A,S) is satisfies (E.A) property at xn = 0, for all n. A(X) =
{0, 1} ⊂ [0,∞) = T (X) and the pairs (A,S) and (B, T ) are also satisfied
weakly S-biased and weakly T -biased maps at x = 0. We can also observe
that the condition (3) satisfies for all possible cases and f ∈ F5. The hy-
pothesis of Theorem 1 satisfied, and 0 is the unique common fixed point of
A, B, S and T in X.
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