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1. Introduction and main results

In this article, we use some basic results and symbols of Nevanlinna’s
value distribution theory of meromorphic functions in C such as the first
and second main theorems, and the common notations such as the char-
acteristic function T'(r, f), the proximity function m(r, f) and the counting
functions N (r, f) (with multiplicities) and N(r, f) (without multiplicities);
S(r, f) denotes any quantity satisfying S(r, f) = o(T'(r, f)) as r — oo except
possibly on a set of finite Lebesgue measure, not necessarily the same at each
occurence.

Let f and g be two non-constant meromorphic functions defined in the
open complex plane C. If for some a € CU {oc0}, f — a and g — a have
the same set of zeros with the same multiplicities, we say that f and g
share the value @ CM (counting multiplicities), and if we do not consider
the multiplicities then f and g are said to share the value a IM (ignoring
multiplicities).

Definition 1. Linear differential polynomial is defined as

k

L(f) = bi(2)fD(2),

1=0
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where by(z), ba(2),...,bk(z) are small functions of f(z).

In 2011, Liu et al. [2] considered uniqueness of difference polynomials
of meromorphic functions, corresponding to uniqueness theorems of mero-
morphic functions sharing values (see, e.g.,[5]) and obtained the following
results.

Theorem A. Let f(z) and g(z) be two transcendental meromorphic func-
tions with finite order. Suppose that ¢ is a non-zero complex constant and
n is an integer. If n > 14 and f"(2)f(z +c) and g"(2)g(z + c) share 1 CM,
then f(z) =tg(z) or f(2)g(z) =t, where t"+1 = 1.

Theorem B. Under the conditions of Theorem A, ifn > 26 and f™(2)f(z
+c) and g"(2)g(z +c) share 1 IM, then f(z) = tg(z) or f(2)g(z) = t, where
=1,

In 2013, Liu et al. [4], considered the case of g-shift difference polynomials
and extended the Theorem A as follows:

Theorem C. Let f(z) and g(z) be two transcendental meromorphic
functions with p(f) = p(g) = 0. Suppose that q and c are two non-zero
complex constants and n is an integer . If n > 14 and f™(z)f(qz + )

and g"(z)g(qz + ¢) share 1 CM, then f(z) = tg(z) or f(z)g(z) = t, where
=1,

Theorem D. Under the conditions of Theorem C, if n > 26 and f™(z)f(qz

+c) and g"(z)g(qz+c¢) share 1 IM, then f(z) = tg(z) or f(z)g(z) = t, where
=1,

Theorem E. Let f(z) and g(z) be two transcendental entire functions
with p(f) = p(g) =0, let ¢ and ¢ be two non-zero complex constants, let
P(z) = ap2" + 12"+ ... + a1z + ag be a non-zero polynomial, where
an(#0), an—1,...,a9, are complex constants and k denotes the number of the
distinct zero of P(z). If n > 2k+1 and P(f(z))f(gz+c) and P(g(z))g(qz+c)
share 1 CM, then one of the following results holds:

a). f(z) =tg(z) for a constant ¢ such that t¢ = 1, where

d = GCD{)\, A1, ..., \n} and

n+1, a;=0,
Aj=4
J+ 17 a; 7é 07
b). f(z) and g(z) satisfy the algebraic equation R(f(z),g(z)) = 0, where
R(w1,w2) = P(w1)wi(qz + ¢) — P(w2)wa(qz + ¢).

In 2016, Harina P. Waghamore and Sangeetha Anand [1] investigated the
value distribution for ¢-shift polynomials of transcendental meromorphic and
entire functions with zero order and obtained the following results.
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Theorem F. Let f(z) and g(z) be two transcendental meromorphic func-
tions with p(f) = p(g) = 0. Let q and ¢ be two non-zero complex constants,
n an integer and Pp,(2) = amz™ + am_12™ "1+ .. —|—alz+a0 Ifn>5m+19
and f(2) P (f(qz+¢))f (2) and g"(2)Pm(9(qz+¢))g (2) share 1 CM, then
f(2) = tg(2) or f(2)g(z) = t, where t¢ = 1,d = GCD(n +m + 1,n +
m,.,n+m+1—i .. ,n+1)am_ #0, for somei=0,1,..m

Theorem G. Under the conditions of Theorem F, if n > 11m + 31,

FU2)Po(flqgz+¢)f (2) and g"(2)Pm(g9(qz+¢))g () share 1 IM, then con-
clusion of Theorem F' still holds.

Theorem H. Let f(z) and g(z) be two transcendental entire functions
with p(f) = p(g) = 0, q and ¢ are two non-zero complex constants and k de-
note the number of distinct zeros of Py, (z). If m > n+2k+4, f™(2)Pn(f(qz+
N f (2) and g"(2)Pm(g(qz +¢))g (2) share 1 CM, then one of the following
results holds:

a). f(z) =tg(2) for a constant ¢ such that ¢t = 1, where
d=GCDn+m+1,n+m,..,n+m+1—i ..n+1).
am—; # 0, for some ¢ =0, 1,...,m.

b). f(z) and g(z) satisfy the algebraic equation R(f,g) = 0 where

AWt Ay q w1 ao
R(wy, = nt! ml me- 1
(w1 wQ) 1 n+m-+1 n—+m n—+1
gt [amS o ag
2 n+m+1 n+m T in4+1

By considering Definition 1, we obtain results on the uniqueness and value
distribution of g-shift difference differential polynomials of transcendental
entire and meromorphic functions of the form f™(z)P,,(f(qz + ¢))L(f) and
9" (2)Pm(9(qz +¢))L(g). Our results improve and generalize the results due
to [1].

Theorem 1. Let f(z) and g(z) be two transcendental meromorphic
functions with p(f) = p(g) = 0. Let q and ¢ be two non-zero complex
constants, n an integer and Py, (z) = M4 12" 4 L+ a1z + ap.
If n > 3m + 5k + 14 and f™(2)Pn(f (qz + ¢))L(f) and g"(z)Pn(g9(qz +
¢))L(g) share 1 CM, then f(z) = tg(z) or f(2)g(z) = t, where t¢ = 1,
d = GCD{n+m,n+m—1,...n+m—1,...,n}, {n+m+1,n+m,..,
n+m+1—i,..,n+1}..., {n+m+kn+m+k—1,.,n+m+k—i,,
o+ k}), am—i # 0, for some i =0,1,...,m.

Theorem 2. Under the conditions of Theorem 1, if n > 9m + 11k +
20, f"(2)Pm(f(qz + ¢))L(f) and g"(2)Pm(g(qz + ¢))L(g) share 1 IM, then

conclusion of Theorem 1 still holds.
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Theorem 3. Let f(z) and g(z) be two transcendental entire functions
with p(f) = p(g) = 0, ¢ and c are two non-zero complex constants and t,
denote the number of distinct zeros of Py (z). If m > n+ 2t,, + k + 1,

f"(2)Pn(f(qz+¢))L(f) and ¢"(2z)Pn(9(qz + ¢))L(g) share 1 CM, then one
of the following results holds:

a). f(z) =tg(2) for a constant t such that t* = 1, where

d =GCD{n+m+2,n+m+1,.,n+m+2—i,..,n+2}
{n+m+1,..n+m,..,n+m+1—i ..n+1} ..,
{n+m+k—-—1n+m+k—-2,...,n+m+k—i,...,n+k—1}).

am—; 7 0, for some i =0,1,...,m.

b). f(z) and g(z) satisfy the algebraic equation R(f,g) =0 where

bow?* aobg
R = w2 | L
(w1, ws) w1 [n+m+2+ +n—|—2
biw'™ b
ottt [ AmOtL g GO0
n+m-+1 n-+1
tw n+k 1 [ambrw?” (k—l)+ apby(k — 1)
n+m+k—1 7 n+k-—1
b b
— w§+2 7am 00 + .+ 0%
n+m-+2 n—+2
biwi b
poptt | w2 G0
n+m+1 n+1
brwl(k —1 be(k —1
et | 4m kwy' ( ) L k( )
n+m+k—1 n+k—1

Remark 1. Fori =0,1,..,k, if b;(z) =0 for ¢ # 1 and b1(z) = 1 in L(f)
of Theorems 1, 2 and 3, then Theorems 1, 2 and 3 reduces to Theorems F, G
and H.

Remark 2. If £ = 1 in Theorems 1 and 2, then Theorems 1 and 2
improve and generalize Theorems F and G.

Remark 3. If k = 1 and t,,, = k in Theorem 3, then Theorem 3 improve
and generalize Theorem H.

The following example shows that the conditions in Theorem 1 cannot
be removed.

Example 1. Let f(z) = sinz,g(z) = cosz, ¢ = 1, k =0, ¢ = 2«
n =17 and m = 1. Hence we have n > 17 and f”(z)Pm( (gz + )) (f) =
g

9" (2)Pm(9(qz+¢))L(g). Therefore f"(z)P, (f(q2+0))L(f) and g" (2) P (9(g2+
¢))L(g) share 1 CM. Clearly, we get f =
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Example 2. Let f(z) = €%, g(z) = —€*,¢q=1, k=3,c=1,n =32
and m = 1. Hence we have n > 31. Here L(f) = f+ f + f® +
f® = de* L(g) = g+ gW + g@ + ¢ = —de* and f"(2)Pu(f(qz +
O)L(F) = 9"(2) P(g(qz + ©))L(g). Therefore f(z)Py(f(qz + ) L(f) and
g"(2)P(g(qz+¢))L(g) share 1 CM. Then we get f = tg, where ¢ is d*" root
of unity.

Example 3. Let f(z) =¢e*, g(z) =e *,qg=1, k=4, c=1,n=37
and m = 1. Hence we have n > 36. Here L(f) = f( + fG) — @ — () _
f==¢Llg) = g + 9% - g® — gV —g = —¢=% and f"(2)Pu(f(qz +
OVL(S) = 9"(2) Plg(g2 + ©))L(g). Therefore () Pu(f(q= + ) L(f) and
9" (2)Pn(g(qz + ¢))L(g) share 1 CM. Then we get f(2)g(z) = t, where ¢ is
d" root of unity.

2. Some lemmas

For the proof of our main results, we need the following lemmas.

Lemma 1 ([8]). Let f(z) be a non-constant meromorphic function and
an(# 0), an—1,...,ap be small functions with respect to f(z). Then

T(ryanf™ + an—1 f" '+ ...+ a1 f +ao) = nT(r, f) + S(r, f)

Lemma 2 ([6]). Let f(z) be a transcendental meromorphic function of
finite logarithmic order and q, n be two non-zero complex constants. Then
we have

T(r, flgz+mn)) = T(r, f) + S(r, ),
N(r, flaz +n)) = N(r, f) + 5(r, f),

1 1
N<r, f(qz+17)) N(T,?)+S(T,f).

Lemma 3 ([8]). Let f(z) be a non-constant meromorphic function in
the complex plane. Then

1.m (T, #) =S(r, f).

2. T(r,L(f)) <T(r, f) + kN(r, ) + S(r, f).

Lemma 4 ([3]). Let f(z) be a non-constant meromorphic function and
p, k be positive integers. Then

L T(r, f*) <T(r, f) + kN(r, f) + S(r, f)

2. Ny (17t ) ST ) = TG )+ Ny (1 3

3. N, (r, ﬁ) < Npyk <1", %) +kN(r, f) + S(r, f)

4. N (r, ﬁ) <N (r, %) +kN(r, f) + S(r, f).

+5(r, f)

N——
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Lemma 5 ([7]). Let F(z) and G(z) be two non-constant meromorphic
functions. If F(z) and G(z) share 1 CM, then one of the following three
cases holds:

1. T(r,F) + T(r,G) < 2 {N2 (r, ;) + No(r, F)N, (r, é) + Ny(r, G)}
+ S(r, F)+ S(r,G),
2. F =@,
3. FG =1.
Lemma 6 ([5]). Let F' and G be two non-constant meromorphic func-
tions. Let F' and G share 1 IM and

1 / 1 !

F F G G
H=F 2@ %61
If H #0, then
T(r,F)+T(r,G) < 2 <N2 <r, ;) + No(r, F) + Ny (r, é) + Na(r, G)>

— — — 1 — 1
+3 <N(’I“,F)—|-N(T‘,G)—|—N (T’F> +N (7“, G)>
+ S(r, F) + S(r,G).
Lemma 7 ([4]). Let f(z) be an entire function with p(f) =0, let ¢ and q
be two fized non-zero complex constants, let P(z) = anz"™ + 12" 1.+

a1z + ap be a non-zero polynomial , where a,(# 0),an—1, ..., a9, are complex
constants, then

T(r, P(f(2))f(qz +¢)) = T(r, P(f(2))f(2)) + S(r, f)-

3. Proof of Theorem 1

Let F(z) = f"(2)Pn(f(qz+¢))L(f) and G(z) = ¢"(2) Pm(9(qz +¢)) L(g).
Since f(z) is a transcendental meromorphic function of zero order, by
Lemma 1, Lemma 2 and Lemma 3, we get

(1) T(r,F) < T(r, f"(2)) + T(r, Pn(f(qz + ¢))) + T(r, L(f))
< (n+m+k+1D)T(r,f)+ S(r, f)

On the otherhand from Lemma 1, Lemma 2, Lemma 4 and Lemma 3, we
deduce that

(n+m)T(r, f) < T(r, f*(2)Pm(f(qz + ¢)))

T <r, L{f)) + S(r, f)
<T(rF)+ (E+1D)T(r, f)+ S(r, f).

IN
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Therefore
(2) (n+m—k—-0T(r, f)+S(r, f) <T(r,F).
From (1) and (2), we obtain

B)(n+m—k—-0)T(r,f)+S(r,f) < T(r,F)

<
< (n4+m+k+ 10T )+ S(r, f).

Similarly, we have

(4) (n+m—k—-1T(r,g)+ S(r,g) < T(r,G)

m+m+k+1)T(r,g)+ S(r,g).

IN A

Also, we have

1 - 1 1

®) % (ng) <29 (n )3 ()
+ N <r, L(lf)> + S(r, f)
< (k+m+3)T(r, f)+S(r, f)

Similarly,
(6) No (r, é) <(k+m+3)T(r,g) + S(r,g),
(7) No(r,F) < (k+m+3)T(r, f)+ S(r, f),
(8) No(r,G) < (k+m+3)T(r,g) + S(r,g).

Since F' and G share 1 CM, let us assume (1) of Lemma 5 holds and hence

T(r,F)+T(r,G) < 2 [NQ (n ;) + No(r, F) + Ny <r, é) + No(r, G)]
+S(r, F) + S(r,Q).
Substituting (3)-(8), we obtain
©)  T(nF)+T(G) < 2020k +m+3)(T(r, f) + T(rq)))
+S(r f) + S(r, )

(4k +4m + 12)(T(r, f) + T(r,9))
+S(r, f)+ S(r,g).

IN
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From (3), (4) and (9), we get

(n+m-—k—1—4k —4m —12)(T(r, f) + T(r,g)) < S(r, f) + S(r, 9)
Therefore,
(10) (n—3m —5k = 13)(T(r, f) + T(r,g)) < S(r, f) + S(r.9)

which is a contradiction, since n > 3m + 5k + 14. Thus by Lemma 5, we
have =G or FG =1. If F = G, that is,

F"(2) P f(gz + ) L(f) = 9" (2) Pm(9(qz + ¢)) L(9)
Set H(z) = f(z)/g(z). Suppose that H(z) is not a constant. Then, we
obtain
t F(:)Pu(flaz + L) _
9"(2)Pn(9(qz + ¢))L(g)
(11) H"(z)Pm(H (qz + ¢))L(H) = 1

From Lemma 2 and (11), we get

1
(2 T 1) = T (g )
T(r,Pp(H(qz+¢))L(H))+ S(r,H)
(k+m+1)T(r,H(2))+ S(r,H)

<
<

Hence, H(z) must be non-zero constant, since n > 3m + 5k + 14. Set
H(z) =t. By (11), we have t* = 1. Thus f(z) = tg(z), where

d =GCD{n+m,n+m—1,...n+m—1i,..,n},
{n+m+Ln+m,.,n+m+1—i ..n+1}, ..,
{n+m+kn+m+k—-1,...n+m+k—i..,n+k},

am—; # 0, for some ¢ = 0,1,...,m. If FG = 1, that is,
S (2)P(f (a2 + ¢))L(f)-9" (2) Pm(g(qz + ¢)) L(g) = 1

Let L(z) = f(z).g9(z). Using similar method as above, we obtain that L(z)
must also be a non-zero constant. Thus we have fg = t, where t¢ = 1,

d = GCD({n+m,n+m—1,...,n+m—i,..,n},
{n+m+Ln+m,..on+m+1—1i,..,n+1} ..,
{n+m+kn+m+k—-1,..n+m+k—i ..,n+k})

am—; 7 0 for some ¢ = 0,1, ..., m.
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4. Proof of Theorem 2

Let F(z) = f"(2) Pn(f(qz +¢))L(f) and G(2) = g"(2) Pm(g9(qz +¢)) L(9),
then F' and G share 1 IM. If H # 0 then by Lemma 6, we have

(13) T&JU+T@G)§2(M<r;>+erR

+M< >+MrG>

+3 (N(r F)+ N(r,G)+ ( ;)

+ N <r, é)) + S(rF)+S(r,G).
By Lemma 2, we obtain

N(r, f"(2) Pm(f (a2 + ) L(f)) + S(r, f)

(14) N(r,F(2)) =
< (k+m+D)T(r, f) + S(r, f),

Similarly,

(15) N<nFéOka+m+1ﬂWJ)+ﬂnﬂ,
(16) N(r,G(2)) < (k+m+1)T(r,g9) + S(r,9),
(17) N (r, ng)> <(k+m+1)T(r,g)+ S(r,9).

Together Lemma 6 with (5)-(8) and (14)-(17), we have

(18) T(r,F)+T(r,G) < 22k+m+3))(T(r,f)+T(r,g9))
+32(k+m+1))(T(r, f)+T(r,g))
+ S(r, f)+ S(r,9).

By (3), (4) and (18)

(19) (n+m—k—1(T(r,f)+T(r,g))
< (10k + 10m + 18)(T(r, f) + T(r,g)) + S(r, f) + S(r, 9)

which is impossible, since n > 9m + 11k + 20. Hence, we have H = 0.
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By integrating H twice, we have

b+1)G+(a—b—1)
bG + (a —b)

which yields T'(r, F) = T(r,G) + O(1). From (3), (4), we obtain
21) (n4+m—-k—0Trf)<(n+m+k+1)T(r,g)+S(rf)+S(r,g)

(20) F=

(22) (n+m—k—-1T(r,g) <(n+m+k+1)T(r, f)+S(r f)+ S 9).
Next, we will prove that F'= G or FG = 1.
Case 1. (b#0,—1). Ifa—b—1+# 0, by (20), we obtain

(23) N(Tv})=N<T’G—(a—b1—1>/(b+1>>'

Combining the Nevanlinna second main theorem with Lemma 2, (3),(4) and
(22), we obtain

(24) (n+m—k—1)T(r,9) <T(r,G)+ S(r,g)

§N<r,é> +N(r,G)+N(r,G_ (a—bl—l)/(b—i-l)) +S(r, 9)
)

<¥ () ¥ (" mgmray) T (1)
+ N(r,g) + N(r, Pn(g(qz 4+ ¢))) +

N (0 3) ¥ () N () 500
<@B+2k+m)T(r,g) + (1 +k+m)T(r, f)+S(r,g)

By simple calculation, we get contradiction, since n > 9m+ 11k +20. Hence
we obtain, a —b—1 =0, so

b+1)G

bG + 1

Using the similar method as above, we obtain

(m+m—k—1T(r,g) <T(r,G)+ S(r,g)

(25) F=

<N (r, é) NG+ N (r, G+11/b> + S(r, )

<N (r, é) +N(r,G)+ N (7‘, ;) + S(r, 9)
<B+2k+m)T(r,g)+ (1 +k+m)T(r,f)+ S(r,g)
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which is impossible.

Case 2. If b= —1 and a = —1, then F'G = 1 follows trivially. Therefore,
consider b = —1 and a # —1. By (20), we have

a

26 = .
(26) a+1—-G
Similarly, as above we get contradiction.

Case 3. If b =0, a = 1, then F' = G follows trivially. Therefore, consider
b=0 and a # 1. By (20), we have

G+a-—1

a

(27) F=
Similarly, as above we get contradiction.

5. Proof of Theorem 3

Let f(z) and g(z) be two transcendental entire functions. Since f"(z) Py, (f(qz+
¢))L(f) and ¢"(z)Pn(g(qz + ¢))L(g) share 1 CM, we have

[*(@)Pu(flaz +)L(f) =1 _ )
9"(2)Pim(9(qz +¢))L(g) — 1

where I(z) is an entire function, by p(f) = 0 and p(g) = 0, we have €/*) = 5
a constant. Rewriting (28),

(29)  ng"(2)Pn(g(qz + ¢))L(g) = ["(2) Pn(f(qz + ¢)) L(f) + 1 — 1.

If n # 1, by the first main theorem, the second main theorem and Lemma 2,
we have

(30)  T(r, f"(2)Pm(f(gz + ¢))L(f)) < N(r, f"(2) Pm(f (a2 + ) L())

(28)

- 1
N ( F(2) P(F a7 + c))L(f))>
1

N ( PPz + )L -1
<¥ () * 2V (7o =)

+N(r, L(1f)> +N <r,é> + S(r, f)+ S(r,9)
<(n+tm+k+D)T(r, f)+ (n+tm+k+1)T(r,g)

+ S(r, f)+ S(r,9)

) oste
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By Lemma 7 and (30), we have

(n+m+k+1)T(r, f) = T(r, f"(2)Pn(f(gz + ) L(f))
< (n4tym+k+1)T(r, f)
+(n+tm+k+1)T(r,g)+ S(r, f)+ S(r,9)

(B1)  (m—tp)T(r.f) < (n+tm+k+1)T(r,g) +S(r f)+5(r9g)
Similarly,

32)  (m—tm)T(r.g) < (n+tpm +k+ 1T (r, f) + S(r, f) + 5(r, g)
Equations (31) and (32) imply that

(33) (m—n =2ty —k—=1)(T(r, f) + T(r,9)) < S(r, f) + S(r,g)

which is impossible, since m > n + 2t,, + k + 1.
Hence we have n = 1. Rewriting (28),

(34) Y (2)Pn(f(qz + ¢))L(f) = 9" (2) Pm(9(qz + ¢)) L(g)

Set h(z) = f(2)/9(2)

Case 1. Suppose that h(z) is a constant. Integrating (34), we get

ni2 | ambof™(qz 4+ ¢)  am—1bof™ gz + ¢) aobo
(85) f [ n+m+ 2 * n+m+1 +'"+n~|—2
nt1 | ambif™(qz +c) am—1b1f™ Y(qz + ¢ aoby
+f ot
n+m+1 n+m n—+1
k-1 [ ambi f (g2 + ¢)(k — 1)
R [ n+m+k—1
n am_lbkfm_l(qz + C)(k — 1) n aobk(k — 1)
n+m+k—2 n+k—1
2 [ambog™(qz +¢) | am—1bog™ gz + ¢) apbo
—g o 2
n+m-+4+2 n+m+1 n-+ 2
gt amb19™(qz + ¢) N am—_1b1g™ 1 (qz + ¢) A aoby
n+m+1 n+m n+1
n +¢Hm1mwwWw+d%—D
n+m+k—1

_l’_

am_lbkgm_l(qz + C)(k — 1) n n aobk(k — 1)
n+m-+k—2 n+k—1
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By substituting f = gh in (35), we obtain
n+2 2 [ambogm(qz +c)h™

9

n+m+2
n am,lbogm_l(qz + C)hm_l aobo
n+m+1 T n42
+ gn+1hn+1 amb1g™(qz + c)h™
n+m+1
_1bygmt pm—1 b
L Gm-1b1g (qz +¢) +m+aoo}
n—+m n+1
T g"+k*1h”+k71 ambrg™(qz + c)h"™(k — 1)
n+mt+k—1
10 g™t rl(k —1 bk —1
4 mo1brg (qz +c) ( )_i_m_'_a()k( )
n+m+k—2 n+k—1
o [ambog™(@z +¢) | am—1bog™ (g2 +¢) aobo
9 n+m+ 2 nt+m+ 1 e
g amb1g™(gz +¢)  am-1b1g™ '(gz +¢) | aob1
n+m+1 n+m T oon+1
g gtHRe ambig™ (g2 + ) (k — 1)
n+m+k—1
am_lbkgmfl(qz + C)(k — 1) aobk(k — 1)
+ e —.
n+m+k—2 n+k—1
This implies
bog™(qz + c)
6 n+2 | dm potmt2 g
o) g | ) )
+ am—lbogm_l(qz —+ C) (hn-l-m-i-l B 1)
n+m+1
a(]b() 2
o —— (A2 1
toet n + 2( )
i amblgm_l(qz + C) (hn-i—m—i-l _ 1)
n+m+1
+ amflblgm_2(qz + C) (hn+m _ 1)
n+m
+ ...+ aobig”'(qz +¢) (h"Jrl -1)
n—+1
ambrg™ 3 (qz + ¢) e
TRl 1) (k-1
Tt n+m-+k—1 ( )( )

L am1bi(k = 1)g™ gz + )

hn+m+k72_1
n+m-+k—2 ( )
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L aobr(k = 1)¢" (g2 + )

PR )| =
n+k—1 ( ) 0

Since g is a transcendental entire function, we have g"*2(z) # 0. Hence, we
obtain

ambogm(qz + C) (hm+n+2 _ 1) i am—lb(]gmil(qz —+ C) (hn—l—m—l—l o 1)

37
(37) n+m+2 n+m+1
m—1
I aobo (hn+2 1)+ ambig (gz +¢) (RrtmHl 1)
m—2 -1
n am—1b19 (gz +¢) (thrm _ 1) bt apb1g™"(gz + ¢ (hn+1 —1)
n+m n+1
ambeg™ (g2 + ¢) -
hn+m+k 1_1 E—1
S e R B )(k—1)
n am—1bg(k — 1)g" (g2 + ¢) (hrrmk=2 )
n+m+k—2
n aobi(k — 1)g*3(qz + ¢) (A1 _ 1) = 0
n+k—1

Equation (37) implies that 2% = 1, where

d =GCD{n+m+2,n+m+1,.,n+m+2—i,..,n+2}
{n+m+1,..n+m,...n+m+1—i ..n+1} ..,
{n+m+k—-—1n+m+k—-2,...n+m+k—1i,.,n+k—1}),

am—; # 0, for some ¢ = 0,1, ..., m.

Thus f = tg for a constant ¢, such that t¢ = 1, where

d =GCD{n+m+2,n+m+1,.,n+m+2—i,..,n+2}
{n+m+1,..n+m,...n+m+1—i ..n+1}, ..,
{n+m+k—1n+m+k—-2,...n+m+k—1i,.,n+k—1}),

am—; # 0, for some ¢ = 0,1, ..., m.

Case 2. Suppose that h(z) is not a constant. Then by (37) f(z) and
g(z) satisfy the algebraic equation R(f,g) = 0, where

bowm aob(]
R = w2 | O
e n+2
a blwm a0b1
—|—w?+1 —_mer 4
n+m+1 n+1
ntk—1 | ambpwi® aobg(k — 1)
Tt [n+m+k—1 RO
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_ w;H_Q ambow?’ ot aobo —i—w;““l amblw’zn a0b1
n+m+2 n—+ 2 n+m+1 n+1
nk-t [ Ombruwg aob(k — 1)
ot [n+m+k—1 T k-1

6. Open question
Question. Whether the Theorem 3. hold for Meromorphic functions?
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