F A S C I C U L I M A T H E M A T I C I

Harina P. Waghamore and Ramya Maligi

SOME RESULTS ON UNIQUENESS AND VALUE DISTRIBUTION FOR q-SHIFT DIFFERENCE DIFFERENTIAL POLYNOMIALS

Abstract

In this paper, we investigate the uniqueness and value distribution of q-shift difference differential polynomials of entire and meromorphic functions with zero order and obtain some results which improve and generalizes the previous results of Harina P. Waghamore and Sangeetha Anand [1].

KEY words: entire functions, meromorphic functions, sharing values, difference-differential polynomials.

AMS Mathematics Subject Classification: 30D35.

1. Introduction and main results

In this article, we use some basic results and symbols of Nevanlinna's value distribution theory of meromorphic functions in \mathbb{C} such as the first and second main theorems, and the common notations such as the characteristic function $T(r, f)$, the proximity function $m(r, f)$ and the counting functions $N(r, f)$ (with multiplicities) and $\bar{N}(r, f)$ (without multiplicities); $S(r, f)$ denotes any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly on a set of finite Lebesgue measure, not necessarily the same at each occurence.

Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C}. If for some $a \in \mathbb{C} \cup\{\infty\}, f-a$ and $g-a$ have the same set of zeros with the same multiplicities, we say that f and g share the value a CM (counting multiplicities), and if we do not consider the multiplicities then f and g are said to share the value a IM (ignoring multiplicities).

Definition 1. Linear differential polynomial is defined as

$$
L(f)=\sum_{i=0}^{k} b_{i}(z) f^{(i)}(z)
$$

where $b_{1}(z), b_{2}(z), \ldots, b_{k}(z)$ are small functions of $f(z)$.
In 2011, Liu et al. [2] considered uniqueness of difference polynomials of meromorphic functions, corresponding to uniqueness theorems of meromorphic functions sharing values (see, e.g., [5]) and obtained the following results.

Theorem A. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with finite order. Suppose that c is a non-zero complex constant and n is an integer. If $n \geq 14$ and $f^{n}(z) f(z+c)$ and $g^{n}(z) g(z+c)$ share $1 C M$, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem B. Under the conditions of Theorem A, if $n \geq 26$ and $f^{n}(z) f(z$ $+c)$ and $g^{n}(z) g(z+c)$ share 1 IM, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

In 2013, Liu et al. [4], considered the case of q-shift difference polynomials and extended the Theorem A as follows:

Theorem C. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with $\rho(f)=\rho(g)=0$. Suppose that q and c are two non-zero complex constants and n is an integer. If $n \geq 14$ and $f^{n}(z) f(q z+c)$ and $g^{n}(z) g(q z+c)$ share $1 C M$, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem D. Under the conditions of Theorem C, if $n \geq 26$ and $f^{n}(z) f(q z$ $+c)$ and $g^{n}(z) g(q z+c)$ share 1 IM, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{n+1}=1$.

Theorem E. Let $f(z)$ and $g(z)$ be two transcendental entire functions with $\rho(f)=\rho(g)=0$, let q and c be two non-zero complex constants, let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a non-zero polynomial, where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$, are complex constants and k denotes the number of the distinct zero of $P(z)$. If $n>2 k+1$ and $P(f(z)) f(q z+c)$ and $P(g(z)) g(q z+c)$ share $1 C M$, then one of the following results holds:
a). $f(z) \equiv t g(z)$ for a constant t such that $t^{d}=1$, where $d=G C D\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right\}$ and

$$
\lambda_{j}= \begin{cases}n+1, & a_{j}=0 \\ j+1, & a_{j} \neq 0\end{cases}
$$

b). $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f(z), g(z))=0$, where

$$
R\left(w_{1}, w_{2}\right)=P\left(w_{1}\right) w_{1}(q z+c)-P\left(w_{2}\right) w_{2}(q z+c)
$$

In 2016, Harina P. Waghamore and Sangeetha Anand [1] investigated the value distribution for q-shift polynomials of transcendental meromorphic and entire functions with zero order and obtained the following results.

Theorem F. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with $\rho(f)=\rho(g)=0$. Let q and c be two non-zero complex constants, n an integer and $P_{m}(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$. If $n \geq 5 m+19$ and $f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share $1 C M$, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{d}=1, d=G C D(n+m+1, n+$ $m, \ldots, n+m+1-i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1, \ldots m$.

Theorem G. Under the conditions of Theorem F, if $n \geq 11 m+31$, $f^{n}(z) P_{m}(f(q z+c)) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share 1 IM, then conclusion of Theorem F still holds.

Theorem H. Let $f(z)$ and $g(z)$ be two transcendental entire functions with $\rho(f)=\rho(g)=0, q$ and c are two non-zero complex constants and k denote the number of distinct zeros of $P_{m}(z)$. If $m>n+2 k+4, f^{n}(z) P_{m}(f(q z+$ c) $) f^{\prime}(z)$ and $g^{n}(z) P_{m}(g(q z+c)) g^{\prime}(z)$ share $1 C M$, then one of the following results holds:
a). $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where

$$
d=G C D(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1)
$$

$$
a_{m-i} \neq 0, \text { for some } i=0,1, \ldots, m
$$

b). $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) \equiv 0$ where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n+1}\left[\frac{a_{m} w_{1}^{m}}{n+m+1}+\frac{a_{m-1} w_{1}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right] \\
& -w_{2}^{n+1}\left[\frac{a_{m} w_{2}^{m}}{n+m+1}+\frac{a_{m-1} w_{2}^{m-1}}{n+m}+\ldots+\frac{a_{0}}{n+1}\right]
\end{aligned}
$$

By considering Definition 1, we obtain results on the uniqueness and value distribution of q-shift difference differential polynomials of transcendental entire and meromorphic functions of the form $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$. Our results improve and generalize the results due to [1].

Theorem 1. Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions with $\rho(f)=\rho(g)=0$. Let q and c be two non-zero complex constants, n an integer and $P_{m}(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$. If $n \geq 3 m+5 k+14$ and $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+$ c)) $L(g)$ share $1 C M$, then $f(z) \equiv \operatorname{tg}(z)$ or $f(z) g(z)=t$, where $t^{d}=1$, $d=G C D(\{n+m, n+m-1, \ldots, n+m-i, \ldots, n\},\{n+m+1, n+m, \ldots$, $n+m+1-i, \ldots, n+1\}, \ldots,\{n+m+k, n+m+k-1, \ldots, n+m+k-i$, , $\ldots, n+k\}$), $a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.

Theorem 2. Under the conditions of Theorem 1, if $n \geq 9 m+11 k+$ 20, $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$ share 1 IM, then conclusion of Theorem 1 still holds.

Theorem 3. Let $f(z)$ and $g(z)$ be two transcendental entire functions with $\rho(f)=\rho(g)=0, q$ and c are two non-zero complex constants and t_{m} denote the number of distinct zeros of $P_{m}(z)$. If $m>n+2 t_{m}+k+1$, $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$ share $1 C M$, then one of the following results holds:
a). $\quad f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where

$$
\begin{aligned}
d= & G C D(\{n+m+2, n+m+1, \ldots, n+m+2-i, \ldots, n+2\}, \\
& \{n+m+1, \ldots, n+m, \ldots, n+m+1-i, \ldots, n+1\}, \ldots, \\
& \{n+m+k-1, n+m+k-2, \ldots, n+m+k-i, \ldots, n+k-1\}) . \\
& a_{m-i} \neq 0, \text { for some } i=0,1, \ldots, m .
\end{aligned}
$$

b). $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) \equiv 0$ where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n+2}\left[\frac{a_{m} b_{0} w_{1}^{m}}{n+m+2}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \\
& +w_{1}^{n+1}\left[\frac{a_{m} b_{1} w_{1}^{m}}{n+m+1}+\ldots+\frac{a_{0} b_{1}}{n+1}\right]+\ldots \\
& +w_{1}^{n+k-1}\left[\frac{a_{m} b_{k} w_{1}^{m}(k-1)}{n+m+k-1}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right] \\
& -\left\{w_{2}^{n+2}\left[\frac{a_{m} b_{0} w_{2}^{m}}{n+m+2}+\ldots+\frac{a_{0} b_{0}}{n+2}\right]\right. \\
& +w_{2}^{n+1}\left[\frac{a_{m} b_{1} w_{2}^{m}}{n+m+1}+\ldots+\frac{a_{0} b_{1}}{n+1}\right]+\ldots \\
& \left.+w_{2}^{n+k-1}\left[\frac{a_{m} b_{k} w_{2}^{m}(k-1)}{n+m+k-1}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right]\right\}
\end{aligned}
$$

Remark 1. For $i=0,1, . ., k$, if $b_{i}(z)=0$ for $i \neq 1$ and $b_{1}(z)=1$ in $L(f)$ of Theorems 1, 2 and 3, then Theorems 1, 2 and 3 reduces to Theorems F, G and H .

Remark 2. If $k=1$ in Theorems 1 and 2, then Theorems 1 and 2 improve and generalize Theorems F and G.

Remark 3. If $k=1$ and $t_{m}=k$ in Theorem 3, then Theorem 3 improve and generalize Theorem H.

The following example shows that the conditions in Theorem 1 cannot be removed.

Example 1. Let $f(z)=\sin z, g(z)=\cos z, q=1, k=0, c=2 \pi$, $n=17$ and $m=1$. Hence we have $n \geq 17$ and $f^{n}(z) P_{m}(f(q z+c)) L(f)=$ $g^{n}(z) P_{m}(g(q z+c)) L(g)$. Therefore $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+$ c)) $L(g)$ share 1 CM . Clearly, we get $f=t g$.

Example 2. Let $f(z)=e^{z}, g(z)=-e^{z}, q=1, k=3, c=1, n=32$ and $m=1$. Hence we have $n>31$. Here $L(f)=f+f^{(1)}+f^{(2)}+$ $f^{(3)}=4 e^{z}, L(g)=g+g^{(1)}+g^{(2)}+g^{(3)}=-4 e^{z}$ and $f^{n}(z) P_{m}(f(q z+$ c) $) L(f)=g^{n}(z) P_{m}(g(q z+c)) L(g)$. Therefore $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$ share 1 CM . Then we get $f=t g$, where t is $d^{t h}$ root of unity.

Example 3. Let $f(z)=e^{z}, g(z)=e^{-z}, q=1, k=4, c=1, n=37$ and $m=1$. Hence we have $n>36$. Here $L(f)=f^{(4)}+f^{(3)}-f^{(2)}-f^{(1)}-$ $f=-e^{z}, L(g)=g^{(4)}+g^{(3)}-g^{(2)}-g^{(1)}-g=-e^{-z}$ and $f^{n}(z) P_{m}(f(q z+$ c) $) L(f)=g^{n}(z) P_{m}(g(q z+c)) L(g)$. Therefore $f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$ share 1 CM . Then we get $f(z) g(z)=t$, where t is $d^{t h}$ root of unity.

2. Some lemmas

For the proof of our main results, we need the following lemmas.
Lemma 1 ([8]). Let $f(z)$ be a non-constant meromorphic function and $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$ be small functions with respect to $f(z)$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2 ([6]). Let $f(z)$ be a transcendental meromorphic function of finite logarithmic order and q, η be two non-zero complex constants. Then we have

$$
\begin{aligned}
T(r, f(q z+\eta)) & =T(r, f)+S(r, f) \\
N(r, f(q z+\eta)) & =N(r, f)+S(r, f) \\
N\left(r, \frac{1}{f(q z+\eta)}\right) & =N\left(r, \frac{1}{f}\right)+S(r, f)
\end{aligned}
$$

Lemma 3 ([8]). Let $f(z)$ be a non-constant meromorphic function in the complex plane. Then

1. $m\left(r, \frac{L(f)}{f}\right)=S(r, f)$.
2. $T(r, L(f)) \leq T(r, f)+k \bar{N}(r, f)+S(r, f)$.

Lemma 4 ([3]). Let $f(z)$ be a non-constant meromorphic function and p, k be positive integers. Then

1. $T\left(r, f^{k}\right) \leq T(r, f)+k \bar{N}(r, f)+S(r, f)$
2. $N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{k}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f)$
3. $N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)$
4. $N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)$.

Lemma 5 ([7]). Let $F(z)$ and $G(z)$ be two non-constant meromorphic functions. If $F(z)$ and $G(z)$ share $1 C M$, then one of the following three cases holds:

$$
\text { 1. } \begin{aligned}
T(r, F) & +T(r, G) \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F) N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\} \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

2. $F \equiv G$,
3. $F G \equiv 1$.

Lemma 6 ([5]). Let F and G be two non-constant meromorphic functions. Let F and G share 1 IM and

$$
H=\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1}-\frac{G^{\prime \prime}}{G^{\prime}}+2 \frac{G^{\prime}}{G-1}
$$

If $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 2\left(N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right) \\
& +3\left(\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)\right) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Lemma 7 ([4]). Let $f(z)$ be an entire function with $\rho(f)=0$, let c and q be two fixed non-zero complex constants, let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+$ $a_{1} z+a_{0}$ be a non-zero polynomial, where $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$, are complex constants, then

$$
T(r, P(f(z)) f(q z+c))=T(r, P(f(z)) f(z))+S(r, f)
$$

3. Proof of Theorem 1

Let $F(z)=f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $G(z)=g^{n}(z) P_{m}(g(q z+c)) L(g)$.
Since $f(z)$ is a transcendental meromorphic function of zero order, by Lemma 1, Lemma 2 and Lemma 3, we get

$$
\begin{align*}
T(r, F) & \leq T\left(r, f^{n}(z)\right)+T\left(r, P_{m}(f(q z+c))\right)+T(r, L(f)) \tag{1}\\
& \leq(n+m+k+1) T(r, f)+S(r, f)
\end{align*}
$$

On the otherhand from Lemma 1, Lemma 2, Lemma 4 and Lemma 3, we deduce that

$$
\begin{aligned}
(n+m) T(r, f) & \leq T\left(r, f^{n}(z) P_{m}(f(q z+c))\right) \\
& \leq T\left(r, \frac{F}{L(f)}\right)+S(r, f) \\
& \leq T(r, F)+(k+1) T(r, f)+S(r, f)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(n+m-k-1) T(r, f)+S(r, f) \leq T(r, F) \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain
(3) $(n+m-k-1) T(r, f)+S(r, f) \leq T(r, F)$

$$
\leq(n+m+k+1) T(r, f)+S(r, f)
$$

Similarly, we have
(4) $(n+m-k-1) T(r, g)+S(r, g) \leq T(r, G)$

$$
\leq(n+m+k+1) T(r, g)+S(r, g)
$$

Also, we have

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right) \leq & 2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{P_{m}(f(q z+c))}\right) \tag{5}\\
& +N\left(r, \frac{1}{L(f)}\right)+S(r, f) \\
\leq & (k+m+3) T(r, f)+S(r, f)
\end{align*}
$$

Similarly,

$$
\begin{gather*}
N_{2}\left(r, \frac{1}{G}\right) \leq(k+m+3) T(r, g)+S(r, g) \tag{6}\\
N_{2}(r, F) \leq(k+m+3) T(r, f)+S(r, f) \\
N_{2}(r, G) \leq(k+m+3) T(r, g)+S(r, g)
\end{gather*}
$$

Since F and G share 1 CM , let us assume (1) of Lemma 5 holds and hence

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & 2\left[N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right] \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Substituting (3)-(8), we obtain

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2(2(k+m+3)(T(r, f)+T(r, g))) \tag{9}\\
& +S(r, f)+S(r, g) \\
\leq & (4 k+4 m+12)(T(r, f)+T(r, g)) \\
& +S(r, f)+S(r, g)
\end{align*}
$$

From (3), (4) and (9), we get

$$
(n+m-k-1-4 k-4 m-12)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

Therefore,

$$
\begin{equation*}
(n-3 m-5 k-13)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g) \tag{10}
\end{equation*}
$$

which is a contradiction, since $n \geq 3 m+5 k+14$. Thus by Lemma 5 , we have $F \equiv G$ or $F G \equiv 1$. If $F \equiv G$, that is,

$$
f^{n}(z) P_{m}(f(q z+c)) L(f) \equiv g^{n}(z) P_{m}(g(q z+c)) L(g)
$$

Set $H(z)=f(z) / g(z)$. Suppose that $H(z)$ is not a constant. Then, we obtain

$$
\begin{align*}
\frac{f^{n}(z) P_{m}(f(q z+c)) L(f)}{g^{n}(z) P_{m}(g(q z+c)) L(g)} & =1 \\
H^{n}(z) P_{m}(H(q z+c)) L(H) & =1 \tag{11}
\end{align*}
$$

From Lemma 2 and (11), we get

$$
\begin{align*}
n T(r, H) & =T\left(r, \frac{1}{P_{m}(H(q z+c)) L(H)}\right) \tag{12}\\
& \leq T\left(r, P_{m}(H(q z+c)) L(H)\right)+S(r, H) \\
& \leq(k+m+1) T(r, H(z))+S(r, H)
\end{align*}
$$

Hence, $H(z)$ must be non-zero constant, since $n \geq 3 m+5 k+14$. Set $H(z)=t$. By (11), we have $t^{d}=1$. Thus $f(z)=t g(z)$, where

$$
\begin{aligned}
d= & G C D(\{n+m, n+m-1, \ldots, n+m-i, \ldots, n\}, \\
& \{n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1\}, \ldots, \\
& \{n+m+k, n+m+k-1, \ldots, n+m+k-i, \ldots, n+k\},
\end{aligned}
$$

$a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$. If $F G \equiv 1$, that is,

$$
f^{n}(z) P_{m}(f(q z+c)) L(f) \cdot g^{n}(z) P_{m}(g(q z+c)) L(g)=1
$$

Let $L(z)=f(z) \cdot g(z)$. Using similar method as above, we obtain that $L(z)$ must also be a non-zero constant. Thus we have $f g=t$, where $t^{d}=1$,

$$
\begin{aligned}
d= & G C D(\{n+m, n+m-1, \ldots, n+m-i, \ldots, n\}, \\
& \{n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1\}, \ldots, \\
& \{n+m+k, n+m+k-1, \ldots, n+m+k-i, \ldots, n+k\})
\end{aligned}
$$

$a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$.

4. Proof of Theorem 2

Let $F(z)=f^{n}(z) P_{m}(f(q z+c)) L(f)$ and $G(z)=g^{n}(z) P_{m}(g(q z+c)) L(g)$, then F and G share 1 IM. If $H \not \equiv 0$ then by Lemma 6 , we have

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2\left(N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)\right. \tag{13}\\
& \left.+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right) \\
& +3\left(\bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)\right. \\
& \left.+\bar{N}\left(r, \frac{1}{G}\right)\right)+S(r, F)+S(r, G)
\end{align*}
$$

By Lemma 2, we obtain

$$
\begin{align*}
\bar{N}(r, F(z)) & =\bar{N}\left(r, f^{n}(z) P_{m}(f(q z+c) L(f))+S(r, f)\right. \tag{14}\\
& \leq(k+m+1) T(r, f)+S(r, f)
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F(z)}\right) \leq(k+m+1) T(r, f)+S(r, f) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\bar{N}(r, G(z)) \leq(k+m+1) T(r, g)+S(r, g) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{G(z)}\right) \leq(k+m+1) T(r, g)+S(r, g) \tag{17}
\end{equation*}
$$

Together Lemma 6 with (5)-(8) and (14)-(17), we have

$$
\begin{align*}
T(r, F)+T(r, G) \leq & 2(2(k+m+3))(T(r, f)+T(r, g)) \tag{18}\\
& +3(2(k+m+1))(T(r, f)+T(r, g)) \\
& +S(r, f)+S(r, g)
\end{align*}
$$

By (3), (4) and (18)

$$
\begin{align*}
& (n+m-k-1)(T(r, f)+T(r, g)) \tag{19}\\
& \quad \leq(10 k+10 m+18)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
\end{align*}
$$

which is impossible, since $n \geq 9 m+11 k+20$. Hence, we have $H \equiv 0$.

By integrating H twice, we have

$$
\begin{equation*}
F=\frac{(b+1) G+(a-b-1)}{b G+(a-b)} \tag{20}
\end{equation*}
$$

which yields $T(r, F)=T(r, G)+O(1)$. From (3), (4), we obtain

$$
\begin{align*}
& \text { (21) } \quad(n+m-k-1) T(r, f) \leq(n+m+k+1) T(r, g)+S(r, f)+S(r, g) \tag{21}\\
& \text { (22) } \quad(n+m-k-1) T(r, g) \leq(n+m+k+1) T(r, f)+S(r, f)+S(r, g)
\end{align*}
$$

Next, we will prove that $F \equiv G$ or $F G \equiv 1$.
Case 1. $(b \neq 0,-1)$. If $a-b-1 \neq 0$, by (20), we obtain

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G-(a-b-1) /(b+1)}\right) . \tag{23}
\end{equation*}
$$

Combining the Nevanlinna second main theorem with Lemma 2, (3),(4) and (22), we obtain
(24) $(n+m-k-1) T(r, g) \leq T(r, G)+S(r, g)$

$$
\begin{aligned}
\leq & \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G-(a-b-1) /(b+1)}\right)+S(r, g) \\
\leq & \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
\leq & \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{P_{m}(g(q z+c))}\right)+\bar{N}\left(r, \frac{1}{L(g)}\right) \\
& +\bar{N}(r, g)+\bar{N}\left(r, P_{m}(g(q z+c))\right)+\bar{N}(r, L(g)) \\
& +\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{P_{m}(f(q z+c))}\right)+\bar{N}\left(r, \frac{1}{L(f)}\right)+S(r, g) \\
\leq & (3+2 k+m) T(r, g)+(1+k+m) T(r, f)+S(r, g)
\end{aligned}
$$

By simple calculation, we get contradiction, since $n \geq 9 m+11 k+20$. Hence we obtain, $a-b-1=0$, so

$$
\begin{equation*}
F=\frac{(b+1) G}{b G+1} \tag{25}
\end{equation*}
$$

Using the similar method as above, we obtain

$$
\begin{aligned}
(n+m- & k-1) T(r, g) \leq T(r, G)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G+1 / b}\right)+S(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, g) \\
& \leq(3+2 k+m) T(r, g)+(1+k+m) T(r, f)+S(r, g)
\end{aligned}
$$

which is impossible.
Case 2. If $b=-1$ and $a=-1$, then $F G \equiv 1$ follows trivially. Therefore, consider $b=-1$ and $a \neq-1$. By (20), we have

$$
\begin{equation*}
F=\frac{a}{a+1-G} \tag{26}
\end{equation*}
$$

Similarly, as above we get contradiction.
Case 3. If $b=0, a=1$, then $F \equiv G$ follows trivially. Therefore, consider $b=0$ and $a \neq 1$. By (20), we have

$$
\begin{equation*}
F=\frac{G+a-1}{a} . \tag{27}
\end{equation*}
$$

Similarly, as above we get contradiction.

5. Proof of Theorem 3

Let $f(z)$ and $g(z)$ be two transcendental entire functions. Since $f^{n}(z) P_{m}(f(q z+$ c) $) L(f)$ and $g^{n}(z) P_{m}(g(q z+c)) L(g)$ share 1 CM , we have

$$
\begin{equation*}
\frac{f^{n}(z) P_{m}(f(q z+c)) L(f)-1}{g^{n}(z) P_{m}(g(q z+c)) L(g)-1}=e^{l(z)} \tag{28}
\end{equation*}
$$

where $l(z)$ is an entire function, by $\rho(f)=0$ and $\rho(g)=0$, we have $e^{l(z)} \equiv \eta$ a constant. Rewriting (28),

$$
\begin{equation*}
\eta g^{n}(z) P_{m}(g(q z+c)) L(g)=f^{n}(z) P_{m}(f(q z+c)) L(f)+\eta-1 \tag{29}
\end{equation*}
$$

If $\eta \neq 1$, by the first main theorem, the second main theorem and Lemma 2, we have

$$
\begin{align*}
T\left(r, f^{n}(z) P_{m}\right. & (f(q z+c)) L(f)) \leq \bar{N}\left(r, f^{n}(z) P_{m}(f(q z+c)) L(f)\right) \tag{30}\\
& +\bar{N}\left(r, \frac{1}{\left.f^{n}(z) P_{m}(f(q z+c)) L(f)\right)}\right) \\
& +\bar{N}\left(r, \frac{1}{f^{n}(z) P_{m}(f(q z+c)) L(f)-1}\right)+S(r, F) \\
\leq & \bar{N}\left(r, \frac{1}{f^{n}(z)}\right)+\sum_{j=1}^{t_{m}} \bar{N}\left(r, \frac{1}{f(q z+c)-\gamma_{j}}\right) \\
& +\bar{N}\left(r, \frac{1}{L(f)}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \\
\leq & \left(n+t_{m}+k+1\right) T(r, f)+\left(n+t_{m}+k+1\right) T(r, g) \\
& +S(r, f)+S(r, g)
\end{align*}
$$

By Lemma 7 and (30), we have

$$
\begin{align*}
(n+m+k+1) T(r, f)= & T\left(r, f^{n}(z) P_{m}(f(q z+c)) L(f)\right) \\
\leq & \left(n+t_{m}+k+1\right) T(r, f) \\
& +\left(n+t_{m}+k+1\right) T(r, g)+S(r, f)+S(r, g) \\
31) \quad\left(m-t_{m}\right) T(r, f) \leq & \left(n+t_{m}+k+1\right) T(r, g)+S(r, f)+S(r, g) \tag{31}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left(m-t_{m}\right) T(r, g) \leq\left(n+t_{m}+k+1\right) T(r, f)+S(r, f)+S(r, g) \tag{32}
\end{equation*}
$$

Equations (31) and (32) imply that

$$
\begin{equation*}
\left(m-n-2 t_{m}-k-1\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g) \tag{33}
\end{equation*}
$$

which is impossible, since $m>n+2 t_{m}+k+1$.
Hence we have $\eta=1$. Rewriting (28),

$$
\begin{equation*}
f^{n}(z) P_{m}(f(q z+c)) L(f)=g^{n}(z) P_{m}(g(q z+c)) L(g) \tag{34}
\end{equation*}
$$

Set $h(z)=f(z) / g(z)$
Case 1. Suppose that $h(z)$ is a constant. Integrating (34), we get

$$
\begin{align*}
& f^{n+2}\left[\frac{a_{m} b_{0} f^{m}(q z+c)}{n+m+2}+\frac{a_{m-1} b_{0} f^{m-1}(q z+c)}{n+m+1}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \tag{35}\\
& +f^{n+1}\left[\frac{a_{m} b_{1} f^{m}(q z+c)}{n+m+1}+\frac{a_{m-1} b_{1} f^{m-1}(q z+c)}{n+m}+\ldots+\frac{a_{0} b_{1}}{n+1}\right] \\
& +\ldots+f^{n+k-1}\left[\frac{a_{m} b_{k} f^{m}(q z+c)(k-1)}{n+m+k-1}\right. \\
& \left.+\frac{a_{m-1} b_{k} f^{m-1}(q z+c)(k-1)}{n+m+k-2}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right] \\
& =g^{n+2}\left[\frac{a_{m} b_{0} g^{m}(q z+c)}{n+m+2}+\frac{a_{m-1} b_{0} g^{m-1}(q z+c)}{n+m+1}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \\
& +g^{n+1}\left[\frac{a_{m} b_{1} g^{m}(q z+c)}{n+m+1}+\frac{a_{m-1} b_{1} g^{m-1}(q z+c)}{n+m}+\ldots+\frac{a_{0} b_{1}}{n+1}\right] \\
& +\ldots+g^{n+k-1}\left[\frac{a_{m} b_{k} g^{m}(q z+c)(k-1)}{n+m+k-1}\right. \\
& \left.+\frac{a_{m-1} b_{k} g^{m-1}(q z+c)(k-1)}{n+m+k-2}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right]
\end{align*}
$$

By substituting $f=g h$ in (35), we obtain

$$
\begin{aligned}
g^{n+2} h^{n+2} & {\left[\frac{a_{m} b_{0} g^{m}(q z+c) h^{m}}{n+m+2}\right.} \\
& \left.+\frac{a_{m-1} b_{0} g^{m-1}(q z+c) h^{m-1}}{n+m+1}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \\
& +g^{n+1} h^{n+1}\left[\frac{a_{m} b_{1} g^{m}(q z+c) h^{m}}{n+m+1}\right. \\
& \left.+\frac{a_{m-1} b_{1} g^{m-1}(q z+c) h^{m-1}}{n+m}+\ldots+\frac{a_{0} b_{0}}{n+1}\right] \\
& +\ldots+g^{n+k-1} h^{n+k-1}\left[\frac{a_{m} b_{k} g^{m}(q z+c) h^{m}(k-1)}{n+m+k-1}\right. \\
& \left.+\frac{a_{m-1} b_{k} g^{m-1}(q z+c) h^{m-1}(k-1)}{n+m+k-2}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right] \\
= & g^{n+2}\left[\frac{a_{m} b_{0} g^{m}(q z+c)}{n+m+2}+\frac{a_{m-1} b_{0} g^{m-1}(q z+c)}{n+m+1}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \\
& +g^{n+1}\left[\frac{a_{m} b_{1} g^{m}(q z+c)}{n+m+1}+\frac{a_{m-1} b_{1} g^{m-1}(q z+c)}{n+m}+\ldots+\frac{a_{0} b_{1}}{n+1}\right] \\
& +\ldots+g^{n+k-1}\left[\frac{a_{m} b_{k} g^{m}(q z+c)(k-1)}{n+m+k-1}\right. \\
& \left.+\frac{a_{m-1} b_{k} g^{m-1}(q z+c)(k-1)}{n+m+k-2}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right]
\end{aligned}
$$

This implies

$$
\begin{align*}
g^{n+2} & {\left[\frac{a_{m} b_{0} g^{m}(q z+c)}{n+m+2}\left(h^{n+m+2}-1\right)\right.} \tag{36}\\
& +\frac{a_{m-1} b_{0} g^{m-1}(q z+c)}{n+m+1}\left(h^{n+m+1}-1\right) \\
& +\ldots+\frac{a_{0} b_{0}}{n+2}\left(h^{n+2}-1\right) \\
& +\frac{a_{m} b_{1} g^{m-1}(q z+c)}{n+m+1}\left(h^{n+m+1}-1\right) \\
& +\frac{a_{m-1} b_{1} g^{m-2}(q z+c)}{n+m}\left(h^{n+m}-1\right) \\
& +\ldots+\frac{a_{0} b_{1} g^{-1}(q z+c)}{n+1}\left(h^{n+1}-1\right) \\
& +\ldots+\frac{a_{m} b_{k} g^{m+k-3}(q z+c)}{n+m+k-1}\left(h^{n+m+k-1}-1\right)(k-1) \\
& +\frac{a_{m-1} b_{k}(k-1) g^{m+k-4}(q z+c)}{n+m+k-2}\left(h^{n+m+k-2}-1\right)
\end{align*}
$$

$$
\left.+\ldots+\frac{a_{0} b_{k}(k-1) g^{k-3}(q z+c)}{n+k-1}\left(h^{n+k-1}-1\right)\right] \equiv 0
$$

Since g is a transcendental entire function, we have $g^{n+2}(z) \neq 0$. Hence, we obtain

$$
\text { (37) } \begin{aligned}
& \frac{a_{m} b_{0} g^{m}(q z+c)}{n+m+2}\left(h^{m+n+2}-1\right)+\frac{a_{m-1} b_{0} g^{m-1}(q z+c)}{n+m+1}\left(h^{n+m+1}-1\right) \\
& +\ldots+\frac{a_{0} b_{0}}{n+2}\left(h^{n+2}-1\right)+\frac{a_{m} b_{1} g^{m-1}(q z+c)}{n+m+1}\left(h^{n+m+1}-1\right) \\
& +\frac{a_{m-1} b_{1} g^{m-2}(q z+c)}{n+m}\left(h^{n+m}-1\right)+\ldots+\frac{a_{0} b_{1} g^{-1}(q z+c)}{n+1}\left(h^{n+1}-1\right) \\
& +\ldots+\frac{a_{m} b_{k} g^{m+k-3}(q z+c)}{n+m+k-1}\left(h^{n+m+k-1}-1\right)(k-1) \\
& +\frac{a_{m-1} b_{k}(k-1) g^{m+k-4}(q z+c)}{n+m+k-2}\left(h^{n+m+k-2}-1\right) \\
& +\ldots+\frac{a_{0} b_{k}(k-1) g^{k-3}(q z+c)}{n+k-1}\left(h^{n+k-1}-1\right) \equiv 0
\end{aligned}
$$

Equation (37) implies that $h^{d}=1$, where

$$
\begin{aligned}
d= & G C D(\{n+m+2, n+m+1, \ldots, n+m+2-i, \ldots, n+2\}, \\
& \{n+m+1, \ldots, n+m, \ldots, n+m+1-i, \ldots, n+1\}, \ldots, \\
& \{n+m+k-1, n+m+k-2, \ldots, n+m+k-i, \ldots, n+k-1\}),
\end{aligned}
$$

$a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.
Thus $f=t g$ for a constant t, such that $t^{d}=1$, where

$$
\begin{aligned}
d= & G C D(\{n+m+2, n+m+1, \ldots, n+m+2-i, \ldots, n+2\}, \\
& \{n+m+1, \ldots, n+m, \ldots, n+m+1-i, \ldots, n+1\}, \ldots, \\
& \{n+m+k-1, n+m+k-2, \ldots, n+m+k-i, \ldots, n+k-1\}),
\end{aligned}
$$

$a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.
Case 2. Suppose that $h(z)$ is not a constant. Then by (37) $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n+2}\left[\frac{a_{m} b_{0} w_{1}^{m}}{n+m+2}+\ldots+\frac{a_{0} b_{0}}{n+2}\right] \\
& +w_{1}^{n+1}\left[\frac{a_{m} b_{1} w_{1}^{m}}{n+m+1}+\ldots+\frac{a_{0} b_{1}}{n+1}\right] \\
& +\ldots+w_{1}^{n+k-1}\left[\frac{a_{m} b_{k} w_{1}^{m}}{n+m+k-1}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\left\{w_{2}^{n+2}\left[\frac{a_{m} b_{0} w_{2}^{m}}{n+m+2}+\ldots+\frac{a_{0} b_{0}}{n+2}\right]+w_{2}^{n+1}\left[\frac{a_{m} b_{1} w_{2}^{m}}{n+m+1}+\ldots+\frac{a_{0} b_{1}}{n+1}\right]\right. \\
& \left.+\ldots+w_{2}^{n+k-1}\left[\frac{a_{m} b_{k} w_{2}^{m}}{n+m+k-1}+\ldots+\frac{a_{0} b_{k}(k-1)}{n+k-1}\right]\right\}
\end{aligned}
$$

6. Open question

Question. Whether the Theorem 3. hold for Meromorphic functions?

References

[1] Harina P. Waghamore; Sangeetha Anand, Uniqueness and value distribution for q-shift difference polynomials, International J. of Math. Sci. and Engg. Appls.(IJMSEA), 10(2016), 1-13.
[2] Liu, Kai; Liu, Xinling; Cao, TingBin, Value distributions and uniqueness of difference polynomials, Adv. Difference Equ. 2011, Art. ID 234215, 12 pp.
[3] Liu, Kai; Liu, Xinling; CaO, TingBin, Some results on zeros distributions and uniqueness of derivatives of difference, ..., (2011) http.//arxiv.org/abs/1107.0773vl.
[4] Liu, Yong; Cao, Yinhong; Qi, Xiaoguang; Yi, Hongxun, Value sharing results for q-shifts difference polynomials, Discrete Dyn. Nat. Soc. 2013, Art. ID $152069,6 \mathrm{pp}$.
[5] Xu, Junfeng; Yi, Hongxun, Uniqueness of entire functions and differential polynomials, Bull. Korean Math. Soc., 44(4)(2007), 623-629.
[6] Xu, Junfeng; Zhang, Xiaobin, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Difference Equ., 200(2012), 10 pp..
[7] Yang, Chung-Chun; Hua, Xinhou, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22(2)(1997), 395-406.
[8] Yang, Chung-Chun; Yi, Hong-Xun, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

> Harina P. Waghamore
> Department of Mathematics
> Jnanabharathi Campus
> Bangalore University
> Bengaluru-560056, India
> e-mail: harinapw@gmail.com
> Ramya Maligi
> Department of Mathematics
> Jnanabharathi Campus
> Bangalore University
> Bengaluru-560056, India
> e-mail: ramyamalgi@gmail.com

Received on 03.10.2019 and, in revised form, on 10.03.2020.

