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Abstract. This paper deals with some coupled fixed point theo-
rems for a mapping with mixed monotone property and satisfying
certain generalized rational contraction in a partially ordered met-
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a space. These results generalize and extend some existing results
in the literature.

Key words: partially ordered metric space, rational contractions,
coupled fixed point, mixed monotone property.

AMS Mathematics Subject Classification: 47H10, 55M20, 54H25,

26A42.

1. Introduction

In 1922, Banach has proved a fixed point theorem for a contraction map-
ping in a complete metric space. It plays an important role in analysis to
find a unique solution of many results. It is very popular tool in many
branches of mathematics for solving existing problems. Since then there are
numerous generalizations [1, 2, 3, 4, 5, 6, 7] of this result by weakening its
hypotheses while retaining the convergence property of successive iterates
for a unique fixed point of mappings. The concept of metric space has also
been generalized in different directions during past decades. Some impor-
tant generalization are on rectangular metric spaces, pseudo metric spaces,
fuzzy metric spaces, quasi metric spaces, quasi semi-metric spaces, proba-
bilistic metric spaces, D-metric spaces, G-metric spaces, F -metric spaces,
cone metric spaces, and so on.

The discussion on the extended Banach contraction principle over par-
tially ordered sets can be found from the papers of Wolk [8] and Monjardet
[9]. The existence of fixed points in partially ordered metric spaces with
some applications to matrix equations was studied by Ran and Reurings
[10]. Further the extended results of [10] over partially order sets and the
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applications of these results for a first order ordinary differential equations
with periodic boundary conditions were discussed by Nieto et. al.[11, 12, 13].
The results presented therein papers [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
will provide a vast information about the existence and uniqueness of fixed
points in cone metric spaces, partially ordered metric spaces and other spaces
too.

First the concept of coupled fixed points in ordered spaces was introduced
by Bhaskar and Lakshmikantham [24] and applied their results to boundary
value problems for the unique solution. Also, Lakshmikanthm and Cirić
[25] introduced the concept of coupled coincidence, common fixed points to
nonlinear contractions in ordered metric spaces. More results on coupled
coincidence, common fixed points in ordered metric spaces, one can see
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

The purpose of this paper is to prove some coupled fixed point results in
the frame work of a partially ordered metric space. These results generalize
a result of Singh and Chatterjee [5] in a partially ordered metric space with
mixed monotone property for the mapping.

2. Preliminaries

Definition 1. Let (X,≼) be a partially ordered set. A self-mapping
f : X → X is said to be strictly increasing if f(x) ≺ f(y), for all x, y ∈
Xwith x ≺ y and is also said to be strictly decreasing if f(x) ≻ f(y), for all
x, y ∈ Xwith x ≺ y.

Definition 2. Let (X,≼) be a partially ordered set and f is a self map-
ping defined over X is said to be strict mixed monotone property, if f(x, y)
is strictly increasing in x and strictly decreasing in y as well.

i.e., for any x1, x2 ∈ Xwith x1 ≺ x2 ⇒ f(x1, y) ≺ f(x2, y) and

for any y1, y2 ∈ X,with y1 ≺ y2 ⇒ f(x, y1) ≻ f(x, y2).

Definition 3. Let (X,≼) be a partially ordered set and f : X ×X → X
be a mapping. A point (x, y) ∈ X ×X is said to be a coupled fixed point to
f , if f(x, y) = x and f(y, x) = y.

Definition 4. The triple (X, d,≼) is called a partially ordered metric
space, if (X,≼) is a partially ordered set together with (X, d) is a metric
space.

Definition 5. If (X, d) is a complete metric space, then the triple (X, d,
≼) is called a partially ordered complete metric space.
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Definition 6. A partially ordered metric space (X, d,≼) is called an
ordered complete (OC), for any convergent sequence {xn}+∞

n=0 ⊂ X such that
one the following hold: either
• if {xn} is a non-decreasing sequence in X such that xn → x, then
xn ≼ x, for all n ∈ N that is, x = sup{xn} or
• if {xn} is a non-increasing sequence in X such that xn → x, then
x ≼ xn, for all n ∈ N that is, x = inf{xn}.

3. Main results

In this section, we prove some coupled fixed point theorems for a self
mapping in the context of ordered metric space.

Theorem 1. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition

d(f(x, y), f(µ, υ)) ≤ α
d(x, f(x, y)) [1 + d(µ, f(µ, υ))]

1 + d(x, µ)
(1)

+ β[d(x, f(µ, υ)) + d(µ, f(x, y))] + γd(x, µ),

for all x, y, µ, υ in X and α, β, γ ∈ [0, 1) with 0 ≤ α+2β+ γ < 1. Suppose
that either f is continuous or X has an ordered complete property (OC)
then f has a coupled fixed point (x, y) ∈ X × X, if there exists two points
x0, y0 ∈ X with x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0).

Proof. Suppose f is continuous and let x0, y0 ∈ X such that x0 ≺
f(x0, y0) and y0 ≻ f(y0, x0). Now define two sequences {xn}, {yn} in X as
follows

(2) xn+1 = f(xn, yn) and yn+1 = f(yn, xn), for all n ≥ 0.

Now, we have to show that for all n ≥ 0,

(3) xn ≺ xn+1

and

(4) yn ≻ yn+1,

for this, we use the method of mathematical induction. Suppose n = 0, since
x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0), and from (2), we have x0 ≺ f(x0, y0) = x1
and y0 ≻ f(y0, x0) = y1. Hence, the inequalities (3) and (4) hold for n = 0.
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Suppose that the inequalities (3) and (4) hold for all n > 0 and by use of
the strict mixed monotone property of f , we get

(5) xn+1 = f(xn, yn) ≺ f(xn+1, yn) ≺ f(xn+1, yn+1) = xn+2

and

(6) yn+1 = f(yn, xn) ≻ f(yn+1, xn) ≻ f(yn+1, xn+1) = yn+2.

Therefore, the inequalities (3) and (4) hold for all n ≥ 0 and finally we
obtain that

(7) x0 ≺ x1 ≺ x2 ≺ x3 ≺ ......... ≺ xn ≺ xn+1 ≺ ...........

and

(8) y0 ≻ y1 ≻ y2 ≻ y3 ≻ ........ ≻ yn ≻ yn+1 ≻ ...........

Since xn ≺ xn+1, yn ≻ yn+1 and from (2), we have

d(xn+1, xn) = d(f(xn, yn), f(xn−1, yn−1))

≤ α
d(xn, f(xn, yn)) [1 + d(xn−1, f(xn−1, yn−1))]

1 + d(xn, xn−1)

+ β[d(xn, f(xn−1, yn−1))

+ d(xn−1, f(xn, yn))] + γd(xn, xn−1),

which implies that

d(xn+1, xn) ≤ α
d(xn, xn+1) [1 + d(xn−1, xn)]

1 + d(xn, xn−1)
+ β[d(xn, xn)

+ d(xn−1, xn+1)] + γd(xn, xn−1).

Finally, we arrive at

(9) d(xn+1, xn) ≤
(

β + γ

1− α− β

)
d(xn, xn−1).

Similarly by following above procedure, we get

(10) d(yn+1, yn) ≤
(

β + γ

1− α− β

)
d(yn, yn−1).

Therefore, from (9) and(10), we get

d(xn+1, xn) + d(yn+1, yn) ≤
(

β + γ

1− α− β

)
[d(xn, xn−1) + d(yn, yn−1)] .
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Now, let us define a sequence {Sn} by {Sn} = {d(xn+1, xn) + d(yn+1, yn)}.
Then by induction we get

0 ≤ Sn ≤ kSn−1 ≤ k2Sn−2 ≤ k3Sn−3 ≤ ....... ≤ knS0 ,

where k = β+γ
1−α−β < 1 and hence,

lim
n→+∞

Sn = lim
n→+∞

[d(xn, xn+1) + d(yn, yn+1)] = 0.

Consequently, we obtain that lim
n→+∞

d(xn, xn+1) = 0 and lim
n→+∞

d(yn, yn+1)

= 0. Using triangular inequality for m ≥ n, we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + ........+ d(xn+1, xn)

and

d(ym, yn) ≤ d(ym, ym−1) + d(ym−1, ym−2) + ........+ d(yn+1, yn).

Therefore

d(xm, xn) + d(ym, yn) ≤ Sm−1 + Sm−2 + .........+ Sn

≤
(
km−1 + km−2 + ..........+ kn

)
S0

≤ kn

1− k
S0 ,

as m,n → ∞, d(xm, xn) + d(ym, yn) → 0, which shows that both the se-
quences {xn} and {yn} are Cauchy sequences in X. So, by the completeness
of X, there exists a point (x, y) ∈ X × X such that xn → x and yn → y.
Further by the continuity of f , we have

x = lim
n→+∞

xn+1 = lim
n→+∞

f(xn, yn) = f( lim
n→+∞

xn, lim
n→+∞

yn) = f(x, y)

and

y = lim
n→+∞

yn+1 = lim
n→+∞

f(yn, xn) = f( lim
n→+∞

yn, lim
n→+∞

xn) = f(y, x).

Therefore, f has has a coupled fixed point in X.
Another way suppose that X has an ordered complete (OC) property.

From above argument there is an increasing Cauchy sequence {xn} ⊂ X
such that xn → x ∈ X. Hence, x = sup{xn}, i.e., xn ≼ x, for all n ∈ N. We
can also prove that xn ≺ x, for all n otherwise there is some n0 ∈ N with
xn0 = x, and thence x ≺ xn0 ≼ xn0+1 = x which is wrong. So, by the strict
monotone increasing nature of f over the first variable, we get

(11) f(xn, yn) ≺ f(x, yn).
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Similarly, there is another decreasing Cauchy sequence {yn} in X such that
yn → y ∈ X. So, by similar argument above we have yn ≽ y for all n ∈ N.
Also, the strict monotone decreasing nature of f over the second variable,
we get

(12) f(x, yn) ≺ f(x, y).

Hence, from equations (11) and (12), we get

(13) f(xn, yn) ≺ f(x, y) ⇒ xn+1 ≺ f(x, y), for all n ∈ N.

But xn ≺ xn+1 ≺ f(x, y), for all n ∈ N and x = sup{xn} then we get
x ≼ f(x, y). Now let z0 = x and zn+1 = f(zn, yn). Then from similar
argument above, the sequence {zn} is a nondecreasing Cauchy sequence in
X and converges to a point say z in X. Hence, we have z = sup{zn}.

But for all n ∈ N, xn ≼ x = z0 ≼ f(z0, y0) ≼ zn ≼ z then from (1), we
have

d(xn+1, zn+1) = d(f(xn, yn), f(zn, yn))

≤ α
d(xn, f(xn, yn)) [1 + d(zn, f(zn, yn))]

1 + d(xn, zn)

+ β[d(xn, f(zn, yn)) + d(zn, f(xn, yn))] + γd(xn, zn).

Taking limit as n→ ∞ on both sides of the above equation, we get

d(x, z) ≤ (2β + γ)d(x, z).

As 2β + γ < 1 then we get d(x, z) = 0. Hence, x = z = sup{xn} which
implies that x ≼ f(x, y) ≼ x. Thus, x = f(x, y). Again by following the
similar argument above, we can obtain y = f(y, x). Therefore, f has a
coupled fixed point in X ×X. �

For the existence and uniqueness of a coupled fixed point of f over a
complete partial ordered metric space X, we furnish the following partial
order relation.

(µ, υ) ≼ (x, y) ⇔ x ≽ µ, y ≼ υ, for any (x, y), (µ, υ) ∈ X ×X.

Theorem 2. Along the hypotheses stated in Theorem 1 and suppose
that for every (x, y), (r, s) ∈ X ×X, there exists (u, v) ∈ X ×X such that
(f(u, v), f(v, u)) is comparable to (f(x, y), f(y, x)) and (f(r, s), f(s, r)) then
f has a unique coupled fixed point in X ×X.

Proof. As we know from Theorem 1, the set of coupled fixed points of
f is non empty. Suppose that (x, y) and (r, s) are two coupled fixed points
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of the mapping f , then x = f(x, y), y = f(y, x) and r = f(r, s), s = f(s, r).
Now, we have to show that x = r, y = s for the uniqueness of a coupled
fixed point to f .

From hypotheses, there exists (u, v) ∈ X ×X such that (f(u, v), f(v, u))
is comparable to (f(x, y), f(y, x)) and (f(r, s), f(s, r)). Put u = u0 and
v = v0 and let u1, v1 ∈ X, then u1 = f(u0, v0) and v1 = f(v0, u0). Similarly
by induction from Theorem 1, we can define two sequences {un} and {vn}
from un+1 = f(un, vn) and vn+1 = f(vn, un) for all n ∈ N. Also, define
the sequences {xn}, {yn} and {rn}, {sn} by setting x = x0, y = y0, r =
r0 and s = s0. Then from the proof of Theorem 1, we have xn → x =
f(x, y), yn → y = f(y, x), rn → r = f(r, s) and sn → s = f(s, r) for all
n ≥ 1. But (f(x, y), f(y, x)) = (x, y) and (f(u0, v0), f(v0, u0)) = (u1, v1)
are comparable then we have x ≽ u1 and y ≼ v1. Next to show that (x, y)
and (un, vn) are comparable, i.e., to show that x ≽ un and y ≼ vn for all
n ∈ N. Suppose the inequalities hold for some n ≥ 0, then from the strict
mixed monotone property of f , we have un+1 = f(un, vn) ≼ f(x, y) = x and
vn+1 = f(vn, un) ≽ f(y, x) = y and hence x ≽ un and y ≼ vn for all n ∈ N.

Now, from contraction condition (1), we have

d(x, un+1) = d(f(x, y), f(un, vn))

≤ α
d(x, f(x, y)) [1 + d(un, f(un, vn))]

1 + d(x, un)

+ β[d(x, f(un, vn)) + d(un, f(x, y))] + γd(x, un),

which implies that

d(x, un+1) ≤
(
β + γ

1− β

)
d(x, un).

Similarly, we can get

d(y, vn+1) ≤
(
β + γ

1− β

)
d(y, vn).

Suppose D = β+γ
1−β < 1, then by adding above two equations, we get

d(x, un+1) + d(y, vn+1) ≤ D [d(x, un) + d(y, vn)]

≤ D2 [d(x, un−1) + d(y, vn−1)]

........................

≤ Dn [d(x, u0) + d(y, v0)] .

On taking limit as n→ ∞ to the above inequality, we get lim
n→+∞

d(x, un+1)+

d(y, vn+1) = 0. Thus, we have lim
n→+∞

d(x, un+1) = 0 and lim
n→+∞

d(y, vn+1) = 0.
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Similarly, we can also prove that lim
n→+∞

d(r, un) = 0 and lim
n→+∞

d(s, vn) = 0.

Further from triangular inequality, we have

d(x, r) ≤ d(x, un) + d(un, r) and d(y, s) ≤ d(y, vn) + d(vn, s).

Letting n → ∞ to the above inequalities, we obtain d(x, r) = 0 = d(y, s).
Hence x = r and y = s, this shows the uniqueness of f .

This completes the proof. �

Theorem 3. Along the hypotheses stated in Theorem 1 and if x0, y0 are
comparable then f has a coupled fixed point in X ×X.

Proof. Suppose (x, y) is a coupled fixed point of f , then from the proof
of Theorem 1, we have two sequences {xn} and {yn} in X such that xn → x
and yn → y.

Suppose that x0 ≼ y0, we have to show that xn ≼ yn, for all n ≥ 0. Sup-
pose it holds for some n ≥ 0 and from the strict mixed monotone property
of f , we obtained that xn+1 = f(xn, yn) ≼ f(yn, xn) = yn+1. Therefore,
from the contraction condition (1), we have

d(xn+1, yn+1) = d(f(xn, yn), f(yn, xn))

≤ α
d(xn, f(xn, yn)) [1 + d(yn, f(yn, xn))]

1 + d(xn, yn)

+ β[d(xn, f(yn, xn)) + d(yn, f(xn, yn))] + γd(xn, yn).

On taking limit as n→ ∞, we get

d(x, y) ≤ (2β + γ)d(x, y).

Thus, we have d(x, y) = 0, since 2β + γ < 1. Therefore, f(x, y) = x = y =
f(y, x).

Similarly, we can also show that f(x, y) = x = y = f(y, x) by considering
y0 ≤ x0. Hence, (x, y) is a coupled fixed point of f in X ×X. �

4. Applications

In this section, we state some applications to the main result of a self
mapping which is involved in an integral type contraction.

Let us denote a set τ of all functions χ defined on [0,+∞) satisfying the
following properties:
(i). Each χ is Lebesgue integrable mapping on every compact subset of

[0,+∞),
(ii). For any ϵ > 0, we have

∫ ϵ
0 χ(t)dt > 0.
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Theorem 4. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition∫ d(f(x,y),f(µ,υ))

0
φ(t)dt ≤ α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0
φ(t)dt(14)

+ β

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0
φ(t)dt

+ γ

∫ d(x,µ)

0
φ(t)dt ,

for all x, y, µ, υ ∈ X with x ≽ µ and y ≼ υ, φ(t) ∈ τ and where α, β, γ ∈
[0, 1) such that 0 ≤ α+ 2β + γ < 1. Suppose that either f is continuous or
X has an ordered complete (OC) property then f has a coupled fixed point
(x, y) ∈ X×X, if there exists two points x0, y0 ∈ X with x0 ≺ f(x0, y0) and
y0 ≻ f(y0, x0).

Similarly, we can obtain the following coupled fixed point results in par-
tially ordered metric space by taking β = 0; γ = 0; α = 0 and α = β = 0 in
Theorem 4.

Theorem 5. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition∫ d(f(x,y),f(µ,υ))

0
φ(t)dt ≤ α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0
φ(t)dt(15)

+ γ

∫ d(x,µ)

0
φ(t)dt ,

for all x, y, µ, υ ∈ X with x ≽ µ and y ≼ υ, φ(t) ∈ τ and α, γ ∈ [0, 1) with
0 ≤ α+ γ < 1. Suppose that either f is continuous or X has (OC) property
then f has a coupled fixed point (x, y) ∈ X × X, if there exists two points
x0, y0 ∈ X with x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0).

Theorem 6. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition∫ d(f(x,y),f(µ,υ))

0
φ(t)dt ≤ α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0
φ(t)dt(16)

+ β

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0
φ(t)dt ,
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for all x, y, µ, υ ∈ X with x ≽ µ and y ≼ υ, φ(t) ∈ τ and α, β ∈ [0, 1) with
0 ≤ α+2β < 1. Suppose that either f is continuous or X has (OC) property
then f has a coupled fixed point (x, y) ∈ X × X, if there exists two points
x0, y0 ∈ X with x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0).

Theorem 7. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition∫ d(f(x,y),f(µ,υ))

0
φ(t)dt ≤ β

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0
φ(t)dt(17)

+ γ

∫ d(x,µ)

0
φ(t)dt ,

for all x, y, µ, υ ∈ X with x ≽ µ and y ≼ υ, φ(t) ∈ τ and β, γ ∈ [0, 1) with
0 ≤ 2β+γ < 1. Suppose that either f is continuous or X has (OC) property
then f has a coupled fixed point (x, y) ∈ X × X, if there exists two points
x0, y0 ∈ X with x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0).

Theorem 8. Let (X, d,≼) be a complete partially ordered metric space.
Suppose that a self mapping f : X ×X → X has a strict mixed monotone
property on X satisfying the following condition

(18)

∫ d(f(x,y),f(µ,υ))

0
φ(t)dt ≤ γ

∫ d(x,µ)

0
φ(t)dt ,

for all x, y, µ, υ ∈ X with x ≽ µ and y ≼ υ, φ(t) ∈ τ and γ ∈ [0, 1) with
0 ≤ γ < 1. Suppose that either f is continuous or X has (OC) property
then f has a coupled fixed point (x, y) ∈ X × X, if there exists two points
x0, y0 ∈ X with x0 ≺ f(x0, y0) and y0 ≻ f(y0, x0).
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[25] Lakshmikantham V., Cirić L.B., Couple fixed point theorems for nonlin-



88 N. Seshagiri Rao and K. Kalyani

ear contractions in partially ordered metric spaces, Nonlinear Anal., Theory
Methods Appl., 70 (2009), 4341-4349.
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