F A S C I C U L I M A T H E M A T I C I

Yahya Talebi and Atefeh Darzi

SOME RESULTS ON GRAPH ASSOCIATED TO CO-IDEALS OF COMMUTATIVE SEMIRINGS

Abstract

For a commutative semiring R with non-zero identity, the graph $\Omega(R)$ of R, is the graph whose vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R. In this paper, we study some properties of this graph such as planarity, domination number and connectivity.

KEY WORDS: semiring, graph, maximal co-ideal.
AMS Mathematics Subject Classification: 16Y60, 05C75.

1. Introduction

Throughout this paper, every semiring R is assumed to be commutative with non-zero identity. For a semiring R, we denote by $\operatorname{Co}-\operatorname{Max}(R)$, $U M(R)$ and $I M(R)$, the set of maximal co-ideals, the union of all the maximal co-ideals and the intersection of all the maximal co-ideals of R, respectively. Also, if R is a ring, then R has no proper co-ideals, thus in this paper we consider the semiring which is not a ring.

The study of algebraic structures using the properties of graphs is a research topic in the recent years. There are many papers on assigning a graph to a ring and semiring, for instance see $[1,4,8,9]$. In [10], for a semiring R, the authors defined a graph on $R, \Omega(R)$, with vertices as elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R (i.e. $F(x) F(y)=R$). Moreover, we considered the subgraphs $\Omega_{1}(R)$ and $\Omega_{2}(R)$ of $\Omega(R)$ with vertex-set $r(Z S(R))$ (radical of $Z S(R)$) and $U M(R)$, respectively. We showed that $\Omega_{1}(R)$ is a complete graph and since for each $x \in I M(R), \operatorname{deg}_{\Omega_{2}(R)}(x)=0$ so we study the properties of the graph $\Omega_{2}(R) \backslash I M(R)$ with vertex-set $U M(R) \backslash I M(R)$. Also, we investigated some properties of these graphs such as diameter, radius, girth, clique number and chromatic number. In this paper, we continue our study over these graphs and investigate some graph-theoretic properties such as planarity, domination number and connectivity.

It is useful to recall the following definitions and notations of the graphs. Let G be an undirected graph with the vertex-set $V(G)$ and the edge-set $E(G)$. A graph G is connected if there exists a path between every two distinct vertices and we say that G is totally disconnected if no two vertices of G are adjacent. The components of a graph G are its maximal connected subgraphs. For a given vertex x, the number of all vertices which is adjacent to it, is called degree of the vertex x, denoted by $\operatorname{deg}(x)$. An isolated vertex is a vertex of degree 0 . A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A graph G is said to be bipartite if $V(G)$ can be partitioned into two disjoint sets V_{1} and V_{2} such that no two vertices within any V_{1} or V_{2} are adjacent. If for every $x \in V_{1}$ and $y \in V_{2}, x$ and y are adjacent, then we call G is complete bipartite graph. We denote the complete graph on n vertices by K_{n} and the complete bipartite graph on m and n vertices by $K_{m, n}$ (we allow m and n to be infinite cardinals). We will sometimes call a $K_{1, n}$ a star graph. A clique in a graph G is a set of pairwise adjacent vertices. In other word, a clique is a complete subgraph of G.

A semiring R is an algebraic system $(R,+, \cdot)$ such that $(R,+)$ is a commutative monoid with identity element 0 and (R, \cdot) is a semigroup. In addition, operations + and \cdot are connected by distributivity and 0 annihilates R. A semiring R is said to be commutative if (R, \cdot) is a commutative semigroup and R is said to have an identity if there exists $1 \in R$ such that $1 x=x 1=x$. If I is an ideal of R, the radical of I is $r(I)=\left\{x \in R: x^{n} \in I\right.$ for some $n>$ $0\}$.

A non-empty subset I of R is called a co-ideal of R and denoted by $I \unlhd^{c} R$ if and only if it is closed under multiplication and satisfies the condition that $a+r \in I$ for all $a \in I$ and $r \in R$. According to this definition, $0 \in I$ if and only if $I=R$. Also, it is obvious that if R is a ring, then R has no proper co-ideal. A co-ideal I of a semiring R is called subtractive if $x \in I$ and $x y \in I$, then $y \in I$ for $x, y \in R$. A proper co-ideal P of R is called prime if $a+b \in P$, then $a \in P$ or $b \in P$ for $a, b \in R$. A co-ideal I of R is maximal if $I \neq R$ and there exists no co-ideal J such that $I \subset J \subset R$. If the semiring R has exactly one maximal co-ideal, then we say that the semiring R is c-local and R is said to be a c-semilocal semiring if R has only a finite number of maximal co-ideals. If A is a non-empty subset of a semiring R, then the set $F(A)$ of all elements of R of the form $a_{1} a_{2} \ldots a_{n}+r$, where $a_{i} \in A$ for all $1 \leq i \leq n$ and $r \in R$, is a co-ideal of R containing A. In fact, $F(A)$ is the unique smallest co-ideal of R containing A. If $a \in R$, then $F(\{a\})=F(a)=\left\{a^{n}+r: r \in R\right.$ and $\left.n \in \mathbf{N}\right\}$. It is obvious, if $a \in I$, then $F(a) \subseteq I$. An element x of a semiring R is called a zero-sum of R if there exists an element $y \in R$ such that $x+y=0[7]$. We will denote the set of all zero-sums of R by $Z S(R)$. Indeed, $Z S(R)=\{x \in R: x+y=$

0 , for some $y \in R\}$. Note that $Z S(R) \neq \emptyset$, since $0 \in Z S(R)$. Let I and J be two co-ideals of a semiring R. In [10], we defined the product of I and J as follows:

$$
I J=\{x y+r: x \in I, y \in J \text { and } r \in R\}
$$

Similarly, for any co-ideal I, we have $I^{n}=\left\{a_{1} \ldots a_{n}+r: a_{i} \in I\right.$ and $r \in$ $R\}$.

In the following we give a proposition that is used to prove the next theorems.

Proposition 1. Let R be a commutative semiring with non-zero identity.
1). If R is not a ring, then it must have a maximal co-ideal. Moreover, every maximal co-ideal contains 1 [11].
2). If I is a proper co-ideal of R, then I is contained in a maximal co-ideal of R. In particular, Co $-\operatorname{Max}(R) \neq \emptyset$ [5].
3). (Prime Avoidance Theorem) Let I_{1}, \ldots, I_{n} be subtractive co-ideals of R such that at most two of the I_{i} are not prime. If I is a co-ideal of R such that $I \subseteq \cup_{i=1}^{n} I_{i}$, then $I \subseteq I_{i}$ for some i [3].
4). Let I_{1}, \ldots, I_{n} be co-ideals of a semiring R and P be a prime co-ideal containing $\bigcap_{i=1}^{n} I_{i}$. Then $I_{i} \subseteq P$ for some $i=1, \ldots, n$. Moreover, if $P=$ $\bigcap_{i=1}^{n} I_{i}$, then $P=I_{i}$ for some i [5].
5). If m is a maximal co-ideal of a semiring R, then m is subtractive [6].
6). If m is a maximal co-ideal of a semiring R, then m is a prime co-ideal [5].

Remark 1. By Proposition 1, if m is a maximal co-ideal of a semiring R, then m is a subtractive and prime co-ideal. So we can conclude, Prime Avoidance Theorem also holds for the case where co-ideals are maximal.

2. Planarity and domination number

In this section, first, we are going to find a necessary condition for the planarity of $\Omega_{2}(R) \backslash I M(R)$ when R is a c-semilocal semiring. Next, we investigate the domination number of this graph.

A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A planar graph is a graph that can be drawn in the plane without crossings of the edges. We need the following lemma which is proved in [12, p.246].

Lemma 1. A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Theorem 1. Let R be a c-semilocal semiring with $|\operatorname{Co-Max}(R)| \geq 2$. If $\Omega_{2}(R) \backslash I M(R)$ is planar, then $|C o-M a x(R)|=2$ such that $\left|m_{i} \backslash I M(R)\right| \leq 2$ for some $m_{i} \in \operatorname{Co}-\operatorname{Max}(R)$, or $|C o-\operatorname{Max}(R)|=3$ or 4 .

Proof. Suppose that $\Omega_{2}(R) \backslash I M(R)$ is planar. If $|C o-\operatorname{Max}(R)| \geq 5$, then by [10, Theorem 3.6], $\Omega_{2}(R) \backslash I M(R)$ contains K_{5} as a subgraph and so $\Omega_{2}(R) \backslash I M(R)$ can not be a planar by Lemma 1. Hence we must have $|C o-\operatorname{Max}(R)| \leq 4$. Now, if $|\operatorname{Co}-\operatorname{Max}(R)|=2$, then we must have $\left|m_{i} \backslash I M(R)\right| \leq 2$ for some i, in order that $\Omega_{2}(R) \backslash I M(R)$ does not contain $K_{3,3}$ as a subgraph because $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph by [10, Theorem 3.4].

In a graph G, a set $S \subseteq V(G)$ is a dominating set if every vertex in $V(G)$, is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of a graph G is the minimum size of a dominating set in G. A dominating set S is said to be a total dominating set if every vertex in $V(G)$ is adjacent to a vertex in S. The minimum cardinality among the total dominating sets of G is called total domination number and denoted by $\gamma_{t}(G)$. Also, a dominating set S is called an independent dominating set if no two vertices of S are adjacent. The minimum cardinality of an independent dominating set of G is the independent domination number $\gamma_{i}(G)$.

In the following results, we characterize domination number for the graph $\Omega_{2}(R) \backslash I M(R)$ for the case $|C o-\operatorname{Max}(R)|=2$ and we give a general result about domination number of $\Omega_{2}(R) \backslash I M(R)$ when R is a c-semilocal.

Remark 2. By definition of the domination number, it is clear that if $\Omega_{2}(R) \backslash I M(R)$ is a star graph, then $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=1$. Also, $\gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ and $\gamma_{i}\left(\Omega_{2}(R) \backslash I M(R)\right)=n$.

Theorem 2. Let R be a semiring with $C o-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$ such that $\left|m_{1} \backslash I M(R)\right| \geq\left|m_{2} \backslash I M(R)\right|$. If $\Omega_{2}(R) \backslash I M(R)$ is not a star graph, then $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=\gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ and $\gamma_{i}\left(\Omega_{2}(R) \backslash I M(R)\right)=$ $\left|m_{2} \backslash I M(R)\right|$.

Proof. Let $C o-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$. By [10, Theorem 3.4], $\Omega_{2}(R) \backslash$ $I M(R))$ is complete bipartite graph with two vertex-set $V_{1}=m_{1} \backslash I M(R)$ and $V_{2}=m_{2} \backslash I M(R)$. Let $x \in V_{1}$ and $y \in V_{2}$. Clearly that $S=\{x, y\}$ dominates all the vertices of $\Omega_{2}(R) \backslash I M(R)$. Also, $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \neq 1$ because $\Omega_{2}(R) \backslash I M(R)$ can not be a star graph by assumption. Hence $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=2$. Since x and y are adjacent, so S is a total dominating set and therefore $\gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$. Now, we will compute the independent domination number. Let S be an independent dominating set for the graph $\Omega_{2}(R) \backslash I M(R)$. Thus $S \subseteq V_{i}$ for some i, because the elements of S are not adjacent. Also, as V_{i} is an independent set, so $S=V_{i}$ for some i. By our assumption $V_{2}=m_{2} \backslash I M(R)$ has minimum cardinality, hence $\gamma_{i}\left(\Omega_{2}(R) \backslash I M(R)\right)=\left|m_{2} \backslash I M(R)\right|$.

Theorem 3. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)|=n$. If $n \geq 3$, then $2 \leq \gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \leq n$. In particular, $2 \leq \gamma_{t}\left(\Omega_{2}(R) \backslash\right.$ $I M(R)) \leq n$.

Proof. Let $\operatorname{Co}-\operatorname{Max}(R)=\left\{m_{1}, \ldots, m_{n}\right\}$. By [10, Theorem 3.6], there is a clique $S=\left\{x_{1}, \ldots, x_{n}\right\}$ in $\Omega_{2}(R) \backslash I M(R)$ where $x_{i} \in m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j}$ for each i. We show that S is a dominating set of $\Omega_{2}(R) \backslash I M(R)$. Clearly that S dominates all the elements of $\bigcup_{i=1}^{n}\left(m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j}\right)$. For each other vertex x of $\Omega_{2}(R) \backslash I M(R)$, if no vertex of S dominates x, then $F(x) F\left(x_{k}\right) \neq R$ for each $x_{k} \in S$ and so we have $F(x) F\left(x_{k}\right) \subseteq m_{i}$ for some $1 \leq i \leq n$. Hence x and x_{k} belong to m_{i} and since $x_{k} \in m_{k} \backslash \bigcup_{\substack{j=1 \\ j \neq k}}^{n} m_{j}$, we have $x \in m_{k}$ for each k. This implies $x \in I M(R)$, that is impossible. Thus S is a dominating set for $\Omega_{2}(R) \backslash I M(R)$. On the other hand, $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \neq 1$ because $\Omega_{2}(R) \backslash I M(R)$ can not be a star graph since $n \geq 3$ by [10, Theorem 3.10]. Therefore $2 \leq \gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \leq n$. Now, since the dominating set S is a total, thus we can conclude that $2 \leq \gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right) \leq n$.

Corollary 1. Let $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ be the product of c-local semirings with unique maximal co-ideals m_{i} for each $1 \leq i \leq n(n \geq 3)$. Then $2 \leq \gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \leq n$.

Proof. Clearly that $m_{i}=R_{1} \times \ldots \times R_{i-1} \times m_{i} \times R_{i+1} \ldots \times R_{n}$ is only maximal co-ideal of R for each $1 \leq i \leq n$. Since $n \geq 3$, by Theorem 3 we have $2 \leq \gamma\left(\Omega_{2}(R) \backslash I M(R)\right) \leq n$.

Theorem 4. Let R be a semiring with $|C o-\operatorname{Max}(R)|=3$. Then $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=\gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.

Proof. Suppose that $|C o-\operatorname{Max}(R)|=3$. By Theorem 3, we have $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ or 3 . We show that $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ can not be true. Assume that $T=\{x, y\}$ be a dominating set of $\Omega_{2}(R) \backslash I M(R)$. Let $x \in m$ and $y \in m^{\prime}$ for some $m, m^{\prime} \in C o-\operatorname{Max}(R)$. Also, $|m \backslash I M(R)| \geq 3$ for each $m \in C o-\operatorname{Max}(R)$, since $|C o-\operatorname{Max}(R)|=3$. If $m=m^{\prime}$, then x and y are not adjacent to $z \in m \backslash I M(R)$ where $z \neq x, y$. Now, if $m \neq m^{\prime}$, then x and y are not adjacent to none of elements of $m \cap m^{\prime} \backslash I M(R)$, so we see that T can not be dominate the vertex-set of $\Omega_{2}(R) \backslash I M(R)$. Hence $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=3$ and by Theorem $3, \gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.

Example 1. A semiring S is said to be idempotent if it is both additively and multiplicatively idempotent. Consider the idempotent semiring $S=$ $\{0,1, a\}$ in which $a+1=1+a=a$. It is clearly that S is a c-local semiring with maximal co-ideal $m=\{1, a\}$. Let $R=S \times S \times S$ be the direct product
of the semiring S. The maximal co-ideals of the semiring $R=(S \times S \times S,+, \cdot)$ are as follows:

$$
\begin{aligned}
& m_{1}=m \times S \times S \\
& m_{2}=S \times m \times S \\
& m_{3}=S \times S \times m
\end{aligned}
$$

It can be shown that $T=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a dominating set for $\Omega_{2}(R) \backslash I M(R)$. Also, T is a total dominating set and so $\gamma\left(\Omega_{2}(R) \backslash I M(R)\right)=$ $\gamma_{t}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.

3. Connectivity

A cut-vertex of a graph G is a vertex whose deletion increases the number of components. Thus for a connected graph G, x is a cut-vertex of G if $G \backslash\{x\}$ is not connected. Equivalently, a vertex x of a connected graph G is a cut-vertex of G, if there exist vertices $y, z \in G$, such that $x \neq y, x \neq z$ and x lies on every path from y to z.

A separating set of a graph G is a set $S \subseteq V(G)$ such that $G \backslash S$ has more than one component. The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a vertex-set S such that $G \backslash S$ is disconnected or has only one vertex. Thus if x is a cut-vertex of G, then $\kappa(G)=1$. A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block.

In this section, we characterize commutative semiring whose $\Omega_{2}(R) \backslash$ $I M(R)$ has a cut-vertex or its graph is a block. Also we determine the connectivity of $\Omega_{2}(R) \backslash I M(R)$ for different cases.

Theorem 5. Let R be a semiring with $\operatorname{Co}-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$. Then
(i) $\Omega_{2}(R) \backslash I M(R)$ has a cut-vertex if and only if $\Omega_{2}(R) \backslash I M(R)$ is a star graph.
(ii) If $\left|m_{i} \backslash I M(R)\right| \geq 2$ for each i, then $\Omega_{2}(R) \backslash I M(R)$ is a block.

Proof. (i) The sufficiency is obvious, so we need to prove the necessity. Suppose that $C o-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$ and $\Omega_{2}(R) \backslash I M(R)$ has a cut-vertex. By [10, Theorem 3.4] $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph with vertex set $m_{1} \backslash m_{2}$ and $m_{2} \backslash m_{1}$. Now, let $\left|m_{1} \backslash m_{2}\right|=\alpha$ and $\left|m_{2} \backslash m_{1}\right|=\beta$, hence $\Omega_{2}(R) \backslash I M(R)$ is a graph of the form $K_{\alpha, \beta}$. By [2, p. 50], we have $\kappa\left(K_{l, k}\right)=l$ when $l \leq k$. So if $\alpha \geq 2$ and $\beta \geq 2$, then $\kappa\left(\Omega_{2}(R) \backslash I M(R)\right) \geq 2$, this means that $\Omega_{2}(R) \backslash I M(R)$ has no cut-vertex, a contradiction. Hence $\Omega_{2}(R) \backslash I M(R)$ is a star graph.
(ii) Let $\left|m_{i} \backslash I M(R)\right| \geq 2$ for each $i=1,2$. Thus by part (i), $\Omega_{2}(R) \backslash$ $I M(R)$ has no cut-vertex. On the other hand, by [10, Theorem 4.1], $\Omega_{2}(R) \backslash$
$I M(R)$ is a connected graph. Hence we can conclude that $\Omega_{2}(R) \backslash I M(R)$ is a block.

Theorem 6. Let R be a c-semilocal semiring with maximal co-ideal m_{1}, \ldots, m_{n}. If $\left|m_{1} \backslash \bigcup_{\substack{j=1 \\ j \neq 1}}^{n} m_{j}\right| \geq\left|m_{2} \backslash \bigcup_{\substack{j=1 \\ j \neq 2}}^{n} m_{j}\right| \geq \ldots \geq\left|m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}\right|$, then $\kappa\left(\Omega_{2}(R) \backslash I M(R)\right)=\left|m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}\right|$.

Proof. Let $x \in \bigcap_{j=1}^{n-1} m_{j} \backslash m_{n}$. By [10, Lemma 3.1], $F(x) F(y)=R$ for some $y \in m_{n}$. It is obvious that $y \in m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}$. This means that x is not adjacent to none of elements of m_{j} for $1 \leq j \leq n-1$ and it is adjacent to all elements of $m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}$. Indeed, if we delete the elements of $m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}$ whose adjacent to x, then x becomes an isolated vertex and $\Omega_{2}(R) \backslash I M(R)$ is a disconnected graph. On the other hand, x is a vertex with minimum degree for $\Omega_{2}(R) \backslash I M(R)$ and thus by definition of connectivity for a graph, we have $\kappa\left(\Omega_{2}(R) \backslash I M(R)\right)=\left|m_{n} \backslash \bigcup_{\substack{j=1 \\ j \neq n}}^{n} m_{j}\right|$.

Corollary 2. Let R be a c-semilocal semiring with $\operatorname{Co}-\operatorname{Max}(R)=$ $\left\{m_{1}, \ldots, m_{n}\right\}$. If $\left|m_{i} \backslash \underset{\substack{j=1 \\ j \neq i}}{n} m_{j}\right|=1$ for some $m_{i} \in \operatorname{Co}-\operatorname{Max}(R)$, then $\Omega_{2}(R) \backslash I M(R)$ has a cut-vertex.

Proof. By Theorem 6, we have $\kappa\left(\Omega_{2}(R) \backslash I M(R)\right)=1$. Thus $\Omega_{2}(R) \backslash$ $I M(R)$ has a cut-vertex.

A cut-edge of a graph G is an edge whose deletion increases the number of components. This implies an edge of a connected graph G is a cut-edge if its deletion disconnects the graph. It has been proven that an edge is a cut-edge if and only if it belongs to no cycle. A disconnecting set of edges is a set $F \subseteq E(G)$ such that $G \backslash F$ has more than one component. The edge-connectivity of G, written $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set.

In the following we obtain a necessary and sufficient condition for the semiring R that $\Omega_{2}(R) \backslash I M(R)$ includes a cut-edge. Next, we determine edge-connectivity for c-semilocal semirings. We need the following lemma which is proved in [12, p.23]

Lemma 2. An edge is a cut-edge if and only if it belongs to no cycle.
Theorem 7. Let R be a c-semilocal semiring with maximal co-ideals m_{1}, \ldots, m_{n}. If $\left|m_{1} \backslash \bigcup_{\substack{j=1 \\ j \neq 1}}^{n} m_{j}\right| \geq\left|m_{2} \backslash \bigcup_{\substack{j=1 \\ j \neq 2}}^{n} m_{j}\right| \geq \ldots \geq\left|m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}\right|$, then $\kappa^{\prime}\left(\Omega_{2}(R) \backslash I M(R)\right)=\left|m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}\right|$.

Proof. Let $x \in \bigcap_{j=1}^{n-1} m_{j} \backslash m_{n}$. By the proof of Therorem $6, x$ is only adjacent to the elements of $m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}$ and it is a vertex with minimum degree for $\Omega_{2}(R) \backslash I M(R)$. However, as $\kappa^{\prime}\left(\Omega_{2}(R) \backslash I M(R)\right)$ is the minimum size of a disconnecting set, so $\kappa^{\prime}\left(\Omega_{2}(R) \backslash I M(R)\right)=\left|m_{n} \backslash \bigcup_{j=1}^{n-1} m_{j}\right|$.

Corollary 3. Let R be a c-semilocal semiring with $\operatorname{Co}-\operatorname{Max}(R)=$ $\left\{m_{1}, \ldots, m_{n}\right\}$. If $\left|m_{i} \backslash \underset{\substack{j=1 \\ j \neq i}}{n} m_{j}\right|=1$ for some $m_{i} \in \operatorname{Co}-\operatorname{Max}(R)$, then $\Omega_{2}(R) \backslash I M(R)$ has a cut-edge.

Proof. Suppose that $\left|m_{k} \backslash \bigcup_{\substack{j=1 \\ j \neq k}}^{n} m_{j}\right|=1$ for some $m_{k} \in \operatorname{Co}-\operatorname{Max}(R)$. Let $x \in \bigcap_{\substack{j=1 \\ j \neq k}}^{n} m_{j} \backslash m_{k}$ and $m_{k} \backslash \bigcup_{\substack{j \neq k \\ j \neq k}}^{n} m_{j}=\{y\}$. Since x is only adjacent to y, thus, if we delete the edge $x-y$, then x becomes an isolated vertex and $\Omega_{2}(R) \backslash I M(R)$ will be disconnected. Hence $x-y$ is a cut-edge.

In the following we give an example that clarifies the previous results:
Example 2. (i Let S be a semiring as defined in Example 1 and let $R=(S \times S,+, \cdot)$. The maximal co-ideals of R are as follows:

$$
\begin{aligned}
& m_{1}=\{(0,1),(0, a),(1, a),(a, 1),(1,1),(a, a)\} \\
& m_{2}=\{(1,0),(a, 0),(1, a),(a, 1),(1,1),(a, a)\}
\end{aligned}
$$

The graph $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite with vertex-sets $m_{1} \backslash I M(R)=$ $\{(0,1),(0, a)\}$ and $m_{2} \backslash I M(R)=\{(1,0),(a, 0)\}$. Indeed, $\Omega_{2}(R) \backslash I M(R)$ forms $K_{2,2}$ and so this graph has no cut-vertex. Also, every edges of this graph belong to a cycle and this implies that $\Omega_{2}(R) \backslash I M(R)$ has no cut-edge.
(ii) Let $X=\{a, b, c\}$ and $R=(P(X), \cup, \cap)$ be a semiring, where $P(X)$ is power set of X. In this case, the maximal co-ideals of the semiring R are as follows:

$$
\begin{aligned}
m_{1} & =\{\{a\},\{a, b\},\{a, c\}, X\} \\
m_{2} & =\{\{b\},\{a, b\},\{b, c\}, X\} \\
m_{3} & =\{\{c\},\{a, c\},\{b, c\}, X\} .
\end{aligned}
$$

In the graph $\Omega_{2}(R) \backslash I M(R)$ for the semiring R, the vertex $\{a, b\}$ is only adjacent to $\{c\}$ and so $\{a, b\}-\{c\}$ is a cut-edge. Also, $\{a, c\}-\{b\}$ and $\{b, c\}-\{a\}$ are cut-edges. Thus $\Omega_{2}(R) \backslash I M(R)$ has three cut-edges. Since $\{a, b\},\{a, c\}$ and $\{b, c\}$ are vertices of degree 1 , thus $\{a\},\{b\}$ and $\{c\}$ are cut-vertex for $\Omega_{2}(R) \backslash I M(R)$.

A unicyclic graph is a connected graph with a unique cycle. To this end, we characterize all semirings whose $\Omega_{2}(R) \backslash I M(R)$ is unicyclic.

Theorem 8. Let R be a c-semilocal semiring. If $\Omega_{2}(R) \backslash I M(R)$ is a unicyclic graph, then $|\operatorname{Co}-\operatorname{Max}(R)| \leq 3$. Moreover, if $C o-\operatorname{Max}(R)=$ $\left\{m_{1}, m_{2}, m_{3}\right\}$, then $\left|m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{3} m_{j}\right|=1$ for each $1 \leq i \leq 3$.

Proof. Assume contrary that $|C o-\operatorname{Max}(R)| \geq 4$. By [10, Theorem 3.6], $\Omega_{2}(R) \backslash I M(R)$ contains K_{4} as a subgraph and so it contains more than one cycle, which is a contradiction by our assumption. Now, let $C o-$ $\operatorname{Max}(R)=\left\{m_{1}, m_{2}, m_{3}\right\}$. Without loss of generality, we may assume that $\left|m_{1} \backslash m_{2} \cup m_{3}\right| \geq 2$. Let $x, y \in m_{1} \backslash m_{2} \cup m_{3}, z \in m_{2} \backslash m_{1} \cup m_{3}$ and $s \in m_{3} \backslash m_{1} \cup m_{2}$. Hence $x-z-s-x$ and $y-z-s-y$ are two cycles in $\Omega_{2}(R) \backslash I M(R)$, which is a contradiction. Hence $\left|m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{3} m_{j}\right|=1$ for each $1 \leq i \leq 3$.

Proposition 2. Let R be a semiring with $C o-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$. Then $\Omega_{2}(R) \backslash I M(R)$ is a unicyclic graph if and only if $\left|m_{i} \backslash I M(R)\right|=2$ for each $i=1,2$.

Proof. Assume that $\Omega_{2}(R) \backslash I M(R)$ is a unicyclic graph. By [10, Theorem 3.4], $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph. Thus, if $\left|m_{i} \backslash I M(R)\right|=1$ for some i, then $\Omega_{2}(R) \backslash I M(R)$ is a star graph and contains no cycle. Also, if $\left|m_{i} \backslash I M(R)\right| \geq 3$ for each i, then $\Omega_{2}(R) \backslash I M(R)$ will include more than two distinct cycles, a contradiction. Thus we must have $\left|m_{i} \backslash I M(R)\right|=2$ for each i.

Conversely, if $\left|m_{i} \backslash I M(R)\right|=2$ for each i, then $\Omega_{2}(R) \backslash I M(R)$ is of the form $K_{2,2}$. Thus, it is clear that $\Omega_{2}(R) \backslash I M(R)$ is a unicyclic graph.

References

[1] Anderson D.F., Livingston P.S., The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.
[2] Bollaboás B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
[3] Chaudhari J.N., Ingale K.J., Prime avoidance theorem for co-ideals in semirings, Research J. of Pure Algebra, 1(9)(2011), 213-216.
[4] Ebrahimi Atani S., The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Math., 43(63)(2008), 309-320.
[5] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math., 5(3)(2013), 19-32.
[6] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., A fundamental theorem of co-homomorphisms for semirings, Thai J. Math., 12(2)(2014), 491-497.
[7] Golan J.S., Semirings and their Applications, Kluwer Academic Publishers Dordrecht, 1999.
[8] Maimani H.R., Salimi H., Sattari A., Yassemi S., Comaximal graph of commutative rings, J. Algebra, 319(2008), 1801-1808.
[9] Talebi Y., Darzi A., The generalized total graph of a commutative semiring, Ricerche Mat., 66 (2017), 579-589. DOI:10.1007/s11587-017-0321-4.
[10] Talebi Y., Darzi A., On graph associated to co-ideals of commutative semirings, Comment. Math. Univ. Carolin., 58(3)(2017), (293-305).
[11] Wang H., On rational series and rational language, Theor. Comput. Sci., 205(1998), 329-336.
[12] West D.B., Introduction To Graph Theory, Prentice-Hall of India Pvt. Ltd, 2003.

Yahya Talebi
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
Babolsar, Iran
e-mail: talebi@umz.ac.ir
Atefeh Darzi
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran
Babolsar, Iran
e-mail: a.darzi@stu.umz.ac.ir

Received on 31.12.2019 and, in revised form, on 06.08.2020.

