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ABSTRACT. For a commutative semiring R with non-zero identity,
the graph Q(R) of R, is the graph whose vertices are all elements
of R and two distinct vertices x and y are adjacent if and only if
the product of the co-ideals generated by = and y is R. In this
paper, we study some properties of this graph such as planarity,
domination number and connectivity.
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1. Introduction

Throughout this paper, every semiring R is assumed to be commutative
with non-zero identity. For a semiring R, we denote by Co — Max(R),
UM(R) and IM(R), the set of maximal co-ideals, the union of all the
maximal co-ideals and the intersection of all the maximal co-ideals of R,
respectively. Also, if R is a ring, then R has no proper co-ideals, thus in this
paper we consider the semiring which is not a ring.

The study of algebraic structures using the properties of graphs is a re-
search topic in the recent years. There are many papers on assigning a graph
to a ring and semiring, for instance see [1, 4, 8, 9]. In [10], for a semiring R,
the authors defined a graph on R, Q(R), with vertices as elements of R and
two distinct vertices x and y are adjacent if and only if the product of the
co-ideals generated by = and y is R (i.e. F'(x)F(y) = R). Moreover, we con-
sidered the subgraphs ©;(R) and Qa(R) of Q(R) with vertex-set r(ZS(R))
(radical of ZS(R)) and UM (R), respectively. We showed that Q;(R) is a
complete graph and since for each x € IM(R), degq,r)(x) = 0 so we study
the properties of the graph Qa(R)\ IM (R) with vertex-set UM (R)\IM(R).
Also, we investigated some properties of these graphs such as diameter, ra-
dius, girth, clique number and chromatic number. In this paper, we continue
our study over these graphs and investigate some graph-theoretic properties
such as planarity, domination number and connectivity.
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It is useful to recall the following definitions and notations of the graphs.
Let G be an undirected graph with the vertex-set V(G) and the edge-set
E(G). A graph G is connected if there exists a path between every two
distinct vertices and we say that G is totally disconnected if no two vertices
of G are adjacent. The components of a graph G are its maximal connected
subgraphs. For a given vertex z, the number of all vertices which is adjacent
to it, is called degree of the vertex x, denoted by deg(z). An isolated vertex
is a vertex of degree 0. A graph in which each pair of distinct vertices is
joined by an edge is called a complete graph. A graph G is said to be bipartite
if V(G) can be partitioned into two disjoint sets V; and V4 such that no two
vertices within any V; or V5 are adjacent. If for every x € V4 and y € V,
and y are adjacent, then we call G is complete bipartite graph. We denote
the complete graph on n vertices by K, and the complete bipartite graph
on m and n vertices by Ky, , (we allow m and n to be infinite cardinals).
We will sometimes call a K1, a star graph. A clique in a graph G is a set of
pairwise adjacent vertices. In other word, a clique is a complete subgraph
of G.

A semiring R is an algebraic system (R, +, -) such that (R, +) is a commu-
tative monoid with identity element 0 and (R, -) is a semigroup. In addition,
operations + and - are connected by distributivity and 0 annihilates R. A
semiring R is said to be commutative if (R,-) is a commutative semigroup
and R is said to have an identity if there exists 1 € R such that 1z = z1 = =z.
If I is an ideal of R, the radical of [ is r(I) = {x € R: 2™ € I for some n >
0}.

A non-empty subset I of R is called a co-ideal of R and denoted by I <¢R
if and only if it is closed under multiplication and satisfies the condition that
a+7r €l forall a €I andr € R. According to this definition, 0 € [ if
and only if I = R. Also, it is obvious that if R is a ring, then R has no
proper co-ideal. A co-ideal I of a semiring R is called subtractive if z € I
and zy € I, then y € I for z,y € R. A proper co-ideal P of R is called
prime if a+b € P, thena € Por b € P for a,b € R. A co-ideal I of R
is mazimal if I # R and there exists no co-ideal J such that I C J C R.
If the semiring R has exactly one maximal co-ideal, then we say that the
semiring R is c-local and R is said to be a c-semilocal semiring if R has
only a finite number of maximal co-ideals. If A is a non-empty subset of a
semiring R, then the set F'(A) of all elements of R of the form ajas...a, + 7,
where a; € A for all 1 <4 < n and r € R, is a co-ideal of R containing A.
In fact, F(A) is the unique smallest co-ideal of R containing A. If a € R,
then F({a}) = F(a) = {a" +r: r € R and n € N}. It is obvious, if a € I,
then F'(a) € I. An element x of a semiring R is called a zero-sum of R if
there exists an element y € R such that x +y = 0 [7]. We will denote the
set of all zero-sums of R by ZS(R). Indeed, ZS(R) ={r €e R: z+y =
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0, for some y € R}. Note that ZS(R) # 0, since 0 € ZS(R). Let I and J
be two co-ideals of a semiring R. In [10], we defined the product of I and J
as follows:

IJ={zy+r: z€l, yeJandr € R}

Similarly, for any co-ideal I, we have I"™ = {ay...a,, +7: a; €  and r €
R}.

In the following we give a proposition that is used to prove the next
theorems.

Proposition 1. Let R be a commutative semiring with non-zero identity.

1). If R is not a ring, then it must have a maximal co-ideal. Moreover,
every maximal co-ideal contains 1 [11].

2). If I is a proper co-ideal of R, then I is contained in a maximal co-ideal
of R. In particular, Co — Max(R) # 0 [5].

3). (Prime Avoidance Theorem) Let Iy, ..., I, be subtractive co-ideals of
R such that at most two of the I; are not prime. If I is a co-ideal of R such
that I C U 1 1;, then I C I; for some i [3].

4). Let I, ..., I, be co-ideals of a semiring R and P be a prime co-ideal
containing (\;—, Ii. Then I; C P for some i = 1,...,n. Moreover, if P =
Niey Li, then P = I; for some i [5].

5). If m is a mazimal co-ideal of a semiring R, then m is subtractive [6].

6). If m is a maximal co-ideal of a semiring R, then m is a prime co-ideal

[5]-
Remark 1. By Proposition 1, if m is a maximal co-ideal of a semiring

R, then m is a subtractive and prime co-ideal. So we can conclude, Prime
Avoidance Theorem also holds for the case where co-ideals are maximal.

2. Planarity and domination number

In this section, first, we are going to find a necessary condition for the
planarity of Qa(R) \ IM(R) when R is a c-semilocal semiring. Next, we
investigate the domination number of this graph.

A subdivision of a graph is a graph obtained from it by replacing edges
with pairwise internally-disjoint paths. A planar graph is a graph that can
be drawn in the plane without crossings of the edges. We need the following
lemma which is proved in [12, p.246].

Lemma 1. A graph is planar if and only if it does not contain a subdi-
vision of K5 or K33.

Theorem 1. Let R be a c-semilocal semiring with |Co—Maz(R)| > 2. If
Qa(R)\IM (R) is planar, then |Co—Max(R)| = 2 such that |m;\IM(R)| < 2
for some m; € Co — Max(R), or |Co— Maz(R)| =3 or 4.



94 YAHYA TALEBI AND ATEFEH DARZI

Proof. Suppose that Qa(R) \ IM(R) is planar. If |Co — Max(R)| > 5,
then by [10, Theorem 3.6], Q2(R) \ IM(R) contains K5 as a subgraph and
so Q2(R) \ IM(R) can not be a planar by Lemma 1. Hence we must have
|Co — Max(R)| < 4. Now, if |Co — Maz(R)| = 2, then we must have
|m; \ IM(R)| < 2 for some 4, in order that Qs(R) \ IM(R) does not contain
K3 3 as a subgraph because Qa(R) \ IM (R) is a complete bipartite graph by
[10, Theorem 3.4]. [

In a graph G, a set S C V(G) is a dominating set if every vertex in V(G),
is either in S or is adjacent to a vertex in S. The domination number v(Q)
of a graph G is the minimum size of a dominating set in G. A dominating
set S is said to be a total dominating set if every vertex in V(G) is adjacent
to a vertex in S. The minimum cardinality among the total dominating
sets of G is called total domination number and denoted by 7:(G). Also, a
dominating set S is called an independent dominating set if no two vertices
of § are adjacent. The minimum cardinality of an independent dominating
set of G is the independent domination number ~;(G).

In the following results, we characterize domination number for the graph
Q2(R)\ IM(R) for the case |Co— Maxz(R)| = 2 and we give a general result
about domination number of Q9(R) \ IM(R) when R is a c-semilocal.

Remark 2. By definition of the domination number, it is clear that
if Qo(R) \ IM(R) is a star graph, then y(Q2(R) \ IM(R)) = 1. Also,
(Q2(R) \ IM(R)) = 2 and 7(Q2(R) \ IM(R)) = n.

Theorem 2. Let R be a semiring with Co — Max(R) = {m1, ma} such
that |m1 \ IM(R)| > |ma \ IM(R)|. If Q2(R) \ IM(R) is not a star graph,
then 7(Q2(R)\IM(R)) = 7:(Q2(R)\ IM(R)) = 2 and ~;(22(R)\ M (R)) =
Ima \ IM(R)|.

Proof. Let Co — Max(R) = {m1,ma}. By [10, Theorem 3.4], Q2(R) \
IM(R)) is complete bipartite graph with two vertex-set Vi3 = mi \ IM(R)
and Vo = ma \ IM(R). Let x € V] and y € Vi. Clearly that S = {z,y}
dominates all the vertices of Qo(R) \ IM(R). Also, v(Q2(R)\ IM(R)) # 1
because Q2(R) \ IM(R) can not be a star graph by assumption. Hence
v(Q2(R) \ IM(R)) = 2. Since = and y are adjacent, so S is a total domi-
nating set and therefore ~v,(Q2(R) \ IM(R)) = 2. Now, we will compute the
independent domination number. Let S be an independent dominating set
for the graph Qa(R)\ IM(R). Thus S C V; for some i, because the elements
of S are not adjacent. Also, as V; is an independent set, so .S = V; for some
i. By our assumption Vo = mg \ IM(R) has minimum cardinality, hence
74(Q2(R) \ IM(R)) = |ms \ IM(R)|. .
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Theorem 3. Let R be a c-semilocal semiring with |Co — Max(R)| = n.
If n > 3, then 2 < 4(Q2(R) \ IM(R)) < n. In particular, 2 < v(Q2(R) \
IM(R)) <n.

Proof. Let Co — Maxz(R) = {mi,...,my}. By [10, Theorem 3.6], there
is a clique S = {x1, ...,z } in Qa(R) \ IM(R) where x; € m; \ [Jj=1 m; for

JFi
each i. We show that S is a dominating set of Qg(R) \ IM(R). Clearly that
S dominates all the elements of (J;; (m; \ [Jj=1 m;). For each other vertex

J#i
x of Qa(R) \ IM(R), if no vertex of S dominates z, then F(x)F(zy) # R for
each zj € S and so we have F(x)F(x) C m; for some 1 <1i < n. Hence z

and zj, belong to m; and since xj, € my, \ [Jj=1 m;, we have x € my, for each
ik
k. This implies * € IM(R), that is impossible. Thus S is a dominating

set for Q(R) \ IM(R). On the other hand, v(Q2(R) \ IM(R)) # 1 because
Q2(R) \ IM(R) can not be a star graph since n > 3 by [10, Theorem 3.10].
Therefore 2 < v(Q2(R) \ IM(R)) < n. Now, since the dominating set S is
a total, thus we can conclude that 2 < v(Q2(R) \ IM(R)) < n. [ |

Corollary 1. Let R = R; X Ry X ... X R, be the product of c-local
semirings with unique mazimal co-ideals m; for each 1 < i < mn (n > 3).
Then 2 < v(Q2(R) \ IM(R)) < n.

Proof. Clearly that m; = Ry X ... X Rj—1 X m; X R;y1... X Ry is only
maximal co-ideal of R for each 1 < ¢ < n. Since n > 3, by Theorem 3 we
have 2 < y(Q2(R) \ IM(R)) < n. [

Theorem 4. Let R be a semiring with |Co — Max(R)| = 3. Then
V(2 (R)\ IM(R)) = % (Q2(R) \ IM(R)) = 3.

Proof. Suppose that |Co — Max(R)| = 3. By Theorem 3, we have
v(Q22(R) \ IM(R)) = 2 or 3. We show that v(Q2(R) \ IM(R)) = 2 can not
be true. Assume that 7' = {x,y} be a dominating set of Qo(R)\IM(R). Let
x € mand y € m’ for some m,m’ € Co— Max(R). Also, |m\ IM(R)| > 3
for each m € Co — Maxz(R), since |Co — Max(R)| = 3. If m = m/, then x
and y are not adjacent to z € m \ IM(R) where z # z,y. Now, if m # m/,
then z and y are not adjacent to none of elements of m Nm’\ IM(R), so
we see that T can not be dominate the vertex-set of Q9(R)\ IM(R). Hence
v(Q2(R) \ IM(R)) = 3 and by Theorem 3, 1(Q2(R) \ IM(R)) = 3. [ |

Example 1. A semiring S is said to be idempotent if it is both additively
and multiplicatively idempotent. Consider the idempotent semiring S =
{0,1,a} in which a+1 =1+ a = a. It is clearly that S is a c-local semiring
with maximal co-ideal m = {1,a}. Let R = S x § x S be the direct product
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of the semiring S. The maximal co-ideals of the semiring R = (Sx.Sx .S, +, ")
are as follows:

mi=mx3SxS§
mQZSXmXS
’I?”L3=S><S><m.

It can be shown that 7' = {(1,0,0), (0,1,0),(0,0,1)} is a dominating set for
Qa(R)\IM(R). Also, T is a total dominating set and so y(Qa2(R)\IM(R)) =
1t(Qa(R) \ IM(R)) = 3.

3. Connectivity

A cut-vertex of a graph G is a vertex whose deletion increases the number
of components. Thus for a connected graph G, x is a cut-vertex of G if
G \ {z} is not connected. Equivalently, a vertex x of a connected graph G
is a cut-vertex of G, if there exist vertices y,z € G, such that z # y,z # 2
and z lies on every path from y to z.

A separating set of a graph G is a set S C V(G) such that G \ S has
more than one component. The connectivity of G, denoted by k(G), is the
minimum size of a vertex-set S such that G\ S is disconnected or has only
one vertex. Thus if x is a cut-vertex of G, then x(G) = 1. A block of a
graph G is a maximal connected subgraph of G that has no cut-vertex. If
G itself is connected and has no cut-vertex, then G is a block.

In this section, we characterize commutative semiring whose Q2(R) \
IM(R) has a cut-vertex or its graph is a block. Also we determine the
connectivity of Qo(R) \ IM(R) for different cases.

Theorem 5. Let R be a semiring with Co— Max(R) = {m1, ma}. Then

(1) Qa(R) \ IM(R) has a cut-vertex if and only if Qa(R) \ IM(R) is a
star graph.

(23) If |m; \ IM(R)| > 2 for each i, then Qa(R) \ IM(R) is a block.

Proof. (i) The sufficiency is obvious, so we need to prove the necessity.
Suppose that Co—Max(R) = {m1,ma} and Q2(R)\IM (R) has a cut-vertex.
By [10, Theorem 3.4] Q2(R) \ IM(R) is a complete bipartite graph with
vertex set mi \ ma and mo \ my. Now, let |m; \ ma| = o and |ma \ mi| = 3,
hence Qo(R) \ IM(R) is a graph of the form K, g. By [2, p. 50], we have
k(Kpg) =lwhen! <k. Soifa > 2 and 8 > 2, then x(Q(R)\ IM(R)) > 2,
this means that Qg(R) \ IM(R) has no cut-vertex, a contradiction. Hence
Q2 (R) \ IM(R) is a star graph.

(73) Let |m; \ IM(R)| > 2 for each ¢ = 1,2. Thus by part (i), Q2(R) \
IM(R) has no cut-vertex. On the other hand, by [10, Theorem 4.1], Q2(R) \
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IM(R) is a connected graph. Hence we can conclude that Qo(R) \ IM(R)
is a block. |

Theorem 6. Let R be a c-semilocal semiring with mazimal co-ideal

M, ooy M. If My \ Uj=1 mj| > [mo \ Uj=1my| > ... > |mn\U;L:_11 my|, then
J#1 J#2

R(Q2(R) \ IM(R)) = |my, \ Uj=; myl.

Proof. Let x € ﬂn_l m; \ my,. By [10, Lemma 3.1], F(z)F(y) = R for

some y € my,. It is obvious that y € m, \UJ'— j= 1 m;. This means that x is not
adjacent to none of elements of mj for 1 < j <m—1 and it is adjacent to all
elements of m,, \ | J;_= '~!'mj. Indeed, if we delete the elements of m,, \ U= Ly
whose adjacent to z, then x becomes an isolated vertex and s(R) \IM( )
is a disconnected graph. On the other hand, z is a vertex with minimum
degree for Q3(R)\ IM(R) and thus by definition of connectivity for a graph,
we have £(Q2(R) \ IM(R)) = |my \ Uj=1 m;|. [ |

i#n

Corollary 2. Let R be a c-semilocal semiring with Co — Maxz(R) =
{my,....,mp}. If |mi \ Uj=1m;| = 1 for some m; € Co — Max(R), then

J#i
Qa(R) \ IM(R) has a cut-vertex.

Proof. By Theorem 6, we have x(Q2(R) \ IM(R)) = 1. Thus Qa(R) \
IM(R) has a cut-vertex. [ |

A cut-edge of a graph G is an edge whose deletion increases the number
of components. This implies an edge of a connected graph G is a cut-edge
if its deletion disconnects the graph. It has been proven that an edge is a
cut-edge if and only if it belongs to no cycle. A disconnecting set of edges
is a set F' C E(G) such that G \ F has more than one component. The
edge-connectivity of G, written k' (G), is the minimum size of a disconnecting
set.

In the following we obtain a necessary and sufficient condition for the
semiring R that Qs(R) \ IM(R) includes a cut-edge. Next, we determine
edge-connectivity for c-semilocal semirings. We need the following lemma
which is proved in [12, p.23]

Lemma 2. An edge is a cut-edge if and only if it belongs to no cycle.

Theorem 7. Let R be a c-semilocal semiring with mazimal co-ideals
M1y ey My If]ml\UJ 1m]] > |m2\UJ ymy| > > ]mn\U;‘;f m;|, then
2

R (2(R) \ IM(R)) = !mn\U] “1myl.



98 YAHYA TALEBI AND ATEFEH DARZI

Proof. Let z € ﬂ?;ll m;j \ my. By the proof of Therorem 6, x is only

adjacent to the elements of my, \ U;le m; and it is a vertex with minimum

degree for Qo (R) \ IM(R). However, as & (Q(R)\ IM(R)) is the minimum
size of a disconnecting set, so x'(Q2(R) \ IM(R)) = |my, \ U?;ll m;. [ ]

Corollary 3. Let R be a c-semilocal semiring with Co — Max(R) =
{mi,....mp}. If |mi \ Uj=1m;| = 1 for some m; € Co — Max(R), then
J#

Qo(R) \ IM(R) has a cut-edge.

Proof. Suppose that |my \ Jj=1 m;| = 1 for some my € Co — Max(R).
Jk
Let x € (j=1 m; \ my and my, \ Uj=1 m; = {y}. Since x is only adjacent to
Ik ik
y, thus, if we delete the edge = — y, then = becomes an isolated vertex and

Q2(R) \ IM(R) will be disconnected. Hence x — y is a cut-edge. |
In the following we give an example that clarifies the previous results:

Example 2. (i) Let S be a semiring as defined in Example 1 and let
R = (S x S,+,). The maximal co-ideals of R are as follows:

m1 ={(0,1),(0,a),(1,a),(a,1),(1,1),(a,a)}
m2 = {(170)7 (CL, 0)7 (17 a)v (CL, 1)7 (17 1)7 (a7 a)}

The graph Q2 (R)\IM (R) is complete bipartite with vertex-sets mi\IM(R) =
{(0,1),(0,a)} and mo \ IM(R) = {(1,0),(a,0)}. Indeed, Q2(R) \ IM(R)
forms Kjo and so this graph has no cut-vertex. Also, every edges of this
graph belong to a cycle and this implies that Qo(R)\IM (R) has no cut-edge.

(i7) Let X = {a,b,c} and R = (P(X),U,N) be a semiring, where P(X)
is power set of X. In this case, the maximal co-ideals of the semiring R are
as follows:

my = {{CL}, {CL, b}v {CL, C}’ X}
m2 = {{b}7 {a, b}7 {b’ C}7X}
ms = {{c},{a, c}, {b,c}, X}.

In the graph Qs(R) \ IM(R) for the semiring R, the vertex {a,b} is only
adjacent to {c} and so {a,b} — {c} is a cut-edge. Also, {a,c} — {b} and
{b,c} — {a} are cut-edges. Thus Q9(R) \ IM(R) has three cut-edges. Since
{a,b}, {a,c} and {b,c} are vertices of degree 1, thus {a}, {b} and {c} are
cut-vertex for Qo(R) \ IM(R).

A unicyclic graph is a connected graph with a unique cycle. To this end,
we characterize all semirings whose Q2(R) \ IM (R) is unicyclic.
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Theorem 8. Let R be a c-semilocal semiring. If Qo(R)\ IM(R) is a
unicyclic graph, then |Co — Maz(R)| < 3. Moreover, if Co— Maxz(R) =
{mi,ma,ms}, then |m; \ U?:l mj| =1 for each 1 <1 < 3.

JF

Proof. Assume contrary that |Co — Maxz(R)| > 4. By [10, Theorem
3.6], Q2(R) \ IM(R) contains K4 as a subgraph and so it contains more
than one cycle, which is a contradiction by our assumption. Now, let Co —
Max(R) = {m1, m2, mg}. Without loss of generality, we may assume that
|mi \ ma Umg| > 2. Let z,y € my \ ma Ums, 2 € ma \ m; Ums and
s € mg\ mp Umy. Hence z — 2z — s —x and y — z — s — y are two cycles
in Q2(R) \ IM(R), which is a contradiction. Hence |m; \ U?:l m;| =1 for

J#i
each 1 <7¢ < 3. |

Proposition 2. Let R be a semiring with Co — Max(R) = {my, ma}.
Then Q2(R) \ IM(R) is a unicyclic graph if and only if |m; \ IM(R)| = 2
for eachi=1,2.

Proof. Assume that Qa(R) \ IM(R) is a unicyclic graph. By [10,
Theorem 3.4], Q2(R) \ IM(R) is a complete bipartite graph. Thus, if
|m; \ IM(R)| = 1 for some i, then Qy(R) \ IM(R) is a star graph and
contains no cycle. Also, if |m; \ IM(R)| > 3 for each i, then Qs(R) \ IM(R)
will include more than two distinct cycles, a contradiction. Thus we must
have |m; \ IM(R)| = 2 for each 1.

Conversely, if |m; \ IM (R)| = 2 for each i, then Q3(R) \ IM(R) is of the
form Ky 9. Thus, it is clear that Qa(R) \ IM(R) is a unicyclic graph. 1
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