Nr 64

2020 DOI: 10.21008/j.0044-4413.2020.0012

Yahya Talebi and Atefeh Darzi

SOME RESULTS ON GRAPH ASSOCIATED TO CO-IDEALS OF COMMUTATIVE SEMIRINGS

ABSTRACT. For a commutative semiring R with non-zero identity, the graph $\Omega(R)$ of R, is the graph whose vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R. In this paper, we study some properties of this graph such as planarity, domination number and connectivity.

KEY WORDS: semiring, graph, maximal co-ideal.

AMS Mathematics Subject Classification: 16Y60, 05C75.

1. Introduction

Throughout this paper, every semiring R is assumed to be commutative with non-zero identity. For a semiring R, we denote by Co - Max(R), UM(R) and IM(R), the set of maximal co-ideals, the union of all the maximal co-ideals and the intersection of all the maximal co-ideals of R, respectively. Also, if R is a ring, then R has no proper co-ideals, thus in this paper we consider the semiring which is not a ring.

The study of algebraic structures using the properties of graphs is a research topic in the recent years. There are many papers on assigning a graph to a ring and semiring, for instance see [1, 4, 8, 9]. In [10], for a semiring R, the authors defined a graph on R, $\Omega(R)$, with vertices as elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R (i.e. F(x)F(y) = R). Moreover, we considered the subgraphs $\Omega_1(R)$ and $\Omega_2(R)$ of $\Omega(R)$ with vertex-set r(ZS(R))(radical of ZS(R)) and UM(R), respectively. We showed that $\Omega_1(R)$ is a complete graph and since for each $x \in IM(R)$, $deg_{\Omega_2(R)}(x) = 0$ so we study the properties of the graph $\Omega_2(R) \setminus IM(R)$ with vertex-set $UM(R) \setminus IM(R)$. Also, we investigated some properties of these graphs such as diameter, radius, girth, clique number and chromatic number. In this paper, we continue our study over these graphs and investigate some graph-theoretic properties such as planarity, domination number and connectivity.

It is useful to recall the following definitions and notations of the graphs. Let G be an undirected graph with the vertex-set V(G) and the edge-set E(G). A graph G is connected if there exists a path between every two distinct vertices and we say that G is totally disconnected if no two vertices of G are adjacent. The *components* of a graph G are its maximal connected subgraphs. For a given vertex x, the number of all vertices which is adjacent to it, is called *degree* of the vertex x, denoted by deg(x). An *isolated* vertex is a vertex of degree 0. A graph in which each pair of distinct vertices is joined by an edge is called a *complete graph*. A graph G is said to be *bipartite* if V(G) can be partitioned into two disjoint sets V_1 and V_2 such that no two vertices within any V_1 or V_2 are adjacent. If for every $x \in V_1$ and $y \in V_2$, x and y are adjacent, then we call G is *complete bipartite* graph. We denote the complete graph on n vertices by K_n and the complete bipartite graph on m and n vertices by $K_{m,n}$ (we allow m and n to be infinite cardinals). We will sometimes call a $K_{1,n}$ a star graph. A clique in a graph G is a set of pairwise adjacent vertices. In other word, a clique is a complete subgraph of G.

A semiring R is an algebraic system $(R, +, \cdot)$ such that (R, +) is a commutative monoid with identity element 0 and (R, \cdot) is a semigroup. In addition, operations + and \cdot are connected by distributivity and 0 annihilates R. A semiring R is said to be *commutative* if (R, \cdot) is a commutative semigroup and R is said to have an *identity* if there exists $1 \in R$ such that 1x = x1 = x. If I is an ideal of R, the *radical* of I is $r(I) = \{x \in R : x^n \in I \text{ for some } n > 0\}$.

A non-empty subset I of R is called a *co-ideal* of R and denoted by $I \leq R$ if and only if it is closed under multiplication and satisfies the condition that $a + r \in I$ for all $a \in I$ and $r \in R$. According to this definition, $0 \in I$ if and only if I = R. Also, it is obvious that if R is a ring, then R has no proper co-ideal. A co-ideal I of a semiring R is called *subtractive* if $x \in I$ and $xy \in I$, then $y \in I$ for $x, y \in R$. A proper co-ideal P of R is called prime if $a + b \in P$, then $a \in P$ or $b \in P$ for $a, b \in R$. A co-ideal I of R is maximal if $I \neq R$ and there exists no co-ideal J such that $I \subset J \subset R$. If the semiring R has exactly one maximal co-ideal, then we say that the semiring R is c-local and R is said to be a c-semilocal semiring if R has only a finite number of maximal co-ideals. If A is a non-empty subset of a semiring R, then the set F(A) of all elements of R of the form $a_1a_2...a_n + r$, where $a_i \in A$ for all $1 \leq i \leq n$ and $r \in R$, is a co-ideal of R containing A. In fact, F(A) is the unique smallest co-ideal of R containing A. If $a \in R$, then $F(\{a\}) = F(a) = \{a^n + r : r \in R \text{ and } n \in \mathbf{N}\}$. It is obvious, if $a \in I$, then $F(a) \subseteq I$. An element x of a semiring R is called a zero-sum of R if there exists an element $y \in R$ such that x + y = 0 [7]. We will denote the set of all zero-sums of R by ZS(R). Indeed, $ZS(R) = \{x \in R : x + y =$ 0, for some $y \in R$. Note that $ZS(R) \neq \emptyset$, since $0 \in ZS(R)$. Let I and J be two co-ideals of a semiring R. In [10], we defined the product of I and J as follows:

$$IJ = \{xy + r : x \in I, y \in J \text{ and } r \in R\}$$

Similarly, for any co-ideal I, we have $I^n = \{a_1...a_n + r : a_i \in I \text{ and } r \in R\}$.

In the following we give a proposition that is used to prove the next theorems.

Proposition 1. Let R be a commutative semiring with non-zero identity.

1). If R is not a ring, then it must have a maximal co-ideal. Moreover, every maximal co-ideal contains 1 [11].

2). If I is a proper co-ideal of R, then I is contained in a maximal co-ideal of R. In particular, $Co - Max(R) \neq \emptyset$ [5].

3). (Prime Avoidance Theorem) Let $I_1, ..., I_n$ be subtractive co-ideals of R such that at most two of the I_i are not prime. If I is a co-ideal of R such that $I \subseteq \bigcup_{i=1}^n I_i$, then $I \subseteq I_i$ for some i [3].

4). Let $I_1, ..., I_n$ be co-ideals of a semiring R and P be a prime co-ideal containing $\bigcap_{i=1}^{n} I_i$. Then $I_i \subseteq P$ for some i = 1, ..., n. Moreover, if $P = \bigcap_{i=1}^{n} I_i$, then $P = I_i$ for some i [5].

5). If m is a maximal co-ideal of a semiring R, then m is subtractive [6].

6). If m is a maximal co-ideal of a semiring R, then m is a prime co-ideal [5].

Remark 1. By Proposition 1, if m is a maximal co-ideal of a semiring R, then m is a subtractive and prime co-ideal. So we can conclude, Prime Avoidance Theorem also holds for the case where co-ideals are maximal.

2. Planarity and domination number

In this section, first, we are going to find a necessary condition for the planarity of $\Omega_2(R) \setminus IM(R)$ when R is a c-semilocal semiring. Next, we investigate the domination number of this graph.

A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A *planar* graph is a graph that can be drawn in the plane without crossings of the edges. We need the following lemma which is proved in [12, p.246].

Lemma 1. A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Theorem 1. Let R be a c-semilocal semiring with $|Co-Max(R)| \ge 2$. If $\Omega_2(R) \setminus IM(R)$ is planar, then |Co-Max(R)| = 2 such that $|m_i \setminus IM(R)| \le 2$ for some $m_i \in Co-Max(R)$, or |Co-Max(R)| = 3 or 4.

Proof. Suppose that $\Omega_2(R) \setminus IM(R)$ is planar. If $|Co - Max(R)| \ge 5$, then by [10, Theorem 3.6], $\Omega_2(R) \setminus IM(R)$ contains K_5 as a subgraph and so $\Omega_2(R) \setminus IM(R)$ can not be a planar by Lemma 1. Hence we must have $|Co - Max(R)| \le 4$. Now, if |Co - Max(R)| = 2, then we must have $|m_i \setminus IM(R)| \le 2$ for some *i*, in order that $\Omega_2(R) \setminus IM(R)$ does not contain $K_{3,3}$ as a subgraph because $\Omega_2(R) \setminus IM(R)$ is a complete bipartite graph by [10, Theorem 3.4].

In a graph G, a set $S \subseteq V(G)$ is a dominating set if every vertex in V(G), is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of a graph G is the minimum size of a dominating set in G. A dominating set S is said to be a total dominating set if every vertex in V(G) is adjacent to a vertex in S. The minimum cardinality among the total dominating sets of G is called total domination number and denoted by $\gamma_t(G)$. Also, a dominating set S is called an independent dominating set if no two vertices of S are adjacent. The minimum cardinality of an independent dominating set of G is the independent domination number $\gamma_i(G)$.

In the following results, we characterize domination number for the graph $\Omega_2(R) \setminus IM(R)$ for the case |Co - Max(R)| = 2 and we give a general result about domination number of $\Omega_2(R) \setminus IM(R)$ when R is a c-semilocal.

Remark 2. By definition of the domination number, it is clear that if $\Omega_2(R) \setminus IM(R)$ is a star graph, then $\gamma(\Omega_2(R) \setminus IM(R)) = 1$. Also, $\gamma_t(\Omega_2(R) \setminus IM(R)) = 2$ and $\gamma_i(\Omega_2(R) \setminus IM(R)) = n$.

Theorem 2. Let R be a semiring with $Co - Max(R) = \{m_1, m_2\}$ such that $|m_1 \setminus IM(R)| \ge |m_2 \setminus IM(R)|$. If $\Omega_2(R) \setminus IM(R)$ is not a star graph, then $\gamma(\Omega_2(R) \setminus IM(R)) = \gamma_t(\Omega_2(R) \setminus IM(R)) = 2$ and $\gamma_i(\Omega_2(R) \setminus IM(R)) = |m_2 \setminus IM(R)|$.

Proof. Let $Co - Max(R) = \{m_1, m_2\}$. By [10, Theorem 3.4], $\Omega_2(R) \setminus IM(R)$) is complete bipartite graph with two vertex-set $V_1 = m_1 \setminus IM(R)$ and $V_2 = m_2 \setminus IM(R)$. Let $x \in V_1$ and $y \in V_2$. Clearly that $S = \{x, y\}$ dominates all the vertices of $\Omega_2(R) \setminus IM(R)$. Also, $\gamma(\Omega_2(R) \setminus IM(R)) \neq 1$ because $\Omega_2(R) \setminus IM(R)$ can not be a star graph by assumption. Hence $\gamma(\Omega_2(R) \setminus IM(R)) = 2$. Since x and y are adjacent, so S is a total dominating set and therefore $\gamma_t(\Omega_2(R) \setminus IM(R)) = 2$. Now, we will compute the independent domination number. Let S be an independent dominating set for the graph $\Omega_2(R) \setminus IM(R)$. Thus $S \subseteq V_i$ for some i, because the elements of S are not adjacent. Also, as V_i is an independent set, so $S = V_i$ for some i. By our assumption $V_2 = m_2 \setminus IM(R)$ has minimum cardinality, hence $\gamma_i(\Omega_2(R) \setminus IM(R)) = |m_2 \setminus IM(R)|$. **Theorem 3.** Let R be a c-semilocal semiring with |Co - Max(R)| = n. If $n \ge 3$, then $2 \le \gamma(\Omega_2(R) \setminus IM(R)) \le n$. In particular, $2 \le \gamma_t(\Omega_2(R) \setminus IM(R)) \le n$.

Proof. Let $Co - Max(R) = \{m_1, ..., m_n\}$. By [10, Theorem 3.6], there is a clique $S = \{x_1, ..., x_n\}$ in $\Omega_2(R) \setminus IM(R)$ where $x_i \in m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j$ for each *i*. We show that *S* is a dominating set of $\Omega_2(R) \setminus IM(R)$. Clearly that *S* dominates all the elements of $\bigcup_{i=1}^n (m_i \setminus \bigcup_{\substack{j=1 \\ j \neq i}}^n m_j)$. For each other vertex x of $\Omega_2(R) \setminus IM(R)$, if no vertex of *S* dominates x, then $F(x)F(x_k) \neq R$ for each $x_k \in S$ and so we have $F(x)F(x_k) \subseteq m_i$ for some $1 \leq i \leq n$. Hence xand x_k belong to m_i and since $x_k \in m_k \setminus \bigcup_{\substack{j=1 \\ j \neq k}}^n m_j$, we have $x \in m_k$ for each k. This implies $x \in IM(R)$, that is impossible. Thus *S* is a dominating set for $\Omega_2(R) \setminus IM(R)$. On the other hand, $\gamma(\Omega_2(R) \setminus IM(R)) \neq 1$ because $\Omega_2(R) \setminus IM(R)$ can not be a star graph since $n \geq 3$ by [10, Theorem 3.10].

Therefore $2 \leq \gamma(\Omega_2(R) \setminus IM(R)) \leq n$. Now, since the dominating set S is a total, thus we can conclude that $2 \leq \gamma_t(\Omega_2(R) \setminus IM(R)) \leq n$.

Corollary 1. Let $R = R_1 \times R_2 \times ... \times R_n$ be the product of c-local semirings with unique maximal co-ideals m_i for each $1 \le i \le n$ $(n \ge 3)$. Then $2 \le \gamma(\Omega_2(R) \setminus IM(R)) \le n$.

Proof. Clearly that $m_i = R_1 \times ... \times R_{i-1} \times m_i \times R_{i+1}... \times R_n$ is only maximal co-ideal of R for each $1 \le i \le n$. Since $n \ge 3$, by Theorem 3 we have $2 \le \gamma(\Omega_2(R) \setminus IM(R)) \le n$.

Theorem 4. Let R be a semiring with |Co - Max(R)| = 3. Then $\gamma(\Omega_2(R) \setminus IM(R)) = \gamma_t(\Omega_2(R) \setminus IM(R)) = 3$.

Proof. Suppose that |Co - Max(R)| = 3. By Theorem 3, we have $\gamma(\Omega_2(R) \setminus IM(R)) = 2$ or 3. We show that $\gamma(\Omega_2(R) \setminus IM(R)) = 2$ can not be true. Assume that $T = \{x, y\}$ be a dominating set of $\Omega_2(R) \setminus IM(R)$. Let $x \in m$ and $y \in m'$ for some $m, m' \in Co - Max(R)$. Also, $|m \setminus IM(R)| \ge 3$ for each $m \in Co - Max(R)$, since |Co - Max(R)| = 3. If m = m', then x and y are not adjacent to $z \in m \setminus IM(R)$ where $z \neq x, y$. Now, if $m \neq m'$, then x and y are not adjacent to none of elements of $m \cap m' \setminus IM(R)$, so we see that T can not be dominate the vertex-set of $\Omega_2(R) \setminus IM(R)$. Hence $\gamma(\Omega_2(R) \setminus IM(R)) = 3$ and by Theorem 3, $\gamma_t(\Omega_2(R) \setminus IM(R)) = 3$.

Example 1. A semiring S is said to be idempotent if it is both additively and multiplicatively idempotent. Consider the idempotent semiring $S = \{0, 1, a\}$ in which a + 1 = 1 + a = a. It is clearly that S is a c-local semiring with maximal co-ideal $m = \{1, a\}$. Let $R = S \times S \times S$ be the direct product

of the semiring S. The maximal co-ideals of the semiring $R = (S \times S \times S, +, \cdot)$ are as follows:

$$m_1 = m \times S \times S$$

$$m_2 = S \times m \times S$$

$$m_3 = S \times S \times m.$$

It can be shown that $T = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is a dominating set for $\Omega_2(R) \setminus IM(R)$. Also, T is a total dominating set and so $\gamma(\Omega_2(R) \setminus IM(R)) = \gamma_t(\Omega_2(R) \setminus IM(R)) = 3$.

3. Connectivity

A cut-vertex of a graph G is a vertex whose deletion increases the number of components. Thus for a connected graph G, x is a cut-vertex of G if $G \setminus \{x\}$ is not connected. Equivalently, a vertex x of a connected graph G is a cut-vertex of G, if there exist vertices $y, z \in G$, such that $x \neq y, x \neq z$ and x lies on every path from y to z.

A separating set of a graph G is a set $S \subseteq V(G)$ such that $G \setminus S$ has more than one component. The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a vertex-set S such that $G \setminus S$ is disconnected or has only one vertex. Thus if x is a cut-vertex of G, then $\kappa(G) = 1$. A block of a graph G is a maximal connected subgraph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block.

In this section, we characterize commutative semiring whose $\Omega_2(R) \setminus IM(R)$ has a cut-vertex or its graph is a block. Also we determine the connectivity of $\Omega_2(R) \setminus IM(R)$ for different cases.

Theorem 5. Let R be a semiring with $Co - Max(R) = \{m_1, m_2\}$. Then (i) $\Omega_2(R) \setminus IM(R)$ has a cut-vertex if and only if $\Omega_2(R) \setminus IM(R)$ is a star graph.

(ii) If $|m_i \setminus IM(R)| \ge 2$ for each *i*, then $\Omega_2(R) \setminus IM(R)$ is a block.

Proof. (i) The sufficiency is obvious, so we need to prove the necessity. Suppose that $Co-Max(R) = \{m_1, m_2\}$ and $\Omega_2(R) \setminus IM(R)$ has a cut-vertex. By [10, Theorem 3.4] $\Omega_2(R) \setminus IM(R)$ is a complete bipartite graph with vertex set $m_1 \setminus m_2$ and $m_2 \setminus m_1$. Now, let $|m_1 \setminus m_2| = \alpha$ and $|m_2 \setminus m_1| = \beta$, hence $\Omega_2(R) \setminus IM(R)$ is a graph of the form $K_{\alpha,\beta}$. By [2, p. 50], we have $\kappa(K_{l,k}) = l$ when $l \leq k$. So if $\alpha \geq 2$ and $\beta \geq 2$, then $\kappa(\Omega_2(R) \setminus IM(R)) \geq 2$, this means that $\Omega_2(R) \setminus IM(R)$ has no cut-vertex, a contradiction. Hence $\Omega_2(R) \setminus IM(R)$ is a star graph.

(*ii*) Let $|m_i \setminus IM(R)| \ge 2$ for each i = 1, 2. Thus by part (i), $\Omega_2(R) \setminus IM(R)$ has no cut-vertex. On the other hand, by [10, Theorem 4.1], $\Omega_2(R) \setminus IM(R)$

IM(R) is a connected graph. Hence we can conclude that $\Omega_2(R) \setminus IM(R)$ is a block.

Theorem 6. Let R be a c-semilocal semiring with maximal co-ideal $m_1, ..., m_n$. If $|m_1 \setminus \bigcup_{\substack{j=1 \ j \neq 1}}^n m_j| \ge |m_2 \setminus \bigcup_{\substack{j=1 \ j \neq 2}}^n m_j| \ge ... \ge |m_n \setminus \bigcup_{\substack{j=1 \ j \neq 1}}^{n-1} m_j|$, then $\kappa(\Omega_2(R) \setminus IM(R)) = |m_n \setminus \bigcup_{j=1}^{n-1} m_j|$.

Proof. Let $x \in \bigcap_{j=1}^{n-1} m_j \setminus m_n$. By [10, Lemma 3.1], F(x)F(y) = R for some $y \in m_n$. It is obvious that $y \in m_n \setminus \bigcup_{j=1}^{n-1} m_j$. This means that x is not adjacent to none of elements of m_j for $1 \leq j \leq n-1$ and it is adjacent to all elements of $m_n \setminus \bigcup_{j=1}^{n-1} m_j$. Indeed, if we delete the elements of $m_n \setminus \bigcup_{j=1}^{n-1} m_j$ whose adjacent to x, then x becomes an isolated vertex and $\Omega_2(R) \setminus IM(R)$ is a disconnected graph. On the other hand, x is a vertex with minimum degree for $\Omega_2(R) \setminus IM(R)$ and thus by definition of connectivity for a graph, we have $\kappa(\Omega_2(R) \setminus IM(R)) = |m_n \setminus \bigcup_{\substack{j=1 \ j \neq n}}^n m_j|$.

Corollary 2. Let R be a c-semilocal semiring with $Co - Max(R) = \{m_1, ..., m_n\}$. If $|m_i \setminus \bigcup_{\substack{j=1 \ j \neq i}}^n m_j| = 1$ for some $m_i \in Co - Max(R)$, then $\Omega_2(R) \setminus IM(R)$ has a cut-vertex.

Proof. By Theorem 6, we have $\kappa(\Omega_2(R) \setminus IM(R)) = 1$. Thus $\Omega_2(R) \setminus IM(R)$ has a cut-vertex.

A cut-edge of a graph G is an edge whose deletion increases the number of components. This implies an edge of a connected graph G is a cut-edge if its deletion disconnects the graph. It has been proven that an edge is a cut-edge if and only if it belongs to no cycle. A disconnecting set of edges is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component. The edge-connectivity of G, written $\kappa'(G)$, is the minimum size of a disconnecting set.

In the following we obtain a necessary and sufficient condition for the semiring R that $\Omega_2(R) \setminus IM(R)$ includes a cut-edge. Next, we determine edge-connectivity for c-semilocal semirings. We need the following lemma which is proved in [12, p.23]

Lemma 2. An edge is a cut-edge if and only if it belongs to no cycle.

Theorem 7. Let R be a c-semilocal semiring with maximal co-ideals $m_1, ..., m_n$. If $|m_1 \setminus \bigcup_{\substack{j=1 \ j \neq 1}}^n m_j| \ge |m_2 \setminus \bigcup_{\substack{j=1 \ j \neq 2}}^n m_j| \ge ... \ge |m_n \setminus \bigcup_{\substack{j=1 \ j \neq 2}}^{n-1} m_j|$, then $\kappa'(\Omega_2(R) \setminus IM(R)) = |m_n \setminus \bigcup_{\substack{j=1 \ j=1}}^{n-1} m_j|$.

Proof. Let $x \in \bigcap_{j=1}^{n-1} m_j \setminus m_n$. By the proof of Theorem 6, x is only adjacent to the elements of $m_n \setminus \bigcup_{j=1}^{n-1} m_j$ and it is a vertex with minimum degree for $\Omega_2(R) \setminus IM(R)$. However, as $\kappa'(\Omega_2(R) \setminus IM(R))$ is the minimum size of a disconnecting set, so $\kappa'(\Omega_2(R) \setminus IM(R)) = |m_n \setminus \bigcup_{j=1}^{n-1} m_j|$.

Corollary 3. Let R be a c-semilocal semiring with $Co - Max(R) = \{m_1, ..., m_n\}$. If $|m_i \setminus \bigcup_{\substack{j=1 \ j \neq i}}^n m_j| = 1$ for some $m_i \in Co - Max(R)$, then $\Omega_2(R) \setminus IM(R)$ has a cut-edge.

Proof. Suppose that $|m_k \setminus \bigcup_{\substack{j=1 \ j \neq k}}^n m_j| = 1$ for some $m_k \in Co - Max(R)$. Let $x \in \bigcap_{\substack{j=1 \ j \neq k}}^n m_j \setminus m_k$ and $m_k \setminus \bigcup_{\substack{j=1 \ j \neq k}}^n m_j = \{y\}$. Since x is only adjacent to y, thus, if we delete the edge x - y, then x becomes an isolated vertex and $\Omega_2(R) \setminus IM(R)$ will be disconnected. Hence x - y is a cut-edge.

In the following we give an example that clarifies the previous results:

Example 2. (i) Let S be a semiring as defined in Example 1 and let $R = (S \times S, +, \cdot)$. The maximal co-ideals of R are as follows:

$$m_1 = \{(0,1), (0,a), (1,a), (a,1), (1,1), (a,a)\}\$$

$$m_2 = \{(1,0), (a,0), (1,a), (a,1), (1,1), (a,a)\}\$$

The graph $\Omega_2(R) \setminus IM(R)$ is complete bipartite with vertex-sets $m_1 \setminus IM(R) = \{(0,1), (0,a)\}$ and $m_2 \setminus IM(R) = \{(1,0), (a,0)\}$. Indeed, $\Omega_2(R) \setminus IM(R)$ forms $K_{2,2}$ and so this graph has no cut-vertex. Also, every edges of this graph belong to a cycle and this implies that $\Omega_2(R) \setminus IM(R)$ has no cut-edge.

(*ii*) Let $X = \{a, b, c\}$ and $R = (P(X), \cup, \cap)$ be a semiring, where P(X) is power set of X. In this case, the maximal co-ideals of the semiring R are as follows:

$$m_1 = \{\{a\}, \{a, b\}, \{a, c\}, X\} m_2 = \{\{b\}, \{a, b\}, \{b, c\}, X\} m_3 = \{\{c\}, \{a, c\}, \{b, c\}, X\}.$$

In the graph $\Omega_2(R) \setminus IM(R)$ for the semiring R, the vertex $\{a, b\}$ is only adjacent to $\{c\}$ and so $\{a, b\} - \{c\}$ is a cut-edge. Also, $\{a, c\} - \{b\}$ and $\{b, c\} - \{a\}$ are cut-edges. Thus $\Omega_2(R) \setminus IM(R)$ has three cut-edges. Since $\{a, b\}, \{a, c\}$ and $\{b, c\}$ are vertices of degree 1, thus $\{a\}, \{b\}$ and $\{c\}$ are cut-vertex for $\Omega_2(R) \setminus IM(R)$.

A unicyclic graph is a connected graph with a unique cycle. To this end, we characterize all semirings whose $\Omega_2(R) \setminus IM(R)$ is unicyclic.

Theorem 8. Let R be a c-semilocal semiring. If $\Omega_2(R) \setminus IM(R)$ is a unicyclic graph, then $|Co - Max(R)| \leq 3$. Moreover, if $Co - Max(R) = \{m_1, m_2, m_3\}$, then $|m_i \setminus \bigcup_{\substack{j=1 \ i \neq i}}^3 m_j| = 1$ for each $1 \leq i \leq 3$.

Proof. Assume contrary that $|Co - Max(R)| \ge 4$. By [10, Theorem 3.6], $\Omega_2(R) \setminus IM(R)$ contains K_4 as a subgraph and so it contains more than one cycle, which is a contradiction by our assumption. Now, let $Co - Max(R) = \{m_1, m_2, m_3\}$. Without loss of generality, we may assume that $|m_1 \setminus m_2 \cup m_3| \ge 2$. Let $x, y \in m_1 \setminus m_2 \cup m_3$, $z \in m_2 \setminus m_1 \cup m_3$ and $s \in m_3 \setminus m_1 \cup m_2$. Hence x - z - s - x and y - z - s - y are two cycles in $\Omega_2(R) \setminus IM(R)$, which is a contradiction. Hence $|m_i \setminus \bigcup_{\substack{j=1 \ j \neq i}}^3 m_j| = 1$ for each $1 \le i \le 3$.

Proposition 2. Let R be a semiring with $Co - Max(R) = \{m_1, m_2\}$. Then $\Omega_2(R) \setminus IM(R)$ is a unicyclic graph if and only if $|m_i \setminus IM(R)| = 2$ for each i = 1, 2.

Proof. Assume that $\Omega_2(R) \setminus IM(R)$ is a unicyclic graph. By [10, Theorem 3.4], $\Omega_2(R) \setminus IM(R)$ is a complete bipartite graph. Thus, if $|m_i \setminus IM(R)| = 1$ for some *i*, then $\Omega_2(R) \setminus IM(R)$ is a star graph and contains no cycle. Also, if $|m_i \setminus IM(R)| \ge 3$ for each *i*, then $\Omega_2(R) \setminus IM(R)$ will include more than two distinct cycles, a contradiction. Thus we must have $|m_i \setminus IM(R)| = 2$ for each *i*.

Conversely, if $|m_i \setminus IM(R)| = 2$ for each *i*, then $\Omega_2(R) \setminus IM(R)$ is of the form $K_{2,2}$. Thus, it is clear that $\Omega_2(R) \setminus IM(R)$ is a unicyclic graph.

References

- ANDERSON D.F., LIVINGSTON P.S., The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447.
- [2] BOLLABOÁS B., Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
- [3] CHAUDHARI J.N., INGALE K.J., Prime avoidance theorem for co-ideals in semirings, *Research J. of Pure Algebra*, 1(9)(2011), 213-216.
- [4] EBRAHIMI ATANI S., The zero-divisor graph with respect to ideals of a commutative semiring, *Glas. Math.*, 43(63)(2008), 309-320.
- [5] EBRAHIMI ATANI S., DOLATI PISH HESARI S., KHORAMDEL M., Strong co-ideal theory in quotients of semirings, J. of Advanced Research in Pure Math., 5(3)(2013), 19-32.
- [6] EBRAHIMI ATANI S., DOLATI PISH HESARI S., KHORAMDEL M., A fundamental theorem of co-homomorphisms for semirings, *Thai J. Math.*, 12(2)(2014), 491-497.

- [7] GOLAN J.S., Semirings and their Applications, Kluwer Academic Publishers Dordrecht, 1999.
- [8] MAIMANI H.R., SALIMI H., SATTARI A., YASSEMI S., Comaximal graph of commutative rings, J. Algebra, 319(2008), 1801-1808.
- [9] TALEBI Y., DARZI A., The generalized total graph of a commutative semiring, *Ricerche Mat.*, 66 (2017), 579-589. DOI:10.1007/s11587-017-0321-4.
- [10] TALEBI Y., DARZI A., On graph associated to co-ideals of commutative semirings, Comment. Math. Univ. Carolin., 58(3)(2017), (293-305).
- [11] WANG H., On rational series and rational language, *Theor. Comput. Sci.*, 205(1998), 329-336.
- [12] WEST D.B., Introduction To Graph Theory, Prentice-Hall of India Pvt. Ltd, 2003.

Yahya Talebi Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran Babolsar, Iran *e-mail:* talebi@umz.ac.ir

Atefeh Darzi Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran Babolsar, Iran *e-mail:* a.darzi@stu.umz.ac.ir

Received on 31.12.2019 and, in revised form, on 06.08.2020.