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Abstract. For a commutative semiring R with non-zero identity,
the graph Ω(R) of R, is the graph whose vertices are all elements
of R and two distinct vertices x and y are adjacent if and only if
the product of the co-ideals generated by x and y is R. In this
paper, we study some properties of this graph such as planarity,
domination number and connectivity.

Key words: semiring, graph, maximal co-ideal.

AMS Mathematics Subject Classification: 16Y60, 05C75.

1. Introduction

Throughout this paper, every semiring R is assumed to be commutative
with non-zero identity. For a semiring R, we denote by Co − Max(R),
UM(R) and IM(R), the set of maximal co-ideals, the union of all the
maximal co-ideals and the intersection of all the maximal co-ideals of R,
respectively. Also, if R is a ring, then R has no proper co-ideals, thus in this
paper we consider the semiring which is not a ring.

The study of algebraic structures using the properties of graphs is a re-
search topic in the recent years. There are many papers on assigning a graph
to a ring and semiring, for instance see [1, 4, 8, 9]. In [10], for a semiring R,
the authors defined a graph on R, Ω(R), with vertices as elements of R and
two distinct vertices x and y are adjacent if and only if the product of the
co-ideals generated by x and y is R (i.e. F (x)F (y) = R). Moreover, we con-
sidered the subgraphs Ω1(R) and Ω2(R) of Ω(R) with vertex-set r(ZS(R))
(radical of ZS(R)) and UM(R), respectively. We showed that Ω1(R) is a
complete graph and since for each x ∈ IM(R), degΩ2(R)(x) = 0 so we study
the properties of the graph Ω2(R)\IM(R) with vertex-set UM(R)\IM(R).
Also, we investigated some properties of these graphs such as diameter, ra-
dius, girth, clique number and chromatic number. In this paper, we continue
our study over these graphs and investigate some graph-theoretic properties
such as planarity, domination number and connectivity.
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It is useful to recall the following definitions and notations of the graphs.
Let G be an undirected graph with the vertex-set V (G) and the edge-set
E(G). A graph G is connected if there exists a path between every two
distinct vertices and we say that G is totally disconnected if no two vertices
of G are adjacent. The components of a graph G are its maximal connected
subgraphs. For a given vertex x, the number of all vertices which is adjacent
to it, is called degree of the vertex x, denoted by deg(x). An isolated vertex
is a vertex of degree 0. A graph in which each pair of distinct vertices is
joined by an edge is called a complete graph. A graph G is said to be bipartite
if V (G) can be partitioned into two disjoint sets V1 and V2 such that no two
vertices within any V1 or V2 are adjacent. If for every x ∈ V1 and y ∈ V2, x
and y are adjacent, then we call G is complete bipartite graph. We denote
the complete graph on n vertices by Kn and the complete bipartite graph
on m and n vertices by Km,n (we allow m and n to be infinite cardinals).
We will sometimes call a K1,n a star graph. A clique in a graph G is a set of
pairwise adjacent vertices. In other word, a clique is a complete subgraph
of G.

A semiring R is an algebraic system (R,+, ·) such that (R,+) is a commu-
tative monoid with identity element 0 and (R, ·) is a semigroup. In addition,
operations + and · are connected by distributivity and 0 annihilates R. A
semiring R is said to be commutative if (R, ·) is a commutative semigroup
and R is said to have an identity if there exists 1 ∈ R such that 1x = x1 = x.
If I is an ideal of R, the radical of I is r(I) = {x ∈ R : xn ∈ I for some n >
0}.

A non-empty subset I of R is called a co-ideal of R and denoted by I�cR
if and only if it is closed under multiplication and satisfies the condition that
a + r ∈ I for all a ∈ I and r ∈ R. According to this definition, 0 ∈ I if
and only if I = R. Also, it is obvious that if R is a ring, then R has no
proper co-ideal. A co-ideal I of a semiring R is called subtractive if x ∈ I
and xy ∈ I, then y ∈ I for x, y ∈ R. A proper co-ideal P of R is called
prime if a + b ∈ P , then a ∈ P or b ∈ P for a, b ∈ R. A co-ideal I of R
is maximal if I ̸= R and there exists no co-ideal J such that I ⊂ J ⊂ R.
If the semiring R has exactly one maximal co-ideal, then we say that the
semiring R is c-local and R is said to be a c-semilocal semiring if R has
only a finite number of maximal co-ideals. If A is a non-empty subset of a
semiring R, then the set F (A) of all elements of R of the form a1a2...an+ r,
where ai ∈ A for all 1 ≤ i ≤ n and r ∈ R, is a co-ideal of R containing A.
In fact, F (A) is the unique smallest co-ideal of R containing A. If a ∈ R,
then F ({a}) = F (a) = {an + r : r ∈ R and n ∈ N}. It is obvious, if a ∈ I,
then F (a) ⊆ I. An element x of a semiring R is called a zero-sum of R if
there exists an element y ∈ R such that x + y = 0 [7]. We will denote the
set of all zero-sums of R by ZS(R). Indeed, ZS(R) = {x ∈ R : x + y =
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0, for some y ∈ R}. Note that ZS(R) ̸= ∅, since 0 ∈ ZS(R). Let I and J
be two co-ideals of a semiring R. In [10], we defined the product of I and J
as follows:

IJ = {xy + r : x ∈ I, y ∈ J and r ∈ R}
Similarly, for any co-ideal I, we have In = {a1...an + r : ai ∈ I and r ∈

R}.
In the following we give a proposition that is used to prove the next

theorems.

Proposition 1. Let R be a commutative semiring with non-zero identity.
1). If R is not a ring, then it must have a maximal co-ideal. Moreover,

every maximal co-ideal contains 1 [11].
2). If I is a proper co-ideal of R, then I is contained in a maximal co-ideal

of R. In particular, Co−Max(R) ̸= ∅ [5].
3). (Prime Avoidance Theorem) Let I1, ..., In be subtractive co-ideals of

R such that at most two of the Ii are not prime. If I is a co-ideal of R such
that I ⊆ ∪n

i=1Ii, then I ⊆ Ii for some i [3].
4). Let I1, ..., In be co-ideals of a semiring R and P be a prime co-ideal

containing
∩n

i=1 Ii. Then Ii ⊆ P for some i = 1, ..., n. Moreover, if P =∩n
i=1 Ii, then P = Ii for some i [5].
5). If m is a maximal co-ideal of a semiring R, then m is subtractive [6].
6). If m is a maximal co-ideal of a semiring R, then m is a prime co-ideal

[5].

Remark 1. By Proposition 1, if m is a maximal co-ideal of a semiring
R, then m is a subtractive and prime co-ideal. So we can conclude, Prime
Avoidance Theorem also holds for the case where co-ideals are maximal.

2. Planarity and domination number

In this section, first, we are going to find a necessary condition for the
planarity of Ω2(R) \ IM(R) when R is a c-semilocal semiring. Next, we
investigate the domination number of this graph.

A subdivision of a graph is a graph obtained from it by replacing edges
with pairwise internally-disjoint paths. A planar graph is a graph that can
be drawn in the plane without crossings of the edges. We need the following
lemma which is proved in [12, p.246].

Lemma 1. A graph is planar if and only if it does not contain a subdi-
vision of K5 or K3,3.

Theorem 1. Let R be a c-semilocal semiring with |Co−Max(R)| ≥ 2. If
Ω2(R)\IM(R) is planar, then |Co−Max(R)| = 2 such that |mi\IM(R)| ≤ 2
for some mi ∈ Co−Max(R), or |Co−Max(R)| = 3 or 4.



94 Yahya Talebi and Atefeh Darzi

Proof. Suppose that Ω2(R) \ IM(R) is planar. If |Co −Max(R)| ≥ 5,
then by [10, Theorem 3.6], Ω2(R) \ IM(R) contains K5 as a subgraph and
so Ω2(R) \ IM(R) can not be a planar by Lemma 1. Hence we must have
|Co − Max(R)| ≤ 4. Now, if |Co − Max(R)| = 2, then we must have
|mi \ IM(R)| ≤ 2 for some i, in order that Ω2(R) \ IM(R) does not contain
K3,3 as a subgraph because Ω2(R)\ IM(R) is a complete bipartite graph by
[10, Theorem 3.4]. �

In a graph G, a set S ⊆ V (G) is a dominating set if every vertex in V (G),
is either in S or is adjacent to a vertex in S. The domination number γ(G)
of a graph G is the minimum size of a dominating set in G. A dominating
set S is said to be a total dominating set if every vertex in V (G) is adjacent
to a vertex in S. The minimum cardinality among the total dominating
sets of G is called total domination number and denoted by γt(G). Also, a
dominating set S is called an independent dominating set if no two vertices
of S are adjacent. The minimum cardinality of an independent dominating
set of G is the independent domination number γi(G).

In the following results, we characterize domination number for the graph
Ω2(R)\ IM(R) for the case |Co−Max(R)| = 2 and we give a general result
about domination number of Ω2(R) \ IM(R) when R is a c-semilocal.

Remark 2. By definition of the domination number, it is clear that
if Ω2(R) \ IM(R) is a star graph, then γ(Ω2(R) \ IM(R)) = 1. Also,
γt(Ω2(R) \ IM(R)) = 2 and γi(Ω2(R) \ IM(R)) = n.

Theorem 2. Let R be a semiring with Co−Max(R) = {m1,m2} such
that |m1 \ IM(R)| ≥ |m2 \ IM(R)|. If Ω2(R) \ IM(R) is not a star graph,
then γ(Ω2(R)\IM(R)) = γt(Ω2(R)\IM(R)) = 2 and γi(Ω2(R)\IM(R)) =
|m2 \ IM(R)|.

Proof. Let Co −Max(R) = {m1,m2}. By [10, Theorem 3.4], Ω2(R) \
IM(R)) is complete bipartite graph with two vertex-set V1 = m1 \ IM(R)
and V2 = m2 \ IM(R). Let x ∈ V1 and y ∈ V2. Clearly that S = {x, y}
dominates all the vertices of Ω2(R) \ IM(R). Also, γ(Ω2(R) \ IM(R)) ̸= 1
because Ω2(R) \ IM(R) can not be a star graph by assumption. Hence
γ(Ω2(R) \ IM(R)) = 2. Since x and y are adjacent, so S is a total domi-
nating set and therefore γt(Ω2(R) \ IM(R)) = 2. Now, we will compute the
independent domination number. Let S be an independent dominating set
for the graph Ω2(R)\IM(R). Thus S ⊆ Vi for some i, because the elements
of S are not adjacent. Also, as Vi is an independent set, so S = Vi for some
i. By our assumption V2 = m2 \ IM(R) has minimum cardinality, hence
γi(Ω2(R) \ IM(R)) = |m2 \ IM(R)|. �
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Theorem 3. Let R be a c-semilocal semiring with |Co−Max(R)| = n.
If n ≥ 3, then 2 ≤ γ(Ω2(R) \ IM(R)) ≤ n. In particular, 2 ≤ γt(Ω2(R) \
IM(R)) ≤ n.

Proof. Let Co −Max(R) = {m1, ...,mn}. By [10, Theorem 3.6], there
is a clique S = {x1, ..., xn} in Ω2(R) \ IM(R) where xi ∈ mi \

∪n
j=1
j ̸=i

mj for

each i. We show that S is a dominating set of Ω2(R) \ IM(R). Clearly that
S dominates all the elements of

∪n
i=1(mi \

∪n
j=1
j ̸=i

mj). For each other vertex

x of Ω2(R)\ IM(R), if no vertex of S dominates x, then F (x)F (xk) ̸= R for
each xk ∈ S and so we have F (x)F (xk) ⊆ mi for some 1 ≤ i ≤ n. Hence x
and xk belong to mi and since xk ∈ mk \

∪n
j=1
j ̸=k

mj , we have x ∈ mk for each

k. This implies x ∈ IM(R), that is impossible. Thus S is a dominating
set for Ω2(R) \ IM(R). On the other hand, γ(Ω2(R) \ IM(R)) ̸= 1 because
Ω2(R) \ IM(R) can not be a star graph since n ≥ 3 by [10, Theorem 3.10].
Therefore 2 ≤ γ(Ω2(R) \ IM(R)) ≤ n. Now, since the dominating set S is
a total, thus we can conclude that 2 ≤ γt(Ω2(R) \ IM(R)) ≤ n. �

Corollary 1. Let R = R1 × R2 × ... × Rn be the product of c-local
semirings with unique maximal co-ideals mi for each 1 ≤ i ≤ n (n ≥ 3).
Then 2 ≤ γ(Ω2(R) \ IM(R)) ≤ n.

Proof. Clearly that mi = R1 × ... × Ri−1 × mi × Ri+1... × Rn is only
maximal co-ideal of R for each 1 ≤ i ≤ n. Since n ≥ 3, by Theorem 3 we
have 2 ≤ γ(Ω2(R) \ IM(R)) ≤ n. �

Theorem 4. Let R be a semiring with |Co − Max(R)| = 3. Then
γ(Ω2(R) \ IM(R)) = γt(Ω2(R) \ IM(R)) = 3.

Proof. Suppose that |Co − Max(R)| = 3. By Theorem 3, we have
γ(Ω2(R) \ IM(R)) = 2 or 3. We show that γ(Ω2(R) \ IM(R)) = 2 can not
be true. Assume that T = {x, y} be a dominating set of Ω2(R)\IM(R). Let
x ∈ m and y ∈ m′ for some m,m′ ∈ Co−Max(R). Also, |m \ IM(R)| ≥ 3
for each m ∈ Co −Max(R), since |Co −Max(R)| = 3. If m = m′, then x
and y are not adjacent to z ∈ m \ IM(R) where z ̸= x, y. Now, if m ̸= m′,
then x and y are not adjacent to none of elements of m ∩ m′ \ IM(R), so
we see that T can not be dominate the vertex-set of Ω2(R) \ IM(R). Hence
γ(Ω2(R) \ IM(R)) = 3 and by Theorem 3, γt(Ω2(R) \ IM(R)) = 3. �

Example 1. A semiring S is said to be idempotent if it is both additively
and multiplicatively idempotent. Consider the idempotent semiring S =
{0, 1, a} in which a+1 = 1+ a = a. It is clearly that S is a c-local semiring
with maximal co-ideal m = {1, a}. Let R = S×S×S be the direct product
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of the semiring S. The maximal co-ideals of the semiring R = (S×S×S,+, ·)
are as follows:

m1 = m× S × S
m2 = S ×m× S
m3 = S × S ×m.

It can be shown that T = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a dominating set for
Ω2(R)\IM(R). Also, T is a total dominating set and so γ(Ω2(R)\IM(R)) =
γt(Ω2(R) \ IM(R)) = 3.

3. Connectivity

A cut-vertex of a graph G is a vertex whose deletion increases the number
of components. Thus for a connected graph G, x is a cut-vertex of G if
G \ {x} is not connected. Equivalently, a vertex x of a connected graph G
is a cut-vertex of G, if there exist vertices y, z ∈ G, such that x ̸= y, x ̸= z
and x lies on every path from y to z.

A separating set of a graph G is a set S ⊆ V (G) such that G \ S has
more than one component. The connectivity of G, denoted by κ(G), is the
minimum size of a vertex-set S such that G \ S is disconnected or has only
one vertex. Thus if x is a cut-vertex of G, then κ(G) = 1. A block of a
graph G is a maximal connected subgraph of G that has no cut-vertex. If
G itself is connected and has no cut-vertex, then G is a block.

In this section, we characterize commutative semiring whose Ω2(R) \
IM(R) has a cut-vertex or its graph is a block. Also we determine the
connectivity of Ω2(R) \ IM(R) for different cases.

Theorem 5. Let R be a semiring with Co−Max(R) = {m1,m2}. Then
(i) Ω2(R) \ IM(R) has a cut-vertex if and only if Ω2(R) \ IM(R) is a

star graph.
(ii) If |mi \ IM(R)| ≥ 2 for each i, then Ω2(R) \ IM(R) is a block.

Proof. (i) The sufficiency is obvious, so we need to prove the necessity.
Suppose that Co−Max(R) = {m1,m2} and Ω2(R)\IM(R) has a cut-vertex.
By [10, Theorem 3.4] Ω2(R) \ IM(R) is a complete bipartite graph with
vertex set m1 \m2 and m2 \m1. Now, let |m1 \m2| = α and |m2 \m1| = β,
hence Ω2(R) \ IM(R) is a graph of the form Kα,β. By [2, p. 50], we have
κ(Kl,k) = l when l ≤ k. So if α ≥ 2 and β ≥ 2, then κ(Ω2(R) \ IM(R)) ≥ 2,
this means that Ω2(R) \ IM(R) has no cut-vertex, a contradiction. Hence
Ω2(R) \ IM(R) is a star graph.

(ii) Let |mi \ IM(R)| ≥ 2 for each i = 1, 2. Thus by part (i), Ω2(R) \
IM(R) has no cut-vertex. On the other hand, by [10, Theorem 4.1], Ω2(R)\
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IM(R) is a connected graph. Hence we can conclude that Ω2(R) \ IM(R)
is a block. �

Theorem 6. Let R be a c-semilocal semiring with maximal co-ideal
m1, ...,mn. If |m1 \

∪n
j=1
j ̸=1

mj | ≥ |m2 \
∪n

j=1
j ̸=2

mj | ≥ ... ≥ |mn \
∪n−1

j=1 mj |, then

κ(Ω2(R) \ IM(R)) = |mn \
∪n−1

j=1 mj |.

Proof. Let x ∈
∩n−1

j=1 mj \mn. By [10, Lemma 3.1], F (x)F (y) = R for

some y ∈ mn. It is obvious that y ∈ mn \
∪n−1

j=1 mj . This means that x is not
adjacent to none of elements of mj for 1 ≤ j ≤ n−1 and it is adjacent to all
elements of mn\

∪n−1
j=1 mj . Indeed, if we delete the elements of mn\

∪n−1
j=1 mj

whose adjacent to x, then x becomes an isolated vertex and Ω2(R) \ IM(R)
is a disconnected graph. On the other hand, x is a vertex with minimum
degree for Ω2(R)\IM(R) and thus by definition of connectivity for a graph,
we have κ(Ω2(R) \ IM(R)) = |mn \

∪n
j=1
j ̸=n

mj |. �

Corollary 2. Let R be a c-semilocal semiring with Co − Max(R) =
{m1, ...,mn}. If |mi \

∪n
j=1
j ̸=i

mj | = 1 for some mi ∈ Co − Max(R), then

Ω2(R) \ IM(R) has a cut-vertex.

Proof. By Theorem 6, we have κ(Ω2(R) \ IM(R)) = 1. Thus Ω2(R) \
IM(R) has a cut-vertex. �

A cut-edge of a graph G is an edge whose deletion increases the number
of components. This implies an edge of a connected graph G is a cut-edge
if its deletion disconnects the graph. It has been proven that an edge is a
cut-edge if and only if it belongs to no cycle. A disconnecting set of edges
is a set F ⊆ E(G) such that G \ F has more than one component. The
edge-connectivity of G, written κ

′
(G), is the minimum size of a disconnecting

set.
In the following we obtain a necessary and sufficient condition for the

semiring R that Ω2(R) \ IM(R) includes a cut-edge. Next, we determine
edge-connectivity for c-semilocal semirings. We need the following lemma
which is proved in [12, p.23]

Lemma 2. An edge is a cut-edge if and only if it belongs to no cycle.

Theorem 7. Let R be a c-semilocal semiring with maximal co-ideals
m1, ...,mn. If |m1 \

∪n
j=1
j ̸=1

mj | ≥ |m2 \
∪n

j=1
j ̸=2

mj | ≥ ... ≥ |mn \
∪n−1

j=1 mj |, then

κ′(Ω2(R) \ IM(R)) = |mn \
∪n−1

j=1 mj |.
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Proof. Let x ∈
∩n−1

j=1 mj \ mn. By the proof of Therorem 6, x is only

adjacent to the elements of mn \
∪n−1

j=1 mj and it is a vertex with minimum

degree for Ω2(R) \ IM(R). However, as κ
′
(Ω2(R) \ IM(R)) is the minimum

size of a disconnecting set, so κ′(Ω2(R) \ IM(R)) = |mn \
∪n−1

j=1 mj |. �

Corollary 3. Let R be a c-semilocal semiring with Co − Max(R) =
{m1, ...,mn}. If |mi \

∪n
j=1
j ̸=i

mj | = 1 for some mi ∈ Co − Max(R), then

Ω2(R) \ IM(R) has a cut-edge.

Proof. Suppose that |mk \
∪n

j=1
j ̸=k

mj | = 1 for some mk ∈ Co−Max(R).

Let x ∈
∩n

j=1
j ̸=k

mj \mk and mk \
∪n

j=1
j ̸=k

mj = {y}. Since x is only adjacent to

y, thus, if we delete the edge x− y, then x becomes an isolated vertex and
Ω2(R) \ IM(R) will be disconnected. Hence x− y is a cut-edge. �

In the following we give an example that clarifies the previous results:

Example 2. (i) Let S be a semiring as defined in Example 1 and let
R = (S × S,+, ·). The maximal co-ideals of R are as follows:

m1 = {(0, 1), (0, a), (1, a), (a, 1), (1, 1), (a, a)}
m2 = {(1, 0), (a, 0), (1, a), (a, 1), (1, 1), (a, a)}

The graph Ω2(R)\IM(R) is complete bipartite with vertex-setsm1\IM(R) =
{(0, 1), (0, a)} and m2 \ IM(R) = {(1, 0), (a, 0)}. Indeed, Ω2(R) \ IM(R)
forms K2,2 and so this graph has no cut-vertex. Also, every edges of this
graph belong to a cycle and this implies that Ω2(R)\IM(R) has no cut-edge.

(ii) Let X = {a, b, c} and R = (P (X),∪,∩) be a semiring, where P (X)
is power set of X. In this case, the maximal co-ideals of the semiring R are
as follows:

m1 = {{a}, {a, b}, {a, c}, X}
m2 = {{b}, {a, b}, {b, c}, X}
m3 = {{c}, {a, c}, {b, c}, X}.

In the graph Ω2(R) \ IM(R) for the semiring R, the vertex {a, b} is only
adjacent to {c} and so {a, b} − {c} is a cut-edge. Also, {a, c} − {b} and
{b, c} − {a} are cut-edges. Thus Ω2(R) \ IM(R) has three cut-edges. Since
{a, b}, {a, c} and {b, c} are vertices of degree 1, thus {a}, {b} and {c} are
cut-vertex for Ω2(R) \ IM(R).

A unicyclic graph is a connected graph with a unique cycle. To this end,
we characterize all semirings whose Ω2(R) \ IM(R) is unicyclic.
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Theorem 8. Let R be a c-semilocal semiring. If Ω2(R) \ IM(R) is a
unicyclic graph, then |Co − Max(R)| ≤ 3. Moreover, if Co − Max(R) =
{m1,m2,m3}, then |mi \

∪3
j=1
j ̸=i

mj | = 1 for each 1 ≤ i ≤ 3.

Proof. Assume contrary that |Co − Max(R)| ≥ 4. By [10, Theorem
3.6], Ω2(R) \ IM(R) contains K4 as a subgraph and so it contains more
than one cycle, which is a contradiction by our assumption. Now, let Co−
Max(R) = {m1,m2,m3}. Without loss of generality, we may assume that
|m1 \ m2 ∪ m3| ≥ 2. Let x, y ∈ m1 \ m2 ∪ m3, z ∈ m2 \ m1 ∪ m3 and
s ∈ m3 \ m1 ∪ m2. Hence x − z − s − x and y − z − s − y are two cycles
in Ω2(R) \ IM(R), which is a contradiction. Hence |mi \

∪3
j=1
j ̸=i

mj | = 1 for

each 1 ≤ i ≤ 3. �

Proposition 2. Let R be a semiring with Co − Max(R) = {m1,m2}.
Then Ω2(R) \ IM(R) is a unicyclic graph if and only if |mi \ IM(R)| = 2
for each i = 1, 2.

Proof. Assume that Ω2(R) \ IM(R) is a unicyclic graph. By [10,
Theorem 3.4], Ω2(R) \ IM(R) is a complete bipartite graph. Thus, if
|mi \ IM(R)| = 1 for some i, then Ω2(R) \ IM(R) is a star graph and
contains no cycle. Also, if |mi \ IM(R)| ≥ 3 for each i, then Ω2(R) \ IM(R)
will include more than two distinct cycles, a contradiction. Thus we must
have |mi \ IM(R)| = 2 for each i.

Conversely, if |mi \ IM(R)| = 2 for each i, then Ω2(R) \ IM(R) is of the
form K2,2. Thus, it is clear that Ω2(R) \ IM(R) is a unicyclic graph. �
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