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Abstract. In the present paper, we introduce the notion of a gen-
eralized partial metric space which is an extension of the partial
metric space due to S. G. Matthews (Partial metric topology, Pa-
pers on general topology and applications, Ann. New York Acad.
Sci.,728 (1994), 183-197). We investigate some basic properties
of the generalized partial metric spaces and establish some new
fixed point theorems for linear and non-linear contraction on such
spaces.
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1. Introduction

The notion of a partial metric space was introduced by S.G. Matthews
[6] in 1994. The partial metric space is a generalization of the usual metric
space in which the self distance is no longer necessarily zero. Matthews
hit the idea of partial metric spaces while studying some problems related
to computer applications. So the classical theory of a fixed point can be
applied to solve some challenging problems occurring in computer sciences.
This notion is so fascinating that till now it has been one of the active
research areas to work on. Moreover, partial metric spaces have a wide
area of application in the field of fixed point theory and have been used
extensively for several generalizations of the Banach contraction principle
(see [1, 2, 3, 4, 5, 8, 9, 10, 11] and references therein).

Our main motive is to further extend the partial metric spaces to their
more generalized form. In this paper, we introduce the notion of generalized
partial metric and generalized partial metric space (see Definition 2) which
significantly extend the suitable notions of Matthews [6]. Motivated by
the suitable results of ( [6], [8] and [10]), we prove some new fixed point
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theorems for linear and nonlinear generalized contractions. Moreover, we
also investigate some basic properties of generalized partial metric space and
give some examples to illustrate our main results.

2. A generalization of Matthews partial metric space

We begin with definition of partial metric space due to Matthews [6] .

Definition 1. (S.G. Matthews 1994). A function p : X ×X → [0,∞) is
called a partial metric if, for all x, y, z ∈ X,

(a). x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(b). p(x, x) ≤ p(x, y),
(c). p(x, y) = p(y, x),
(d). p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is called a Matthews partial metric space. This notion has
turned out to be useful in the fixed point theory (see for instance [1, 2, 3, 4,
5, 7, 9, 10, 11]).

Now we propose the following definition:

Definition 2. Let X be a non-empty set and P : X ×X ×X → R be a
mapping which satisfy the following conditions for all x, y, z, a ∈ X,

(i). x = y ⇐⇒ P (x, x, y) = 0 and P (y, y, x) = 0,
(ii). P (x, x, y) ≥ 0,
(iii). P (x, y, z) = P (z, y, x),
(iv). P (x, y, z) ≤ P (x, y, a) + P (a, a, z).

In the sequel P and the ordered pair (X,P ) are referred to, respectively, as
a generalized partial metric and a generalized partial metric space.

If we define P : X ×X ×X → R by

(1) P (x, y, z) := p(x, z)− p(y, y),

then P satisfies all the conditions of Definition 1. It is easy to verify that con-
ditions (i)−(iii) of Definition 2 imply the conditions (a)−(c) of Definition 1,
respectively. If we take a = y and P (x, y, z) := p(x, z) − p(y, y) in condi-
tion (iv) of Definition 2 then we get condition (d) of Definition 1. Thus
generalized partial metric and generalized partial metric space contain the
respective Matthews notions as special cases.

Let us note the following obvious

Remark 1. Condition (iii) is equivalent to the following

P (x, y, z) ≤ P (z, y, x), for all x, y, z ∈ X.

An immediate example of generalized partial metric space is given as below:
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Example 1. Let X = R. We consider the function P : X ×X ×X → R
given as follows

P (x, y, z) = |x+ z − 2y|+ |x− z|

for all x, y, z ∈ X. One can easily verify the properties (i) − (iii) of gener-
alized partial metric space (X,P ). For property (iv), we have

P (x, y, z) = |x+ z − 2y|+ |x− z|
= |(x+ a− 2y) + (z − a)|+ |x− a+ a− z|
≤ |x+ a− 2y|+ |x− a|+ |a+ z − 2a|+ |a− z|
= P (x, y, a) + P (a, a, z).

Hence the ordered pair (X,P ) forms a generalized partial metric space.

Some other examples of a generalized partial metric space are given as fol-
lows:

(1). Let X = Rn and ∥.∥ a norm on X. Then P (x, y, z) = ∥x + z − 2y∥ +
∥x− z∥ is a generalized partial metric on X.

(2). Let X = Rn and ∥.∥ a norm on X. Then P (x, y, z) = ∥x− y∥+ ∥y− z∥
is a generalized partial metric on X.

(3). Let X be a non-empty set, and let d be an ordinary metric on X. Then
P (x, y, z) = d(x, y) + d(y, z) is a generalized partial metric on X.

(4). Let X = [0,∞). Then P (x, y, z) = y − min{x, y, z} is a generalized
partial metric space on X.

(5). Let X = [0,∞). Then P (x, y, z) = max{x, y, z} − min{x, y, z} is a
generalized partial metric space on X.

Definition 3. Let (X,P ) be a generalized partial metric space. Then for
x ∈ X, r > 0, we define the ball BP (x, r) and the closed ball BP [x, r] with
center x and radius r as follows respectively:

BP (x, r) = {y ∈ X : P (x, x, y) < r and P (y, y, x) < r}

and

BP [x, r] = {y ∈ X : P (x, x, y) ≤ r and P (y, y, x) ≤ r}.
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Example 2. Let X = R and P (x, y, z) = |x−y|+ |y−z| be a generalized
partial metric space on R. Then the open ball of radius 1/2, centered at
x = 1 is the open interval (1/2, 3/2), as we have

BP (1, 1/2) = {y ∈ R : P (y, y, 1) < 1/2 and P (1, 1, y) < 1/2}
= {y ∈ R : |y − y|+ |y − 1| < 1/2 and |1− 1|+ |1− y| < 1/2}
= {y ∈ R : |1− y| < 1/2}
= {y ∈ R : |y − 1| < 1/2}
= {y ∈ R : 1− 1/2 < y < 1 + 1/2}
= (1/2, 3/2).

Lemma 1. If (X,P ) is the generalized partial metric space, then P (x, x, z) =
P (z, x, x), for all x, z ∈ X.

Proof. This lemma follows directly from property (iii) of generalized
partial metric by taking x = y. ■

Definition 4. Let (X,P ) be a generalized partial metric space. A se-
quence (xn) in X is called a Cauchy sequence if P (xn, xn, xm) → 0 and
P (xm, xm, xn) → 0 as n,m → ∞, that is for any ϵ > 0, there exists n0 ∈ N
such that P (xn, xn, xm) < ϵ and P (xm, xm, xn) < ϵ, for each n,m ≥ n0.

Definition 5. Let (X,P ) be a generalized partial metric space. A se-
quence (xn) in X converges to x if P (xn, xn, x) → 0 and P (x, x, xn) → 0 as
n → ∞, that is for each ϵ > 0, there exists n0 ∈ N such that P (xn, xn, x) < ϵ
and P (x, x, xn) < ϵ, for each n,m ≥ n0.

Definition 6. A generalized partial metric space (X,P ) is said to be
complete if every Cauchy sequence is convergent.

Lemma 2. Let (X,P ) be a generalized partial metric space. If the se-
quence (xn) in X converges to x, then x is unique.

Proof. Let (xn) converge to x and y. Then for each ϵ > 0, there exist
n1, n2 ∈ N such that

n ≥ n1 =⇒ P (xn, xn, x) <
ϵ

2
∧ P (x, x, xn) <

ϵ

2

and
n ≥ n2 =⇒ P (xn, xn, y) <

ϵ

2
∧ P (y, y, xn) <

ϵ

2
.

If n0 = max{n1, n2}, then for every n ≥ n0 and from property (iv) of a
generalized partial metric we get

P (x, x, y) ≤ P (x, x, xn) + P (xn, xn, y) <
ϵ

2
+

ϵ

2
= ϵ.
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Hence P (x, x, y) = 0 and similarly P (y, y, x) = 0 so x = y. ■

Lemma 3. In a generalized partial metric space every convergent se-
quence is a Cauchy sequence.

Proof. Assume that (X,P ) is a generalized partial metric space and
(xn) is a sequence from X which converges to x. Then for every ϵ > 0 there
exist k1, k2 ∈ N such that

n ≥ k1 =⇒ P (xn, xn, x) <
ϵ

2
∧ P (x, x, xn) <

ϵ

2

and

m ≥ k2 =⇒ P (xm, xm, x) <
ϵ

2
∧ P (x, x, xm) <

ϵ

2
.

Setting k0 = max{k1, k2}, by property (iv) of generalized partial metric, we
get

P (xn, xn, xm) ≤ P (xn, xn, x) + P (x, x, xm) <
ϵ

2
+

ϵ

2
= ϵ.

Similarly

P (xm, xm, xn) ≤ P (xm, xm, x) + P (x, x, xn) <
ϵ

2
+

ϵ

2
= ϵ.

■

Lemma 4. Let (X,P ) be a generalized partial metric space. If there
exist sequences (xn) and (yn) such that lim

n→∞
xn = x and lim

n→∞
yn = y, then

lim
n→∞

P (xn, xn, yn) = P (x, x, y) and lim
n→∞

P (yn, yn, xn) = P (y, y, x).

Proof. Since (xn) converges to x and (yn) converges to y, then for each
ϵ > 0 there exist k1, k2 ∈ N such that

n ≥ k1 =⇒ P (xn, xn, x) <
ϵ

2
∧ P (x, x, xn) <

ϵ

2

and

n ≥ k2 =⇒ P (yn, yn, y) <
ϵ

2
∧ P (y, y, yn) <

ϵ

2
.

Let k0 = max{k1, k2}. Then, by property (iv) of generalized partial metric,

P (xn, xn, yn) ≤ P (xn, xn, x) + P (x, x, yn)

≤ P (xn, xn, x) + P (x, x, y) + P (y, y, yn)

<
ϵ

2
+

ϵ

2
+ P (x, x, y) = ϵ+ P (x, x, y).



10 S. Antal, U.C. Gairola, D. Khantwal, J. Matkowski and S. Negi

Hence we obtain

P (xn, xn, yn)− P (x, x, y) < ϵ.(2)

On the other hand, we have

P (x, x, y) ≤ P (x, x, xn) + P (xn, xn, y)

≤ P (x, x, xn) + P (xn, xn, yn) + P (yn, yn, y)

<
ϵ

2
+

ϵ

2
+ P (xn, xn, yn),

that is

P (x, x, y)− P (xn, xn, yn) < ϵ.(3)

From (2) and (3), we have |P (xn, xn, yn)− P (x, x, y)| < ϵ, that is

lim
n→∞

P (xn, xn, yn) = P (x, x, y).

Similarly, we can prove that lim
n→∞

P (yn, yn, xn) = P (y, y, x), which completes

our proof. ■

3. A fixed point result for linear generalized contractions on
generalized partial metric space

Now we begin with a fixed point theorem for linear generalized contrac-
tions on generalized partial metric space.

Theorem 1. Let (X,P ) be a complete generalized partial metric space
and T : X → X be a mapping satisfying the following condition:

(4) P (Tx, Tx, Ty) ≤ kP (x, x, y)

for all x, y ∈ X and some k ∈ [0, 1). Then T has a unique fixed point in X.

Proof. Let x0 be an arbitrary point in X. If x0 = Tx0 then the proof
completes. So we assume x0 ̸= Tx0 and x1 = Tx0. Continuing this process
we construct a sequence (xn) such that

xn+1 = Txn and xn+1 ̸= xn, for all n ∈ N0.

Now taking x = y = xn, and z = xn+1 in (4), we get

P (xn, xn, xn+1) = P (Txn−1, Txn−1, Txn)(5)

≤ kP (xn−1, xn−1, xn)

= kP (Txn−2, Txn−2, Txn−1)

≤ k2P (xn−2, xn−2, xn−1)

...

≤ knP (x0, x0, x1).
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Similarly if we take x = y = xn+1, and z = xn in (4), we get

P (xn+1, xn+1, xn) = P (Txn, Txn, Txn−1)(6)

≤ kP (xn, xn, xn−1)

= kP (Txn−1, Txn−1, Txn−2)

≤ k2P (xn−1, xn−1, xn−2)

...

≤ knP (x1, x1, x0).

Let n,m ∈ N and m > n. Then in view of inequality (5) and from property
(iv) of generalized partial metric, we have

P (xn, xn, xm) ≤ P (xn, xn, xn+1) + P (xn+1, xn+1, xm)(7)

≤ P (xn, xn, xn+1) + P (xn+1, xn+1, xn+2)

+ · · ·+ P (xm−1, xm−1, xm)

≤ knP (x0, x0, x1) + kn+1P (x0, x0, x1)

+ · · ·+ km−1P (x0, x0, x1)

= kn(1 + k + k2 + · · ·+ km−n−1)P (x0, x0, x1)

= kn
[
1− km−n

1− k

]
P (x0, x0, x1)

<
kn

1− k
P (x0, x0, x1).

Making n,m → ∞, we get P (xn, xn, xm) → 0. Similarly, in view of (6) and
from property (iv) of generalized partial metric, we have

P (xm, xm, xn) ≤ P (xm, xm, xm−1) + P (xm−1, xm−1, xn)(8)

≤ P (xm, xm, xm−1) + P (xm−1, xm−1, xm−2)

+ · · ·+ P (xn+1, xn+1, xn)

≤ km−1P (x1, x1, x0) + km−2P (x1, x1, x0)

+ · · ·+ knP (x1, x1, x0)

= kn(1 + k + k2 + · · ·+ km−n−1)P (x0, x0, x1)

= kn
[
1− km−n

1− k

]
P (x1, x1, x0)

<
kn

1− k
P (x1, x1, x0).

Again making n,m → ∞, we get P (xm, xm, xn) → 0. Since P (xn, xn, xm) →
0 and P (xm, xm, xn) → 0 as m,n → 0, therefore the sequence (xn) is a
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Cauchy in X. Since X is a complete generalized partial metric space so
there exists a point x in X such that P (xn, xn, x) → 0 and P (x, x, xn) → 0
as n → ∞. Now we will prove that Tx = x. In view of property (iv) of
generalized partial metric and using (4), we have

P (Tx, Tx, x) ≤ P (Tx, Tx, Txn) + P (Txn, Txn, x)

≤ kP (x, x, xn) + P (xn+1, xn+1, x).

Making n → ∞, we get P (Tx, Tx, x) = 0, hence by property (i) of general-
ized partial metric Tx = x.

Now we will show the uniqueness of the fixed point of T . Suppose there
exist x, y ∈ X with x = Tx and y = Ty. Then

P (x, x, y) = P (Tx, Tx, Ty) ≤ kP (x, x, y)

and therefore P (x, x, y) = 0 implies x = y. ■

Example 3. Let X = R. Then P (x, y, z) = |x − y| + |y − z| is a
complete generalized partial metric space. Define a self-map T on X by

T (x) =
sinx+ x

3
, for all x ∈ X. We have

P (Tx, Tx, Ty) = |Tx− Tx|+ |Ty − Ty|

=
1

3

∣∣( sinx+ x
)
−
(
sin y + y

)∣∣
≤ 1

3
| sinx− sin y|+ 1

3
|x− y|

≤ 1

3
|x− y|+ 1

3
|x− y| = 2

3
|x− y| = 2

3
P (x, x, y).

Thus all the assumptions of Theorem 1 hold and, consequently, x = 0 ∈ X
is the only fixed point of T .

4. A fixed point result for nonlinear generalized contractions
on generalized partial metric space

Theorem 2. Let (X,P ) be a complete generalized partial metric space
and T : X → X be a mapping. If there exists a nondecreasing function
γ : [0,∞) → [0,∞) such that the sequence (γn)n∈N of iterates of γ converges
pointwise to 0 , and

(9) P (Tx, Tx, Ty) ≤ γ
(
P (x, x, y)

)
, for all x, y ∈ X,

then T has a unique fixed point in X.
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Proof. Let x0 be an arbitrary element in X. Define the sequence (xn)
in X by

xn+1 = Txn, for all n ≥ 1.

It follows from (9), by induction, that for all n ∈ N ∪ {0},

P (xn+1, xn+1, xn) ≤ γn
(
P (x1, x1, x0)

)
and P (xn, xn, xn+1) ≤ γn

(
P (x0, x0, x1)

)
.

Consequently, letting n → ∞, we get

lim
n→∞

P (xn+1, xn+1, xn) = 0 = lim
n→∞

P (xn, xn, xn+1).

Thus, for ϵ > 0, we can choose n ∈ N such that

max{P (xn, xn, xn+1), P (xn+1, xn+1, xn)} ≤ ϵ− γ(ϵ).

Now we define

M := {x ∈ X : max {P (x, x, xn), P (xn, xn, x)} ≤ ϵ} .

By (9) and by virtue of γ, we have for any y ∈ M ,

P (Ty, Ty, xn) ≤ P (Ty, Ty, Txn) + P (Txn, Txn, xn)

≤ P (Ty, Ty, Txn) + P (xn+1, xn+1, xn)

≤ γ(ϵ) +
(
ϵ− γ(ϵ)

)
= ϵ.

Similarly

P (xn, xn, T y) ≤ P (xn, xn, Txn) + P (Txn, Txn, T y)

= P (xn, xn, xn+1) + P (Txn, Txn, Ty)

≤ ϵ− γ(ϵ) + γ(ϵ) = ϵ.

Thus, Ty ∈ M , that is T (M) ⊆ M , which implies that for all k,m > n,

P (xk, xk, xm) ≤ 2ϵ and P (xm, xm, xk) ≤ 2ϵ.

This shows that (xn) is a Cauchy sequence in generalized partial metric
space X and in view of completeness of X, there exists a point x in X such
that P (xn, xn, x) → 0 and P (x, x, xn) → 0 as n → ∞. Now we will prove
that x is a fixed point of T . In view of (iv) and using (9), we have

P (Tx, Tx, x) ≤ P (Tx, Tx, Txn) + P (Txn, Txn, x)

≤ γ
(
P (x, x, xn)

)
+ P (xn+1, xn+1, x)

< P (x, x, xn) + P (xn+1, xn+1, x).

Making n → ∞, we get P (Tx, Tx, x) = 0 implies Tx = x. Hence x is a fixed
point of mapping T in X. The argument for the uniqueness of fixed point
is similar to the one used in Theorem 1. ■
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Example 4. Let X = [0, 1] then P (x, y, z) = |x + z − 2y| + |x − z| is
a complete generalized partial metric space. Define a self-map T on X by

T (x) = sinx− x2

3
, for all x ∈ X and γ : [0,∞) → [0.∞) such that

γ(t) =

 t− t2

3
, t ∈ [0, 1],

1, t ∈ (1,∞).

Then for x, y ∈ X, with x− y = t > 0, we have

P (Tx, Tx, Ty) = 2|Tx− Ty|
= 2

∣∣( sinx− x2/3
)
−
(
sin y − y2/3

)∣∣
≤ 2| sinx− sin y|+ 2

3
|x2 − y2|

≤ 2|x− y|+ 2

3
|x2 − y2|

= 2|x− y|
(
1− 1

3
|x+ y|

)
≤ 2|x− y|

(
1− 1

3
|x− y|

)
= 2t(1− t/3)

= γ
(
P (x, x, y)

)
.

Thus all the assumptions of Theorem 2 hold and, consequently, x = 0 ∈ X
is the only fixed point of T .
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