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1. Introduction

Banach [2] investigated a fixed point theorem in metric space which is
known as ”Banach contraction principle”. After that many researchers have
investigated and improved this theorem on the extension and generalization
of metric space such as Bv metric, generalized metric, cone metric etc. In
2002, Branciari [3] first proved Banach fixed point theorem using integral
type contraction in metric space as below:

Let (X, d) be a complete metric space, c ∈ (0, 1), and let f : X → X such
that for each x, y ∈ X,∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt

where ϕ : [0,∞) → [0,∞) is a Lebesgue integrable map which is summable
(i.e., with finite integral) on each compact subset of [0,∞), non-negative,
and such that for each ϵ > 0,

∫ ϵ
0 ϕ(t)dt > 0; then f has a unique fixed point

a ∈ X such that for each x ∈ X, lim
n→∞

fnx = a.

In 2003, Rhoades[14] extended the Branciari’s Theorem by replacing the
condition as:∫ d(Sx,Sy)

0
ϕ(t)dt ≤ α

∫ max{d(x,y),d(x,Sx),d(y,Sy), d(x,Sy)+d(y,Sx)
2

}

0
ϕ(t)dt.
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In 2009, Moradi and Biranvand [cf.[9]] extended the Rhoades theorem by
replacing the condition as bellow:∫ d(TSx,TSy)

0
ϕ(t)dt

≤ α

∫ max{d(Tx,Ty),d(Tx,TSx),d(Ty,TSy), d(Tx,TSy)+d(Ty,TSy)
2

}

0
ϕ(t)dt.

Thereafter many researchers, Badehian and Asgari [1], Gupta et al. [5],
Vats et al. [18], Sarwar et al. [16], Shoaib et al. [17] have used integral type
contraction to prove their results in various metric spaces. In 1969, Gahler
[4] has introduced the notion of 2-metric space. Many research workers
such as Gupta et al. [5], Prajapati et al. [13] have established fixed point
theorems using integral type contraction conditions in 2-Banach space. We
have introduced a new contraction and have given some examples in support
of this contraction. Also we have proved some theorems and have given some
corollaries.

2. Definition

Gahler [4] has given the definition of 2-metric space as follows:

2-Metric space: Let X be a non-empty set and d : X×X×X → [0,+∞)
be a real valued function which satisfied the following conditions:
(i) for every distinct points x, y there is a point z in X such that

d(x, y, z) ̸= 0;
(ii) d(x, y, z) = 0 if any two of three of x, y, z are equal;
(iii) d(x, y, z) = d(p(x, y, z)) for all x, y, z ∈ X and for all permutations

p(x, y, z) of x, y, z;
(iv) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w ∈ X.
The mapping d satisfying the above properties is called a 2-metric and (X, d)
is called a 2-metric space.

Note: Suppose, X be a non-empty set and ρ be a metric on X and d be
defined on X by d(x, y, z) = ρ(x, y)ρ(y, z)ρ(z, x). Then d is a 2-metric. So
in this case, 2-metric space is the generalization of a metric space.

It is remarcable to know that every convergence sequence in metric space
is Cauchy. But by an example it has been shown in [10] that in a 2-metric
space a convergence sequence may not be a Cauchy sequence. This is a basic
difference between metric space and 2-metric space.

Metric ρ(x, y) means distance between two points x and y and 2-metric
d(x, y, z) means area of a triangle formed by the points x, y and z.

F -contraction: Wardowski[19] has defined F -contraction as follows:
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Let F = {F : R+ → R} satisfying the following conditions:
(i) F is strictly increasing;
(ii) for all sequence {αn} ∈ R, lim

n→+∞
αn = 0 if and only if

lim
n→+∞

F (αn) = −∞;

(iii) there exists 0 < k < 1 such that lim
α→0+

αnF (α) = 0.

Then a function T : X → X is said to be F -contraction if there exists a
function F ∈ F such that for all x, y, a ∈ X,

τ ∈ R+ ⇒ τ + F (d(Tx, Ty, a)) ≤ F (d(x, y, a)).

3. Preliminaries

Throughout the paper we denote the following:
(i) We write X as a 2-metric space.
(ii) Φ = {ϕ : ϕ : R+ → R+ is Lebesgue integrable , summable on each
compact subset of R+ satisfying the conditions:

(a)
∫ ϵ
0 ϕ(t)dt > 0 for each ϵ and

(b)
∫ a+b
0 ϕ(t)dt ≤

∫ a
0 ϕ(t)dt+

∫ b
0 ϕ(t)dt}.

(iii) F : F ∈ F.

Lemma 1 ([8]). Let ϕ ∈ Φ and sn be a sequence of non-negative reals
with lim

n→+∞
sn = s. Then

lim
n→+∞

∫ sn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

Lemma 2 ([8]). Let ϕ ∈ Φ and sn be a sequence of non-negative reals.
Then

lim
n→+∞

∫ sn

0
ϕ(t)dt = 0

if and only if lim
n→+∞

sn = 0.

4. Main part

Samet et al. [15] introduced the concept of α − adimissible in metric
space. We have generalized it in 2-metric space as follows:

α-2admissible: Let T : X → X be a self map on a 2-metric space (X, d)
and α : X × X × X → [0,+∞) be a function. We say that T is an α −
2admissible mapping if ∀x, y, a ∈ X, α(x, y, a) ≥ 1 ⇒ α(Tx, Ty, a) ≥ 1.

Now we are to define Fα-contraction as follows:
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Fα-contraction: Let (X, d) be a 2-metric space and T be a self map on
X. Then T is called a Fα-contraction if for τ > 0,

τ + F (α(x, y, a)d(Tx, Ty, a)) ≤ F (d(x, y, a)),

where F ∈ F.

Example 1. LetX = [0, 2] and d be given by d(x, y, a) = min{|x−y|, |y−
a|, |a− x|}. Then clearly (X, d) is a 2-metric space. Let α : X ×X ×X →
[0,+∞) be given by

α(x, y, a) =

{
ex+y+a, ∀x, y, a ∈ [0, 1.5]
1
4 , otherwise.

Clearly α(x, y, a) ≥ 1, ∀x, y, a ∈ X. Let T : X → X be given by Tx = kx,
where α(x, y, a)k < 1.

Suppose d(x, y, a) = |x− y|. Then |x− y| ≤ |y − a|
i.e., y ≤ x ≤ a i.e., y ≤ x ≤ a ≤ a

k
i.e., |x− y| ≤ |y − a

k | i.e., k|x− y| ≤ k|y − a
k |.

Similarly |x− y| ≤ |a− x| ⇒ k|x− y| ≤ k|x− a
k |.

Now d(Tx, Ty, a) = min{|Tx, Ty|, |Ty−a|, |a−Tx|} = min{|kx−ky|, |ky−
a|, |a− kx|} = k|x− y|.
Thus F (α(x, y, a)d(x, y, a)) = F (α(x, y, a)k|x−y|) < F (|x−y|) = F (d(x, y, a)).
Then there exist a τ > 0 such that
τ + F (α(x, y, a)d(x, y, a)) ≤ F (d(x, y, a)).

Thus T is a Fα-contraction mapping.

Lemma 3. If T is a Fα-contraction, then T is also a F -contraction.

Proof. If α(x, y, a) = 1, there is nothing to proof. So we consider the
case α ̸= 0.

Let us first suppose T is a Fα. Then for τ > 0,
τ + F (α(x, y, a)d(Tx, Ty, a)) ≤ F (d(x, y, a)).

Since,
τ + F (d(Tx, Ty, a)) ≤ τ + F (α(x, y, a)d(Tx, Ty, a)) ≤ F (d(x, y, a)) i.e.,

τ + F (d(Tx, Ty, a)) ≤ F (d(x, y, a)) i.e., T is a f -contraction.
For the converse part, let T is F -contraction. Then for τ > 0,
τ + F (d(Tx, Ty, a)) ≤ F (d(x, y, a)).

Since F (d(Tx, Ty, a)) < F (α(x, y, a)d(Tx, Ty, a)), then we cannot find a τ >
0 such that the relation τ+F (α(x, y, a)d(Tx, Ty, a)) < τ+F (d(Tx, Ty, a)) ≤
F (d(x, y, a)) hold.
Thus F -contraction does not imply Fα-contraction. Hence the lemma. ■
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Example 2. Let X = [0,+∞) and d : X ×X ×X → [0,+∞) be given
by d(x, y, a) = min{|x− y|, |y− a|, |a− x|}. Then (X, d) is a 2-metric space.
Let α : X ×X ×X → [0,+∞) be defined by

α(x, y, a) =

{
2 , ∀ x, y, a ∈ [0, 5];
0 , otherwise

and Fx = x. Let T be defined by Tx = x
3∀x ∈ x. Then for all x, y, a ∈ [0, 5]

where x < y < a, d(x, y, a) = min{|x − y|, |y − x|, |a − x|} = |x − y|(say).
Then

|x− y| ≤ |y − a| and |x− y| ≤ |a− x|
implies, |x− y| ≤ |y − 3a| and |x− y| ≤ |x− 3a|[since x < y < a < 3a]

i.e.,
1

3
|x− y| ≤ 1

3
|y − 3a| and

1

3
|x− y| ≤ 1

3
|x− 3a|.

Now,

d(Tx, Ty, a) = d(
x

3
,
y

3
, a) = min{|x

3
− y

3
|, |y

3
− a|, |a− x

3
|}

= min{1
3
|x− y|, 1

3
|y − 3a|, 1

3
|x− 3a|} =

1

3
|x− y|.

Therefore,

F (d(Tx, Ty, a)) = F (
1

3
|x− y|) = 1

3
|x− y|.

So,

F (α(x, y, a)d(Tx, Ty, a)) = F (2(
1

3
|x− y|) = 2

3
|x− y|.

Thus
F (d(Tx, Ty, a)) ≤ F (α(x, y, a)d(Tx, Ty, a)).

Therefore there exists a τ = 1
5 |x− y| > 0 such that,

τ + F (d(Tx, Ty, a)) ≤ τ + F (α(x, y, a)d(Tx, Ty, a))

≤ F (|x− y|) = F (d(x, y, a))

i.e., Fα-contraction T is also a F -contraction.
Clearly, converse is not hold.
If α(x, y, a) = 1, then for τ = 1

3 |x− y| > 0

τ + F (α(x, y, a)d(Tx, Ty, a)) = τ + F (d(Tx, Ty, a)) = τ + F (
1

3
|x− y|)

=
1

3
|x− y|+ 1

3
|x− y| = 2

5
|x− y| < |x− y|

= d(x, y, a).

Thus for α(x, y, a) = 1, Fα-contraction T is also a F -contraction.
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In the next part we have proved some common fixed point theorems.

Theorem 1. Let (X, d) be a complete 2-metric space and {fn}∞n=1 be a
sequence of self-maps satisfying the following relation∫ d(fix,fjy,a)

0
ϕ(t)dt ≤

∫ M(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and M(x, y, a) = αmax{d(x, y, a), d(x, fix, a), d(y, fjy, a)}
+βmax{d(x, fix, a), d(x, fjy, a)}+γ d(y,fjy,a)

1+d(y,fix,a)
, α+β+γ < 1. Then {fn}∞n=1

have a unique common fixed point in X.

Proof. Let us construct a sequence {xn} for a fixed i ∈ N in X such
that xn+1 = fixn, n ∈ N ∪ {0}, with an initial approximation x0 ∈ X.

If xn = fixn i.e., xn+1 = xn then xn is a common fixed point of {fn}∞n=1.
So we assume that xn+1 ̸= xn.

At first we assume that lim
n→+∞

d(xn+1, xn, a) = 0.

Since,

(1)

∫ d(xn+1,xn,a)

0
ϕ(t)dt =

∫ d(fixn,fjxn−1,a)

0
ϕ(t)dt ≤

∫ M(xn,xn−1,a)

0
ϕ(t)dt,

where,

M(xn, xn−1, a)(2)

= αmax{d(xn, xn−1, a), d(xn, fixn, a), d(xn−1, fjxn−1, a)}
+ βmax{d(xn, fixn, a), d(xn, fjxn−1, a)}

+ γ
d(xn−1, fjxn−1, a)

1 + d(xn−1, fixn, a)

= αmax{d(xn, xn−1, a), d(xn, xn+1, a), d(xn−1, xn, a)}
+ βmax{d(xn, xn+1, a), d(xn, xn, a)}

+ γ
d(xn−1, xn, a)

1 + d(xn−1, xn+1, a)

≤ αmax{d(xn, xn−1, a), d(xn, xn+1, a)}+ βd(xn, xn+1, a)

+ γd(xn−1, xn, a).

If d(xn, xn−1, a) ≤ d(xn, xn+1, a), then from (2) we get

M(xn, xn−1, a) = (α+ β + γ)d(xn, xn+1, a).

So from (1) we have∫ d(xn+1,xn,a)

0
ϕ(t)dt ≤

∫ (α+β+γ)d(xn,xn+1,a)

0
ϕ(t)dt
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implies, d(xn+1, xn, a) ≤ (α+ β + γ)d(xn, xn+1, a)

implies, 1 ≤ α+ β + γ, a contradiction.

Therefore d(xn, xn+1, a) ≤ d(xn, xn−1, a). Thus {d(xn+1, xn, a)} is a mono-
tone decreasing sequence of real numbers and bounded below.

Suppose lim
n→+∞

d(xn+1, xn, a) = r.

Then ∫ r

0
ϕ(t)dt = lim

n→+∞

∫ d(xn+1,xn,a)

0
ϕ(t)dt

≤ lim
n→+∞

∫ (α+β+γ)d(xn,xn+1,a)

0
ϕ(t)dt [using(2)]

≤ lim
n→+∞

∫ (α+β+γ)2d(xn,xn+1,a)

0
ϕ(t)dt

...

≤ lim
n→+∞

∫ (α+β+γ)nd(xn,xn+1,a)

0
ϕ(t)dt ≤ 0

implies, r = 0.

Thus lim
n→+∞

d(xn+1, xn, a) = 0. Next, let n,m ∈ N;n > m.

Since

d(xn, xm, a) ≤ d(xn, xm, xn−1) + d(xn, xn−1, a) + d(xn−1, xm, a)

taking lim
n,m→+∞

we get from above

lim
n,m→+∞

d(xn, xm, a) ≤ lim
n,m→+∞

d(xn, xm, xn−1) + lim
n,m→+∞

d(xn, xn−1, a)

+ lim
n,m→+∞

d(xn−1, xm, a)

= lim
n,m→+∞

d(xn−1, xm, a)

...

≤ lim
n,m→+∞

d(xm, xm, a) = 0.

Thus {xn} is a Cauchy sequence in X. Since X is a complete 2-metric space,
there exists a x ∈ X such that lim

n→+∞
d(xn, x, a) = 0. Next we show that x

is a common fixed point of {fn}∞n=1.
Since,

lim
n→+∞

d(fix, x, a) ≤ lim
n→∞

d(fi, x, xn) + lim
n→+∞

d(fix, xn, a)

+ lim
n→+∞

d(xn, x, a) = lim
n→+∞

d(fix, xn, a).
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Thus ∫ d(fix,x,a)

0
ϕ(t)dt ≤

∫ d(fix,xn,a)

0
ϕ(t)dt(3)

=

∫ d(fix,fjxn−1,a)

0
ϕ(t)dt ≤

∫ M(x,xn−1,a)

0
ϕ(t)dt,

where,

M(x, xn−1, a) = αmax{d(x, xn−1, a), d(x, fix, a), d(xn−1, fjxn−1, a)}
+ βmax{d(x, fix, a), d(x, fjxn−1, a)}

+ γ
d(xn−1, fjxn−1, a)

1 + d(xn−1, fix, a)

≤ αmax{d(x, xn−1, a), d(x, fix, a), d(xn−1, xn, a)}
+ βmax{d(x, fix, a), d(x, xn, a)}+ γd(xn−1, xn, a)

Therefore

lim
n→+∞

M(x, xn, a) ≤ lim
n→+∞

αmax{d(x, xn, a), d(x, fix, a), d(xn, xn+1, a)}

+ lim
n→+∞

βmax{d(x, fix, a), d(x, xn+1, a)}

+ lim
n→+∞

γd(xn, xn+1, a)

= αd(x, fix, a) + βd(fix, x, a) + γ.0.

Therefore from (3) we get∫ d(fix,x,a)

0
ϕ(t)dt ≤

∫ (α+β)d(fix,x,a)

0
ϕ(t)dt.

Thus

d(fix, x, a) ≤ (α+ β)d(fix, x, a)

implies, d(fix, x, a) = 0

implies, fix = x.

Thus x is a common fixed point of {fn}∞n=1. Let y be another common fixed
point. Then

(4)

∫ d(x,y,a)

0
ϕ(t)dt =

∫ d(fix,fjy,a)

0
ϕ(t)dt ≤

∫ M(x,y,a)

0
ϕ(t)dt,
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where,

M(x, y, a) = αmax{d(x, y, a), d(x, fix, a), d(y, fjy, a)}

+ βmax{d(x, fix, a), d(x, fjy, a)}+ γ
d(y, fjy, a)

1 + d(y, fix, a)

≤ αmax{d(x, y, a), d(x, x, a), d(y, y, a)}
+ βmax{d(x, x, a), d(x, y, a)}+ γd(y, y, a)

= αd(x, y, a) + βd(x, y, a) + γ.0.

Therefore from (4) we get∫ d(x,y,a)

0
ϕ(t)dt =

∫ (α+β)d(x,y,a)

0
ϕ(t)dt

implies, d(x, y, a) ≤ (α+ β)d(x, y, a)

implies, d(x, y, a) = 0

implies, x = y.

Thus x is a unique common fixed point of {fn}∞n=1.
Hence the theorem. ■

Corollary 1. Let (X, d) be a complete 2-metric space, f1 and f2 be a
two self-maps satisfying the following relation∫ d(f1x,f2y,a)

0
ϕ(t)dt ≤

∫ M(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and M(x, y, a) = αmax{d(x, y, a), d(x, f1x, a), d(y, f2y, a)}
+βmax{d(x, f1x, a), d(x, f2y, a)} + γ d(y,f2y,a)

1+d(y,f1x,a)
, α + β + γ < 1. Then f1

and f2 have a unique common fixed point in X.

Proof. Putting fi = f1 and fj = f2 in the Theorem 1 we get the result. ■

Corollary 2. Let (X, d) be a complete 2-metric space, f be a self-map
satisfying the following relation∫ d(fx,fy,a)

0
ϕ(t)dt ≤

∫ M(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and M(x, y, a) = αmax{d(x, y, a), d(x, fx, a), d(y, fy, a)}+
βmax{d(x, fx, a), d(x, fy, a)}+ γ d(y,fy,a)

1+d(y,fx,a) , α+ β + γ < 1. Then f have a
unique fixed point in X.
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Proof. Putting fi = f in the Theorem 1 we get the result. ■

Example 3. Let, X = [0, 1) and d be defined by d(x, y, a) = min{|x−y|,
|y− a|, |a− x|} where x, y, a ∈ X. Then clearly d is a 2-metric and so (X, d)
is a 2-metric space.

Now let us consider the sequence of functions {fn}∞n=1 given by fi(x) = xi

and the sequence {xn} given by xn+1 = fi(xn) for a fixed i ∈ N with the
initial approximation x0 ∈ X.

Thus for 1 ≤ i < j ∈ N, fi(xn) = xi
n+1

0 , fj(xn) = xj
n+1

0 .

Now d(fixn, fjxn−1, a) = d(xi
n+1

0 , xj
n

0 , a).
Again,

M(xn, xn−1, a)

= αmax{d(xn, xn−1, a), d(xn, fixn, a), d(xn−1, fjxn−1, a)}

+ βmax{d(xn, fixn, a), d(xn, fjxn−1, a)}+ γ
d(xn−1, fjxn−1, a)

1 + d(xn−1, fixn, a)

[ where α, β, γ ≥ 0 and α+ β + γ < 1 ]

= αmax{d(fixn−1, fjxn−2, a), d(fixn, xn, a), d(fixn−2, fjxn−1, a)}

+ βmax{d(fixn, xn, a), d(fixn−1, fjxn−1, a)}+ γ
d(fixn−2, fjxn−1, a)

1 + d(fixn, xn−1, a)

= αmax{d(fixn−1, fjxn−2, a), d(fixn, fjxn−1, a), d(fixn−2, fjxn−1, a)}
+ βmax{d(fixn, fjxn−1, a), d(fixn−1, fjxn−1, a)}

+ γ
d(fixn−2, fjxn−1, a)

1 + d(fixn, fjxn−2, a)

≤ αmax{d(xin0 , x
jn−1

0 , a), d(xi
n+1

0 , xj
n

0 , a), d(x
in−1

0 , xj
n

0 , a)}

+ βmax{d(xin+1

0 , xj
n

0 , a), d(x
in

0 , x
jn

0 , a)}+ γ
d(xi

n−1

0 , xj
n

0 , a)

1 + d(xi
n+1

0 , xj
n−1

0 , a)

≤ αd(xi
n−1

0 , xj
n

0 , a) + βd(xi
n+1

0 , xj
n

0 , a) + γd(xi
n−1

0 , xj
n

0 , a)

≤ (α+ β + γ)d(xi
n−1

0 , xj
n

0 , a)

≤ d(xi
n−1

0 , xj
n

0 , a).

Thus d(fixn, fjxn−1, a) ≤ d(xi
n+1

0 , xj
n

0 , a) ≤M(xn, xn−1, a).
Therefore, ∫ d(fixn,fjxn−1,a)

0
ϕ(t)dt ≤

∫ M(xn,xn−1,a)

0
ϕ(t)dt.

So by Theorem 1, X has a unique fixed point x0 = 0.
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Theorem 2. Let (X, d) be a complete 2-metric space and {fn}∞n=1 be a
sequence of self-maps satisfying the relation,∫ d(fix,fjy,a)

0
ϕ(t)dt ≤

∫ ψ(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and ψ(x, y, a) = αd(x, y, a) + βmax{d(x, fix, a), d(x, fjy, a)}+
γmin{d(y, fjy, a), d(y, fix, a)};α+ β + γ < 1. Then {fn}∞n=1 have a unique
common fixed point in X.

Proof. Let {xn} be a sequence such that for a fixed i ∈ N, xn+1 = fixn
for n ∈ N∪ {0} where x0 ∈ X is an initial approximation. If xn+1 = xn i.e.,
fixn = xn, then xn is a common fixed point of {fn}∞n=1 and this completes
the theorem. So we assume that xn+1 ̸= xn.

At first we will show that limn→+∞ d(xn+1, xn, a) = 0.
Since

(5)

∫ d(xn+1,xn,a)

0
ϕ(t)dt =

∫ d(fixn,fjxn−1,a)

0
ϕ(t)dt ≤

∫ ψ(xn,xn−1,a)

0
ϕ(t)dt,

where,

ψ(xn, xn−1, a) = αd(xn, xn−1, a) + βmax{d(xn, fixn, a), d(xn, fjxn−1, a)}
+ γmin{d(xn−1, fjxn−1, a), d(xn−1, fixn, a)}

= αd(xn, xn−1, a) + βmax{d(xn, xn+1, a), d(xn, xn, a)}
+ γmin{d(xn−1, xn, a), d(xn−1, xn+1, a)}

= αd(xn, xn−1, a) + βd(xn, xn+1, a) + γd(xn−1, xn, a)

If d(xn−1, xn, a) ≤ d(xn, xn+1, a), then ψ(xn, xn−1, a) ≤ (α + β + γ)
×d(xn+1, xn, a). From (5) we get∫ d(xn+1,xn,a)

0
ϕ(t)dt ≤

∫ (α+β+γ)d(xn+1,xn,a)

0
ϕ(t)dt

implies, d(xn+1, xn, a) ≤ (α+ β + γ)d(xn+1, xn, a)
implies, 1 ≤ α+ β + γ, a contradiction.

Therefore d(xn+1, xn, a) ≤ d(xn, xn−1, a). Thus {d(xn+1, xn, a)} is a se-
quence of real numbers monotone decreasing and bounded below.

Suppose lim
n→+∞

d(xn+1, xn, a) = r.

Now∫ r

0
ϕ(t)dt = lim

n→+∞

∫ d(xn+1,xn,a)

0
ϕ(t)dt = lim

n→+∞

∫ d(fixn,fjxn−1,a)

0
ϕ(t)dt(6)

≤ lim
n→+∞

∫ ψ(xn,xn−1,a)

0
ϕ(t)dt,
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where

ψ(xn, xn−1, a) = αd(xn, xn−1, a) + βmax{d(xn, fixn, a), d(xn, fjxn−1, a)}
+ γmin{d(xn−1, fjxn−1, a), d(xn−1, fixn, a)}

= αd(xn, xn−1, a) + βmax{d(xn, xn+1, a), d(xn, xn, a)}
+ γmin{d(xn−1, xn, a), d(xn−1, xn+1, a)}

= αd(xn, xn−1, a) + βd(xn, xn+1, a) + γd(xn−1, xn, a)

≤ (α+ β + γ)d(xn, xn−1, a).

Therefore from (6) we have∫ r

0
ϕ(t)dt = lim

n→+∞

∫ (α+β+γ)d(xn,xn−1,a)

0
ϕ(t)dt

≤ lim
n→+∞

∫ (α+β+γ)2d(xn,xn−1,a)

0
ϕ(t)dt

...

≤ lim
n→+∞

∫ (α+β+γ)nd(x1,x0,a)

0
ϕ(t)dt = 0

implies, r = 0.

Thus lim
n→+∞

d(xn+1, xn, a) = 0.

Next, let n,m ∈ N; n > m.
Since d(xn, xm, a) ≤ d(xn, xm, Xn−1) + d(xn, xn−1, a) + d(xn−1, xm, a).
Taking limit as n→ +∞ we get,

lim
n→+∞

d(xn, xm, a) ≤ lim
n→+∞

d(xn, xm, Xn−1) + lim
n→+∞

d(xn, xn−1, a)

+ lim
n→+∞

d(xn−1, xm, a)

= lim
n→+∞

d(xn−1, xm, a)

...

= lim
n→+∞

d(xm, xm, a) = 0.

Thus {xn} is a Cauchy sequence in X. Since X is complete space, there
exists an x ∈ X such that

lim
n→+∞

xn = x i.e., lim
n→+∞

d(xn, x, a) = 0.

Again,

lim
n→+∞

d(fix, x, a) ≤ lim
n→+∞

[d(fix, x, xn) + d(fix, xn, a) + d(xn, x, a)]

= lim
n→+∞

d(fix, xn, a).
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Therefore

lim
n→+∞

∫ d(fix,x,a)

0
ϕ(t)dt ≤ lim

n→+∞

∫ d(fix,xn,a)

0
ϕ(t)dt(7)

= lim
n→+∞

∫ d(fix,fjxn−1,a)

0
ϕ(t)dt

≤ lim
n→+∞

∫ ψ(x,xn−1,a)

0
ϕ(t)dt,

where,

ψ(x, xn−1, a) = αd(x, xn−1, a) + βmax{d(x, fix, a), d(x, fjxn−1, a)}
+ γmin{d(xn−1, fjxn−1, a), d(xn−1, fix, a)}

= αd(x, xn−1, a) + βmax{d(x, fix, a), d(x, xn, a)}
+ γmin{d(xn−1, xn, a), d(xn−1, fix, a)}.

Therefore,
lim

n→+∞
ψ(x, xn−1, a) = α.0 + βd(x, fix, a) + γ.0 = βd(x, fix, a).

From (7) we get

lim
n→+∞

∫ d(fix,x,a)

0
ϕ(t)dt ≤ lim

n→+∞

∫ βd(x,fix,a)

0
ϕ(t)dt

implies, d(fix, x, a) ≤ βd(fix, x, a)
implies, d(fix, x, a) = 0 i.e., fix = x.

Thus x is a common fixed point of {fn}∞n=1.
Let us suppose that y be another common fixed point.

Since

(8)

∫ d(x,y,a)

0
ϕ(t)dt =

∫ d(fix,fjy,a)

0
ϕ(t)dt ≤

∫ ψ(x,y,a)

0
ϕ(t)dt,

where

ψ(x, y, a) = αd(x, y, a) + βmax{d(x, fix, a), d(x, fjy, a)}
+ γmin{d(y, fjy, a), d(y, fix, a)}

= αd(x, y, a) + βmax{d(x, x, a), d(x, y, a)}
+ γmin{d(y, y, a), d(y, x, a)}

= αd(x, y, a) + βd(x, y, a) + γ.0

= (α+ β)d(x, y, a).

Therefore from (8) we get,∫ d(x,y,a)

0
ϕ(t)dt ≤

∫ (α+β)d(x,y,a)

0
ϕ(t)dt
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implies, d(x, y, a) ≤ (α+ β)d(x, y, a)
implies, d(x, y, a) = 0
implies, x = y.

This completes the theorem. ■

Corollary 3. Let (X, d) be a complete 2-metric space and f1 and f2 be
a two self-maps satisfying the relation,∫ d(f1x,f2y,a)

0
ϕ(t)dt ≤

∫ ψ(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and ψ(, x, y, a) = αd(x, y, a) + βmax{d(x, f1x, a), d(x, f2y, a)}
+ γmin{d(y, f2y, a), d(y, f1x, a)};α + β + γ < 1. Then f1 and f2 have a
unique common fixed point in X.

Proof. Putting fi = f1 and fj = f2 in the above Theorem 2 the corollary
hold. ■

Corollary 4. Let (X, d) be a complete 2-metric space and f be a self-map
satisfying the relation,∫ d(fx,fy,a)

0
ϕ(t)dt ≤

∫ ψ(x,y,a)

0
ϕ(t)dt,

where ϕ ∈ Φ and ψ(, x, y, a) = αd(x, y, a) + βmax{d(x, fx, a), d(x, fy, a)}
+ γmin{d(y, fy, a), d(y, fx, a)};α + β + γ < 1. Then f have a unique fixed
point in X.

Proof. Putting fi = f1 and fj = f2 in the above Theorem 2 the corollary
hold. ■

Theorem 3. Let (X, d) be a complete 2-metric space and {fn}∞n=1 be a
sequence of self-maps such that each of fn be F -contraction and satisfies the
relation ∫ τ+F (d(fix,fjy,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then {fn}∞n=1 have a unique common fixed point in X.

Proof. Let x0be an initial approximation. Let for fixed i ∈ N the
sequence {xn} be such that xn+1 = fixn for all n ∈ N ∪ {0}.
If xn = fixn i.e., xn = xn+1, then xn is a common fixed point of {fn}∞n=1.
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So we assume that xn ̸= xn+1.
Since ∫ F (d(xn+1,xn,a))

0
ϕ(t)dt ≤

∫ τ+F (d(xn+1,xn,a))

0
ϕ(t)dt

=

∫ F (d(fixn,fjxn−1,a))

0
ϕ(t)dt

≤
∫ F (d(xn,xn−1,a))

0
ϕ(t)dt

implies, F (d(xn+1, xn, a)) ≤ F (d(xn, xn−1, a))
implies, d(xn+1, xn, a) ≤ d(xn, xn−1, a).

Thus {d(xn+1, xn, a)} is a monotone decreasing bounded below sequence of
real numbers and hence convergent.
Since

τ + F (d(xn+1, xn, a)) = τ + F (d(fixn, fjxn−1, a)) ≤ F (d(xn, xn−1, a)),

we have ∫ F (d(xn+1,xn,a))

0
ϕ(t)dt ≤

∫ F (d(xn,xn−1,a))−τ

0
ϕ(t)dt

≤
∫ F (d(xn−1,xn−2,a))−2τ

0
ϕ(t)dt

...

≤
∫ F (d(x1,x0,a))−nτ

0
ϕ(t)dt.

Thus
F (d(xn+1, xn, a)) ≤ F (d(x1, x0, a))− nτ.

Taking limit as n→ +∞ we get from above
lim

n→+∞
F (d(xn+1, xn, a)) = −∞ which implies, lim

n→+∞
d(xn+1, xn, a) = 0.

Since (X, d) is 2-metric space, we have for n,m ∈ N, n > m,

lim
n,m→+∞

∫ F (d(xn,xm,a))

0
ϕ(t)dt = lim

n,m→+∞

∫ F (d(fixn−1,fjxm−1,a))

0
ϕ(t)dt

≤ lim
n,m→+∞

∫ F (d(xn−1,xm−1,a))−τ

0
ϕ(t)dt

≤ lim
n,m→+∞

∫ F (d(xn−2,xm−2,a))−2τ

0
ϕ(t)dt

...

≤ lim
n,m→+∞

∫ F (d(xn−m−1,x0,a))−(m+1)τ

0
ϕ(t)dt
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implies,
lim

n,m→∞
F (d(xn, xm, a)) ≤ lim

n,m→+∞
F (d(xn−m−1, x0, a))− (m+ 1)τ = −∞

implies, lim
n,m→+∞

d(xn, xm, a) = 0.

Therefore {xn} is a Cauchy sequence. Since (X, d) is a complete, there exists
an x ∈ X such that lim

n→+∞
d(xn, x, a) = 0.

Again,

lim
n→+∞

∫ F (d(fix,xn,a))

0
ϕ(t)dt = lim

n→+∞

∫ F (d(fix,fjxn−1,a))

0
ϕ(t)dt

≤ lim
n→+∞

∫ F (d(x,xn−1,a))−τ

0
ϕ(t)dt

≤ lim
n→∞

∫ F (d(x,xn−1,a))

0
ϕ(t)dt

implies, lim
n→+∞

F (d(fix, xn, a)) ≤ limn→+∞ F (d(x, xn−1, a))

implies, lim
n→+∞

d(fix, xn, a)! ≤ limn→+∞ d(x, xn−1, a) = 0

implies, lim
n→+∞

d(fix, xn, a) = 0 i.e., fix = lim
n→+∞

xn = x.

Thus x is common fixed point of {fn}∞n=1.
Suppose y ̸= x be another common fixed point.
Then ∫ F (d(x,y,a))

0
ϕ(t)dt ≤

∫ τ+F (d(x,y,a))

0
ϕ(t)dt

=

∫ τ+F (d(fix,fjy,a))

0
ϕ(t)dt

≤
∫ F (d(x,y,a))

0
ϕ(t)dt,

a contradiction.
Therefore, x = y. Hence the theorem. ■

Corollary 5. Let (X, d) be a complete 2-metric space and f1 and f2 be
a two of self-maps such that each of f1 and f2 be F -contraction and satisfies
the relation ∫ τ+F (d(f1x,f2y,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then f1 and f2 have a unique common fixed point in X.

Proof. From Theorem 3 by putting fi = f1 and fj = f2, we get the
result. ■
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Corollary 6. Let (X, d) be a complete 2-metric space and f be a of
self-map such that f be F -contraction and satisfies the relation∫ τ+F (d(fx,fy,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then f have a unique fixed point in X.

Proof. From Theorem 3 by putting fi = f , we get the result. ■

Theorem 4. Let (X, d) be a complete 2-metric space and {fn}∞n=1 be a
sequence of self-maps such that each of fn be Fα-contraction and satisfies
the relation ∫ τ+F (α(x,y,a)d(fix,fjy,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then {fn}∞n=1 have a unique common fixed point in X.

Proof. With an initial approximation x0 ∈ X, let {xn} be a sequence
such that xn+1 = fixn, n ∈ N ∪ {0} for a fixed i ∈ N.

If xn+1 = xn i.e., xn = fixn, then xn is a common fixed point of {fn}∞n=1.
So we assume that xn+1 ̸= xn.
Now ∫ F (α(xn,xn−1,a)d(xn+1,xn,a))

0
ϕ(t)dt(9)

=

∫ τ+F (α(xn,xn−1,a)d(fixn,fjxn−1,a))−τ

0
ϕ(t)dt

≤
∫ F (d(xn,xn−1,a))−τ

0
ϕ(t)dt

≤
∫ F (α(xn−1,xn−2,a)d(fixn−1,fjxn−2,a))−τ

0
ϕ(t)dt

≤
∫ F (d(xn−1,xn−2,a))−2τ

0
ϕ(t)dt

...

≤
∫ F (d(x1,x0,a))−nτ

0
ϕ(t)dt.

Therefore

F (α(xn, xn−1, a)d(xn+1, xn, a)) ≤ F (d(x1, x0, a))− nτ.
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Since by definition

lim
n→+∞

F (α(xn, xn−1, a)d(xn+1, xn, a)) = −∞

implies, lim
n→+∞

α(xn, xn−1, a)d(xn+1, xn, a) = 0

and we have from (9)

lim
n→+∞

α(xn, xn−1, a)d(xn+1, xn, a) = 0

i.e., lim
n→+∞

d(xn+1, xn, a) = 0.

Again for n > m ∈ N we get,∫ F (α(xn,xm,a)d(xn+1,xm+1,a))

0
ϕ(t)dt

=

∫ τ+F (α(xn,xm,a)d(fixn,fjxm,a))−τ

0
ϕ(t)dt

≤
∫ F (d(xn,xm,a))−τ

0
ϕ(t)dt

≤
∫ F (α(xn−1,xm−1,a)d(fixn−1,fjxm−1,a))−τ

0
ϕ(t)dt

≤
∫ F (d(xn−1,xm−1,a))−2τ

0
ϕ(t)dt

...

≤
∫ F (d(x1,x0,a))−nτ

0
ϕ(t)dt.

Therefore F (α(xn, xm, a)d(xn+1, xm+1, a)) ≤ F (d(x1, x0, a))− nτ .
Taking limit as n→ +∞ and by definition of F , we get

lim
n,m→+∞

α(xn, xm, a)d(xn+1, xm+1, a) = 0

i.e., lim
n,m→+∞

d(xn+1, xm+1, a) = 0.

Thus {xn} is a Cauchy sequence in X. Since (X, d) is a complete 2-metric
space, there exists an x ∈ X such that limn→+∞ d(xn, x, a) = 0.

Next,we are to show x is a fixed point.
Since

lim
n→+∞

d(fix, x, a) ≤ lim
n→+∞

d(fix, x, xn) + lim
n→+∞

d(fix, xn, a)

+ lim
n→+∞

d(xn, x, a) = lim
n→+∞

d(fix, xn, a).
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Now

F (α(fix, xn, a)d(fix, xn+1, a)) = F (α(fix, xn, a)d(fix, fjxn, a))

≤ F (d(x, xn, a))− τ

≤ F (d(x, xn, a)).

Taking limit as n→ ∞ we get
lim
n→∞

F (α(fix, xn, a)d(fix, xn+1, a)) ≤ lim
n→∞

F (d(x, xn, a))

implies, lim
n→∞

α(fix, xn, a)d(fix, xn+1, a) ≤ lim
n→+∞

d(x, xn, a) = 0

i.e., lim
n→+∞

d(fix, xn+1, a) = 0

implies, fix = lim
n→+∞

xn+1 = x.

Therefore x is a common fixed point of {fn}∞n=1.
To show the uniqueness, let y be another common fixed point.

Since ∫ F (α(x,y,a)d(x,y,a))

0
ϕ(t)dt =

∫ τ+F (α(x,y,a)d(fix,fjy,a))−τ

0
ϕ(t)dt

≤
∫ F (d(x,y,a))−τ

0
ϕ(t)dt

≤
∫ F (d(x,y,a))

0
ϕ(t)dt.

Therefore F (α(x, y, a)d(x, y, a)) ≤ F (d(x, y, a))
implies, α(x, y, a)d(x, y, a) ≤ d(x, y, a)
implies, d(x, y, a) = 0
implies, x = y.

Hence the result. ■

Corollary 7. Let (X, d) be a complete 2-metric space and f1 and f2 be
a two self-maps such that each of f1 and f2 be Fα-contraction and satisfies
the relation ∫ τ+F (α(x,y,a)d(f1x,f2y,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then f1 and f2 have a unique common fixed point in X.

Proof. To get the result we have to put fi = f1 and fj = f2 in the
Theorem 4. ■
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Corollary 8. Let (X, d) be a complete 2-metric space and f be a self-map
such that f be Fα-contraction and satisfies the relation∫ τ+F (α(x,y,a)d(fx,fy,a))

0
ϕ(t)dt ≤

∫ F (d(x,y,a))

0
ϕ(t)dt

for τ > 0. Then f1 and f2 have a unique fixed point in X.

Proof. To get the result we have to put fi = f in the Theorem 4. ■
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