FASCICULI MATHEMATICI

Nr 63

2021 Doi: 10.21008/j.0044-4413.2021.0005

Takashi Noiri and Valeriu Popa

SOME FORM OF OPEN SETS AND CONTINUITY IN IDEAL BITOPOLOGICAL SPACES

ABSTRACT. We introduce the notion of (i, j)-mI-open sets as a unified form of (i, j)- α -I-open sets [4], (i, j)-semi-I-open sets [3], (i, j)-pre-I-open sets [1], (i, j)-bI-open sets [17] and (i, j)- β -I-open sets [2]. We show that properties of (i, j)-mI-open sets follow from the properties of minimal open sets in [14]. We introduce and investigate an (i, j)-mI-continuous function from an ideal bitopological space (X, τ_1, τ_2, I) to a bitopological space (Y, σ_1, σ_2) . KEY WORDS: minimal structure, m-continuous, ideal bitopological space, (i, j)mIO(X)-structure, (i, j)mI-continuous.

AMS Mathematics Subject Classification: 54C08, 54E55.

1. Introduction

Kelly [6] introduced and investigated the notion of bitopological spaces. The notion of ideal topological spaces was introduced in [7] and [18]. In [5], the authors obtained a new topology τ^* from a topology τ and an ideal \mathcal{I} .

The notion of minimal spaces is introduced in [14], as a generalization of topological spaces, and the notion of *m*-continuous functions on the space is introduced. Quite recently, (i, j)- α -*I*-open sets [4], (i, j)-semi-*I*-open sets [3], (i, j)-pre-*I*-open sets [1], (i, j)-b*I*-open sets [17] and (i, j)- β -*I*-open sets [2] in an ideal bitopological space have been introduced and investigated. And by using these open sets, some kind of continuous functions from an ideal bitopological space to a bitopological space are defined and investigated.

In this paper, we define the notion of (i, j)-m*I*-open sets as a unified form of (i, j)- α -*I*-open sets [4], (i, j)-semi-*I*-open sets [3], (i, j)-pre-*I*-open sets [1], (i, j)-b*I*-open sets [17] and (i, j)- β -*I*-open sets [2]. We show that properties of (i, j)-m*I*-open sets follow from the properties of minimal open sets in [14]. Moreover, we introduce and investigate an (i, j)-m*I*-continuous function from an ideal bitopological space (X, τ_1, τ_2, I) to a bitopological space (Y, σ_1, σ_2) .

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. We recall several properties of minimal structures and m-continuous functions.

Definition 1. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly m-structure) on X [13], [14] if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with an m-structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open (briefly m-open) and the complement of an m_X -open set is said to be m_X -closed (briefly m-closed).

Definition 2. Let (X, m) be a minimal space. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [8] as follows:

(1) $\operatorname{mCl}(A) = \cap \{F : A \subset F, X \setminus F \in m_X\},\$

(2) mInt(A) = $\cup \{ U : U \subset A, U \in m_X \}.$

Lemma 1 ([8]). Let (X, m) be a minimal space. For subsets A and B of X, the following properties hold:

(1) $\operatorname{mCl}(X \setminus A) = X \setminus \operatorname{mInt}(A)$ and $\operatorname{mInt}(X \setminus A) = X \setminus \operatorname{mCl}(A)$,

(2) If $(X \setminus A) \in m_X$, then mCl(A) = A and if $A \in m_X$, then mInt(A) = A,

(3) $\mathrm{mCl}(\emptyset) = \emptyset$, $\mathrm{mCl}(X) = X$, $\mathrm{mInt}(\emptyset) = \emptyset$ and $\mathrm{mInt}(X) = X$,

(4) If $A \subset B$, then $\operatorname{mCl}(A) \subset \operatorname{mCl}(B)$ and $\operatorname{mInt}(A) \subset \operatorname{mInt}(B)$,

(5) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,

(6) $\operatorname{mCl}(\operatorname{mCl}(A)) = \operatorname{mCl}(A)$ and $\operatorname{mInt}(\operatorname{mInt}(A)) = \operatorname{mInt}(A)$.

Definition 3. A minimal structure m_X on a nonempty set X is said to have property \mathcal{B} [8] if the union of any family of subsets belonging to m_X belongs to m_X .

Lemma 2 ([16]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

(1) $A \in m_X$ if and only if mInt(A) = A,

(2) A is m_X -closed if and only if mCl(A) = A,

(3) $\operatorname{mInt}(A) \in m_X$ and $\operatorname{mCl}(A)$ is m_X -closed.

Lemma 3 ([13]). Let (X, m_X) be a minimal space and A a subset of X. Then $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for each $U \in m_X$ containing x.

Definition 4. A function $f : (X, m_X) \to (Y, \sigma)$ is said to be *m*-continuous at $x \in X$ [14], where (Y, σ) is a topological space, if for each open set V containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$. The function f is said to be *m*-continuous if it has this property at each $x \in X$. By Theorem 3.1 of [14] and Lemma 2, we obtain the following theorem:

Theorem 1 ([14]). For a function $f : (X, m_X) \to (Y, \sigma)$, where m_X has property \mathcal{B} , the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(V)$ is m_X -open for every open set V of Y;
- (3) $f^{-1}(F)$ is m_X -closed for every closed set F of Y;
- (4) $\operatorname{mCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$ for every subset B of Y;
- (5) $f(\mathrm{mCl}(A)) \subset \mathrm{Cl}(f(A))$ for every subset A of X;
- (6) $f^{-1}(\operatorname{Int}(B)) \subset \operatorname{mInt}(f^{-1}(B))$ for every subset B of Y.

For a function $f: (X, m_X) \to (Y, \sigma)$, we define $D_m(f)$ as follows:

 $D_m(f) = \{x \in X : f \text{ is not } m \text{-continuous at } x\}.$

Theorem 2 ([15]). For a function $f : (X, m_X) \to (Y, \sigma)$, where m_X has property \mathcal{B} , the following properties hold:

$$D_m(f) = \bigcup_{G \in \sigma} \{f^{-1}(G) \setminus \operatorname{mInt}(f^{-1}(G))\}$$
$$= \bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\operatorname{Int}(B)) \setminus \operatorname{mInt}(f^{-1}(B))\}$$
$$= \bigcup_{B \in \mathcal{P}(Y)} \{\operatorname{mCl}(f^{-1}(B)) \setminus f^{-1}(\operatorname{Cl}(B))\}$$
$$= \bigcup_{A \in \mathcal{P}(X)} \{\operatorname{mCl}(A) \setminus f^{-1}(\operatorname{Cl}(f(A)))\}$$
$$= \bigcup_{F \in \mathcal{F}} \{\operatorname{mCl}(f^{-1}(F)) \setminus f^{-1}(F)\},$$

where \mathcal{F} is the family of closed sets of (Y, σ) .

3. Ideal topological spaces

A subfamily I of the power set $\mathcal{P}(X)$ on a nonempty set X is called an *ideal* on X if it satisfies the following two conditions:

(1) $A \in I$ and $B \subset A$ implies $B \in I$,

(2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . Let (X, τ, I) be an ideal topological space and $\tau(x) = \{U \in \tau : x \in U\}$. For any subset A of X, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$ is called the local function of A with respect to τ and I [5]. Hereafter $A^*(I, \tau)$ is simply denoted by A^* . The set operator Cl^* called the *-closure [5] is defined as follows: $Cl^*(A) = A \cup A^*$ for every subset A of X. Let $\tau^* = \{U \subset X : \operatorname{Cl}^*(X \setminus U) = X \setminus U\}$. Then τ^* is a topology which is finer than τ and is called the *-topology.

Lemma 4 ([5]). Let (X, τ, I) be an ideal topological space and A, B be subsets of X. Then the following properties hold:

(1) $A \subset \operatorname{Cl}^{\star}(A)$, (2) $\operatorname{Cl}^{\star}(X) = X$ and $\operatorname{Cl}^{\star}(\emptyset) = \emptyset$, (3) $A \subset B$ implies $\operatorname{Cl}^{\star}(A) \subset \operatorname{Cl}^{\star}(B)$, (4) $\operatorname{Cl}^{\star}(A) \cup \operatorname{Cl}^{\star}(B) \subset \operatorname{Cl}^{\star}(A \cup B)$.

Let (X, τ_1, τ_2) be a bitopological space and I be an ideal of X. By (X, τ_1, τ_2, I) , we denote an ideal bitopological space. Moreover, we set

$$jA^{\star}(I,\tau) = \{ x \in X : U \cap A \notin I \text{ for every } U \in \tau_j(x) \}$$

and $jCl^{\star}(A) = jA^{\star} \cup A$

for every subset A of X

Definition 5. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is said to be

(1) (i, j)- α -*I*-open [4] if $A \subset iInt(jCl^{*}(iInt(A)))$, where $i \neq j, i, j = 1, 2$,

(2) (i, j)-semi-I-open [3] if $A \subset jCl^*(iInt(A))$, where $i \neq j, i, j = 1, 2$,

(3) (i, j)-pre-I-open [1] if $A \subset iInt(jCl^*(A))$, where $i \neq j, i, j = 1, 2$,

(4) (i, j)-bI-open [17] if $A \subset iInt(jCl^*(A)) \cup jCl^*(iInt(A))$, where $i \neq j, i, j = 1, 2$,

(5) (i, j)- β -*I*-open [2] if $A \subset jCl(iInt(jCl^{\star}(A)))$, where $i \neq j, i, j = 1, 2$.

The family of all (i, j)- α -*I*-open (resp. (i, j)-semi-*I*-open, (i, j)-pre-*I*-open, (i, j)- β -*I*-open) sets in an ideal bitopological space (X, τ_1, τ_2, I) is denoted by $(i, j)\alpha$ IO(X) (resp. (i, j)SIO(X), (i, j)PIO(X), (i, j)BIO(X), $(i, j)\beta$ IO(X)).

Remark 1. By (i, j)mIO(X), we denote each one of the families $(i, j)\alpha$ IO(X), (i, j)SIO(X), (i, j)PIO(X), (i, j)BIO(X), $(i, j)\beta$ IO(X).

Lemma 5. Let (X, τ_1, τ_2, I) be an ideal bitopological space. Then (i, j)mIO(X) is a minimal structure on X and has property \mathcal{B} .

Proof. By Lemmas 1(3) and 4(2), (i, j)mIO(X) is a minimal structure on X. It follows from Lemmas 1(4) and 4(3) that (i, j)mIO(X) has property \mathcal{B} .

Remark 2. It is shown in Theorem 3.17 of [4] (resp. Theorem 3.11 of [3], Theorem 2.15 of [1], Theorem 3.2 of [17], Theorem 1 of [2]) that $(i, j)\alpha IO(X)$ (resp. (i, j)SIO(X), (i, j)PIO(X), (i, j)BIO(X), $(i, j)\beta IO(X)$) has property \mathcal{B} . **Definition 6.** Let (X, τ_1, τ_2, I) be an ideal bitopological space. For a subset A of X, (i, j)mCl_I(A) and (i, j)mInt_I(A) are defined as follows:

(1) (i, j)mCl_I $(A) = \cap \{F : A \subset F, X \setminus F \in (i, j)$ mIO $(X)\},$

(2) (i, j)mInt_I $(A) = \cup \{U : U \subset A, U \in (i, j)$ mIO $(X)\}.$

Lemma 6. Let (X, τ_1, τ_2, I) an ideal bitopological space and A, B subsets of X. Then the following properties hold:

(1) (i, j)mInt_I $(A) \subset A$,

(2) $A \in (i, j)$ mIO(X) if and only if (i, j)mInt_I(A) = A,

(3) (i, j)mInt_I $(\emptyset) = \emptyset$ and (i, j)mInt_I(X) = X,

(4) If $A \subset B$, then (i, j)mInt_I $(A) \subset (i, j)$ mInt_I(B),

(5) (i, j)mInt_I((i, j)mInt_I(A)) = (i, j)mInt_I(A),

(6) $x \in (i, j)$ mInt_I(A) if and only if there exists an (i, j)-mI-open set U such that $x \in U \subset A$.

Proof. Since (i, j)mIO(X) is a minimal structure with property \mathcal{B} , this follows easily from Lemmas 1 and 2.

Remark 3. By Lemma 6, we obtain Theorem 3.25 of [4], Theorems 3.20 of [3], Theorem 3.24 of [1], Theorem 3.7 of [17] and Theorem 7 of [2].

Lemma 7. Let (X, τ_1, τ_2, I) be an ideal minimal space and A, B subsets of X. Then the following properties hold:

(1) $A \subset (i, j) \operatorname{mCl}_{\mathrm{I}}(A)$,

(2) $(X \setminus A) \in (i, j)$ mIO(X) if and only if (i, j)mCl_I(A) = A,

(3) (i, j)mCl_I(\emptyset) = \emptyset , (i, j)mCl_I(X) = X,

(4) If $A \subset B$, then (i, j)mCl_I $(A) \subset (i, j)$ mCl_I(B),

(5) (i, j)mCl_I((i, j)mCl_I(A)) = (i, j)mCl_I(A),

(6) $x \in (i, j) \operatorname{mCl}_{I}(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in (i, j) \operatorname{mIO}(X)$ containing x.

Proof. This follows easily from Lemmas 1, 2 and 3.

Remark 4. By Lemma 7, we obtain Theorems 3.31 and 3.32 of [4], Theorems 3.22 and 3.23 of [3], Theorems 2.27 and 2.26 of [1], Theorem 3.7 of [17] and Theorems 8 and 9 of [2].

Lemma 8. Let (X, τ_1, τ_2, I) be an ideal bitopological space and A be a subset of X. (i, j)mCl_I $(X \setminus A) = X \setminus (i, j)$ mInt_I(A) and (i, j)mInt_I $(X \setminus A) = X \setminus (i, j)$ mCl_I(A).

Remark 5. By Lemma 8, we obtain Theorem 3.33 of [4], Theorem 3.24 of [3], Theorem 2.28 of [1], Theorem 3.9 of [17] and Theorem 10 of [2].

4. (i, j)-mI-continuous functions

Definition 7. A function $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- α - \mathcal{I} -continuous [4] (resp. (i, j)-semi- \mathcal{I} -continuous [3], (i, j)-pre- \mathcal{I} -continuous [1], (i, j)-bI-continuous [17], (i, j)- β - \mathcal{I} -continuous [2]) at $x \in X$ if for each σ_i -open set V of Y containing f(x), there exists an (i, j)- α -I-open (resp. (i, j)-semi-I-open, (i, j)-pre-I-open, (i, j)-bI-open, (i, j)- β -I-open) set U in (X, τ_1, τ_2, I) containing x such that $f(U) \subset V$. And f is said to be (i, j)- α - \mathcal{I} -continuous [4] (resp. (i, j)-semi- \mathcal{I} -continuous [3], (i, j)-pre- \mathcal{I} -continuous [1], (i, j)-bI-continuous [17], (i, j)- β - \mathcal{I} -continuous [2]) (on X) if it has this property at each point $x \in X$.

Definition 8. A function $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-mI-continuous at $x \in X$ (resp. on X) if $f : (X, (i, j)mIO(X)) \to (Y, \sigma_i)$ is m-continuous at $x \in X$ (resp. on X). And f is said to be pairwise mI-continuous if f is (i, j)-mI-continuous and (j, i)-mI-continuous, where i, j = 1, 2 and $i \neq j$.

By Theorem 1, we obtain the following characterizations of (i, j)-mI-continuous functions.

Theorem 3. For a function $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

(1) f is (i, j)-mI-continuous; (2) $f^{-1}(V)$ is (i, j)-mI-open for every σ_i -open set V of Y; (3) $f^{-1}(F)$ is (i, j)-mI-closed for every σ_i -closed set F of Y; (4) (i, j)mCl_I $(f^{-1}(B)) \subset f^{-1}(iCl(B))$ for every subset B of Y; (5) f((i, j)mCl_I $(A)) \subset iCl(f(A))$ for every subset A of X; (6) $f^{-1}(iInt(B)) \subset (i, j)$ mInt_I $(f^{-1}(B))$ for every subset B of Y.

Remark 6. If (i, j)mIO(X) is $(i, j)\alpha$ IO(X) (resp. (i, j)SIO(X), (i, j)PIO(X), (i, j)BIO(X), $(i, j)\beta$ IO(X)), then by Theorem 3 we obtain Theorem 4.4 of [4] (resp. Theorem 4.3 of [3], Theorem 3.5 of [1], Theorem 4.1 of [17], Theorem 11 of [2]).

For a function $f: (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$, we define $D_{(i,j)mI}(f)$ as follows:

 $D_{(i,j)mI}(f) = \{x \in X : f \text{ is not } (i,j) \text{-}mI \text{-} \text{continuous at } x\}.$

Theorem 4. For a function $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \tau_2)$, the following properties hold:

$$D_{(i,j)mI}(f) = \bigcup_{G \in \sigma_i} \{ f^{-1}(G) \setminus (i,j) \operatorname{mInt}_{\mathrm{I}}(f^{-1}(G)) \}$$

$$= \bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\mathrm{iInt}(B)) \setminus (i,j) \mathrm{mInt}_{\mathrm{I}}(f^{-1}(B))\}$$
$$= \bigcup_{B \in \mathcal{P}(Y)} \{(i,j) \mathrm{mCl}_{\mathrm{I}}(f^{-1}(B)) \setminus f^{-1}(\mathrm{iCl}(B))\}$$
$$= \bigcup_{A \in \mathcal{P}(X)} \{(i,j) \mathrm{mCl}_{\mathrm{I}}(A) \setminus f^{-1}(\mathrm{iCl}(f(A)))\}$$
$$= \bigcup_{F \in \mathcal{F}} \{(i,j) \mathrm{mCl}_{\mathrm{I}}(f^{-1}(F)) \setminus f^{-1}(F)\},$$

where \mathcal{F} is the family of σ_i -closed sets of (Y, σ_1, σ_2) .

5. Properties of (i, j)-mI-continuous functions

Definition 9. A bitopological space (X, τ_1, τ_2) is said to be pairwise- T_2 [6] if for each pair of distinct points $x, y \in X$, there exist a τ_i -open set Uand a τ_i -open set V containing x and y, respectively, such that $U \cap V = \emptyset$.

Definition 10. Let (X, τ_1, τ_2, I) be an ideal bitopological space and (i, j)mIO(X) be the family of (i, j)-mI-open sets. Then the space (X, τ_1, τ_2, I) is said to be pairwise mI- T_2 if for each pair of distinct points $x, y \in X$, there exist $U \in (i, j)mIO(X)$ and $V \in (j, i)mIO(X)$ containing x and y, respectively, such that $U \cap V = \emptyset$, where i, j = 1, 2 and $i \neq j$.

Theorem 5. If $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is a pairwise mI-continuous injection and Y is pairwise- T_2 , then (X, τ_1, τ_2, I) is pairwise mI- T_2 .

Proof. Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$. Since Y is pairwise- T_2 , there exist a σ_i -open set U and a σ_j -open set V containing f(x) and f(y), respectively, such that $U \cap V = \emptyset$. Since f is pairwise mI-continuous, there exist $G \in (i, j)mIO(X)$ and $H \in (j, i)mIO(X)$ such that $x \in G, y \in H, f(G) \subset U$ and $f(H) \subset V$. This implies that $G \cap H = \emptyset$. Hence (X, τ_1, τ_2) is pairwise $mI - T_2$.

Definition 11. A function $f : (X, m_X) \to (Y, \sigma)$ is said to have an m-closed graph [14] if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in m_X$ containing x and an open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Definition 12. A function $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is said to have an (i, j)-mI-closed graph if a function $f : (X, (i, j)mIO(X)) \to (Y, \sigma_i)$ has an m-closed graph.

Theorem 6. If $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2)$ is (i, j)-mI-continuous and (Y, σ_i) is Hausdorff, then f has an (i, j)-mI-closed graph.

Proof. Suppose that $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since (Y, σ_i) is Hausdorff, there exist disjoint σ_i -open sets V and W in Y containing y and f(x), respectively. Since f is (i, j)-m-continuous, there exists $U \in (i, j)mIO(X)$ containing x such that $f(U) \subset W$. This implies that $f(U) \cap V = \emptyset$ and hence the function $f : (X, (i, j)mI(X)) \to (Y, \sigma_i)$ has an m-closed graph. Hence f has an (i, j)-mI-closed graph.

Definition 13. A bitopological space (X, τ_1, τ_2) is said to be pairwise connected [12] if X cannot be expressed as the union of two nonempty disjoint sets U and V such that U is τ_i -open and V is τ_j -open for $i \neq j$ and i, j = 1, 2.

Definition 14. An ideal bitopological space (X, τ_1, τ_2, I) is said to be pairwise mI-connected if X cannot be expressed as the union of two disjoint nonempty sets U and V such that $U \in (i, j)mIO(X)$ and $V \in (j, i)mIO(X)$ for $i \neq j$ and i, j = 1, 2.

Theorem 7. If an ideal bitopological space (X, τ_1, τ_2, I) is pairwise mIconnected and $f : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise mI-continuous surjection, then (Y, σ_1, σ_2) is pairwise connected.

Proof. Let (Y, σ_1, σ_2) be not pairwise connected. Then there exist a nonempty σ_i -open set V_1 and a nonempty σ_j -open set V_2 such that $Y = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$. Hence $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty since f is surjective, $f^{-1}(V_1) \cup f^{-1}(V_2) = X$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Since f is pairwise mI-continuous, $f^{-1}(V_1)$ is (i, j)-mI-open and $f^{-1}(V_2)$ is (j, i)-mI-open. This contradicts that X is pairwise mI-connected. Therefore, (Y, σ_1, σ_2) is pairwise connected.

Definition 15. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is said to be (i,j)-mI-compact relative to X if for every cover $\{U_{\alpha} : \alpha \in \Delta\}$ of K by (i, j)-mI-open sets of X, there exists a finite subset Δ_0 of Δ such that $K \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\} \in I$. The space (X, τ_1, τ_2, I) is said to be (i,j)-mI-compact relative to X.

Definition 16. Let $(Y, \sigma_1, \sigma_2, J)$ be an ideal bitopological space. A subset K of Y is said to be $\sigma_i J$ -compact relative to Y if for every cover $\{U_\alpha : \alpha \in \Delta\}$ of K by σ_i -open sets of Y, there exists a finite subset Δ_0 of Δ such that $K \setminus \cup \{U_\alpha : \alpha \in \Delta_0\} \in J$. The space $(Y, \sigma_1, \sigma_2, J)$ is said to be $\sigma_i J$ -compact if Y is $\sigma_i J$ -compact relative to Y.

It is known in [9] that if $f: X \to Y$ is a function and I is an ideal on X then f(I) is an ideal on Y.

Theorem 8. If $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, f(I))$ is an (i, j)-mI-continuous function and K is (i, j)-mI-compact relative to X, then f(K) is $\sigma_i f(I)$ -compact relative to Y.

Proof. Let K be (i, j)-mI-compact relative to X and $\{V_{\alpha} : \alpha \in \Delta\}$ any cover of f(K) by σ_i -open sets of Y. For each $x \in K$, there exists an $\alpha(x) \in \Delta$ such that $f(x) \in V_{\alpha(x)}$. Since f is (i, j)-mI-continuous, there exists an (i, j)-mI-open set $U(\alpha(x))$ containing x such that $f(U(\alpha(x))) \subset V_{\alpha(x)}$. Since $\{U(\alpha(x)) : x \in K\}$ is a cover of K by (i, j)-mI-open sets of X, there exists a finite subset K_0 of K such that $K \setminus \bigcup \{U(\alpha(x)) : x \in K_0\} = I_0$, where $I_0 \in I$; hence

$$f(K) \subset \cup \{ f(U(\alpha(x))) : x \in K_0 \} \cup f(I_0) \subset \cup \{ V_{\alpha(x)} : x \in K_0 \} \cup f(I_0)$$

Therefore, we obtain $f(K) \setminus \bigcup \{V_{\alpha(x)} : x \in K_0\} \in f(I_0)$. This shows that f(K) is $\sigma_i f(I)$ -compact relative to Y.

Corollary 1. If $f : (X, \tau_1, \tau_2, I) \to (Y, \sigma_1, \sigma_2, f(I))$ is an (i, j)-mI-continuous surjective function and (X, τ_1, τ_2, I) is (i, j)-mI-compact, then $(Y, \sigma_1, \sigma_2, f(I))$ is $\sigma_i f(I)$ -compact.

Remark 7. If (i, j)mIO(X) = (i, j)BIO(X), then by Corollary 1 we obtain Theorem 4.6 of [17].

6. Other forms of open sets in an ideal bitopological space

We shall obtain similar open sets with those in Definition 5 and other. For example, we have the following:

Definition 17. Let (X, τ_1, τ_2, I) be an ideal bitopological space. A subset A of X is said to be

- (1) weakly (i, j)-semi-I-open if $A \subset jCl^*(iInt(jCl(A)))$,
- (2) weakly (i, j)-bI-open if $A \subset jCl(iInt(jCl^*(A))) \cup jCl^*(iInt(jCl(A)))$,
- (3) strongly (i, j)- β -I-open if $A \subset jCl^{\star}(iInt(jCl^{\star}(A)))$.

The family of all weakly (i, j)-semi-*I*-open (resp. weakly (i, j)-*bI*-open, strongly (i, j)- β -*I*-open) sets in an ideal bitopological space space (X, τ_1, τ_2, I) is denoted by w(i, j)SIO(X) (resp. w(i, j)BIO(X), $s(i, j)\beta$ IO(X)). For these families, we obtain the similar properties with those in Sections 3, 4 and 5.

References

- CALDAS M., JAFARI S., RAJESH N., Preopen sets in ideal bitopological spaces, *Bol. Soc. Paran. Mat.*, 29(2) (2011), 61-68.
- [2] CALDAS M., JAFARI S., RAJESH N., Some fundamental properties of β -open sets in ideal bitopological spaces, *Eur. J. Pure Appl. Math.*, 6(2)(2013), 247-255.

- [3] CALDAS M., JAFARI S., RAJESH N., Semi-open sets in ideal bitopological spaces, An. Univ. Sci. Budapest., (to appear).
- [4] EL-MAGHRABI A.I., CALDAS M, JAFARI S., LATIF R.M., NASEF A., RA-JESH N, SHANTHI S., Properties of ideal bitopological α-open sets, Sci. Stud. Res. Ser. Math. Inform., 27(2) (2017), 15-36.
- [5] JANKOVIĆ D., HAMLETT T.R., New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [6] KELLY J.K., Bitopological spaces, Proc. London Math. Soc., 13(3) (1963), 71-89.
- [7] KURATOWSKI K., Topology, Vol. I, Acadmic Press, New York, 1966.
- [8] MAKI H., RAO C.K., GANI A. NAGOOR, On generalizing semi-open and preopen sets, *Pure Appl. Math. Sci.*, 49(1999), 17-29.
- [9] NEWCOMB R.L., Topologies which are compact modulo an ideal, Ph. D. Thesis, University of California, USA (1967).
- [10] NOIRI T., POPA V., A new viewpoint in the study of irresoluteness forms in bitopological spaces, J. Math. Anal. Approx. Theory, 1(1)(2006), 1-9.
- [11] T., NOIRI T., POPA V., A new viewpoint in the study of continuity forms in bitopological spaces, *Kochi J. Math.*, 2(2007), 95-106.
- [12] PERVIN W.J., Connectedness in bitopological spaces, Indag. Math., 29(1967), 369-372.
- [13] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunărea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18(23) (2000), 31-41.
- [14] POPA V., NOIRI T., On the definitions of some generalized forms of continuity under minimal conditions, *Mem. Fac. Sci. Kochi Univ. Ser. Math.*, 22(2001), 9-18.
- [15] POPA V., NOIRI T., On the points of continuity and discontinuity, Bul. U. P. G. Ploiesti, Ser. Mat. Inf. Fiz., 53(1) (2001), 95–100.
- [16] POPA V., NOIRI T., A unified theory of weak continuity for functions, *Rend Circ. Mat. Palermo* (2), 51(2002), 439-464.
- [17] SARMA D.J., bI-open sets in ideal bitopological spaces, Int. J. Pure Appl. Math., 105(1) (2015), 7-18.
- [18] VAIDYANATHASWANI R., The localization theory in set-topology, Proc. Indian Acad. Sci., 20(1945), 51-62.

Takashi Noiri 2949-1 Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142 JAPAN *e-mail:* t.noiri@nifty.com

VALERIU POPA DEPARTMENT OF MATHEMATICS UNIV. VASILE ALECSANDRI OF BACĂU 600 115 BACĂU, RUMANIA *e-mail:* vpopa@ub.ro

Received on 10.09.2019 and, in revised form, on 14.10.2021.