Luong Quoc Tuyen and Ong Van Tuyen

A NOTE ON THE HYPERSPACE OF FINITE SUBSETS

Abstract

In this paper, we study the relation between a space X satisfying certain generalized metric properties and its hyperspace of finite subsets $\mathcal{F}(X)$ satisfying the same properties. We prove that if $\mathcal{F}(X)$ is a stric \mathfrak{B}_{0}-space then so is X. However, there exists a stric \mathfrak{B}_{0}-space X such that $\mathcal{F}_{n}(X)$ is not a stric \mathfrak{B}_{0}-space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_{0}-space. Moreover, we prove that X is a P-space (resp., sequentially separable) if and only if so is $\mathcal{F}(X)$.

KEY WORDS: symmetric product, hyperspace, $s p$-network, stric \mathfrak{B}_{o}-space, P-space, sequentially separable.
AMS Mathematics Subject Classification: 54B20, 54D20, 54G10.

1. Introduction and preliminaries

Recently, the generalized metric properties on hyperspaces such as $\mathcal{F}(X)$, the space of finite subsets of X, and $\mathcal{F}_{n}(X)$, the n-fold symmetric product of X have been studied by some authors ([4], [7], [10], [11], for example). They considered several generalized metric properties and studied the relation between a space X satisfying such property and its n-fold symmetric product or its hyperspace of finite subsets satisfying the same property.

In this paper, we study the relation between a space X satisfying certain generalized metric properties and its hyperspace of finite subsets $\mathcal{F}(X)$ satisfying the same properties. We prove that if $\mathcal{F}(X)$ is a stric \mathfrak{B}_{0}-space then so is X. However, there exists a stric \mathfrak{B}_{0}-space X such that $\mathcal{F}_{n}(X)$ is not a stric \mathfrak{B}_{0}-space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_{0}-space. Moreover, we prove that X is a P-space (resp., sequentially separable) if and only if so is $\mathcal{F}(X)$.

Throughout this paper, all spaces are Hausdorff, \mathbb{N} denotes the set of all positive integers, the first infinite ordinal denoted by ω.

Given a space X, we define its hyperspaces as the following sets:
(1) $C L(X)=\{A \subset X: A$ is closed and nonempty $\}$;
(2) $2^{X}=\{A \in C L(X): A$ is compact $\}$;
(3) $\mathcal{F}_{n}(X)=\left\{A \in 2^{X}: A\right.$ has at most n points $\}$, where $n \in \mathbb{N}$;
(4) $\mathcal{F}(X)=\left\{A \in 2^{X}: A\right.$ is finite $\}$.

The set $C L(X)$ is topologized by the Vietoris topology, the base of which consists of all subsets of the following form:

$$
\mathcal{B}=\left\{\left\langle U_{1}, \ldots, U_{k}\right\rangle: U_{1}, \ldots, U_{k} \text { are open subsets of } X, k \in \mathbb{N}\right\},
$$

where

$$
\left\langle U_{1}, \ldots, U_{k}\right\rangle=\left\{A \in C L(X): A \subset \bigcup_{i \leq k} U_{i}, A \cap U_{i} \neq \emptyset \text { for each } i \leq k\right\}
$$

Note that, by definition, $2^{X}, \mathcal{F}_{n}(X)$ and $\mathcal{F}(X)$ as the subspaces of $C L(X)$, every element of the sets $2^{X}, \mathcal{F}_{n}(X)$ and $\mathcal{F}(X)$ is nonempty. Hence, they are topologized with the appropriate restriction of the Vietoris topology. Moreover,
(1) $C L(X)$ is called the hyperspace of nonempty closed subsets of X;
(2) 2^{X} is called the hyperspace of nonempty compact subsets of X;
(3) $\mathcal{F}_{n}(X)$ is called the n-fold symmetric product of X;
(4) $\mathcal{F}(X)$ is called the hyperspace of finite subsets of X.

It is obvious that $\mathcal{F}(X)=\bigcup_{n=1}^{\infty} \mathcal{F}_{n}(X)$ and $\mathcal{F}_{n}(X) \subset \mathcal{F}_{n+1}(X)$ for each $n \in \mathbb{N}$.

Remark 1 ([10]). Let X be a space and let $n \in \mathbb{N}$.
(1) $\mathcal{F}_{n}(X)$ is closed in $\mathcal{F}(X)$.
(2) $f_{n}: X^{n} \rightarrow \mathcal{F}_{n}(X)$ given by $f_{n}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left\{x_{1}, \ldots, x_{n}\right\}$ is a closed finite-to-one mapping.
(3) $f_{1}: X \rightarrow \mathcal{F}_{1}(X)$ is a homeomorphism.
(4) Every $\mathcal{F}_{m}(X)$ is a closed subset of $\mathcal{F}_{n}(X)$ for each $m, n \in \mathbb{N}, m<n$.

Notation 1 ([7]). If U_{1}, \ldots, U_{s} are open subsets of a space X then $\left\langle U_{1}, \ldots, U_{s}\right\rangle_{\mathcal{F}(X)}$ denotes the intersection of the open set $\left\langle U_{1}, \ldots, U_{s}\right\rangle$ of the Vietoris Topology, with $\mathcal{F}(X)$.

Notation 2. Let X be a space. If $\left\{x_{1}, \ldots, x_{r}\right\}$ is a point of $\mathcal{F}(X)$ and $\left\{x_{1}, \ldots, x_{r}\right\} \in\left\langle U_{1}, \ldots, U_{s}\right\rangle_{\mathcal{F}(X)}$, then for each $j \leq r$, we let $U_{x_{j}}=\bigcap\{U \in$ $\left.\left\{U_{1}, \ldots, U_{s}\right\}: x_{j} \in U\right\}$. Observe that $\left\langle U_{x_{1}}, \ldots, U_{x_{r}}\right\rangle_{\mathcal{F}(X)} \subset\left\langle U_{1}, \ldots, U_{s}\right\rangle_{\mathcal{F}(X)}$.

Definition 1 ([5]). Let \mathcal{P} be a family of subsets of a space X.
(1) The family \mathcal{P} is a network for X, if for any neighborhood U of a point $x \in X$, there exists a set $P \in \mathcal{P}$ such that $x \in P \subset U$.
(2) The family \mathcal{P} is an sp-network for X, if for each $x \in U \cap \bar{A}$ with U open and A subset in X, there is a set $P \in \mathcal{P}$ such that $x \in P \subset U$ and $x \in \overline{P \cap A}$.

Remark $2([5])$. Base $\Longrightarrow s p$-network \Longrightarrow network.

Definition 2. Let X be a space.
(1) The space X is said to be a stric \mathfrak{B}_{0}-space [5], if X is regular and has a countable sp-network.
(2) The space X is called a P-space [1], if every G_{δ}-set in X is open.
(3) The space X is said to be sequentially separable [2], if it has a countable sequentially dense subset. A set D is sequentially dense in a space X if each point $x \in X$ is the limit of some sequence of points of D.

Definition 3. Let X be a space.
(1) The space X is a strongly Fréchet-Urysohn space [9], if for every decreasing sequence $\left\{A_{n}: n \in \mathbb{N}\right\}$ of subsets of X with $x \in \overline{A_{n}}$ for any $n \in \mathbb{N}$, there exist points $x_{n} \in A_{n}(n \in \mathbb{N})$ such that $\left\{x_{n}: n \in \mathbb{N}\right\}$ converges to the point x.
(2) The space X is a Fréchet-Urysohn space [3], if for any $A \subset X$ and any $x \in \bar{A}$, there exist points $x_{n} \in A$ such that $\left\{x_{n}: n \in \mathbb{N}\right\}$ converges to x.
(3) The space X is called a quasi- k-space [8] (resp., k-space [6], sequential space [8]), if a subset A of X is closed whenever $A \cap K$ is closed in K for every countably compact (resp., compact, compact metric) subset K of X.
(4) The space X is called a k_{ω}-space [6], if it is the union of countably many compact subsets K_{n} such that a subset A of X is closed whenever $A \cap K_{n}$ is closed in K_{n} for all $n \in \mathbb{N}$.

Remark 3 ([3], [5], [8]). 1. Strongly Fréchet-Urysohn spaces \Longrightarrow FréchetUrysohn spaces \Longrightarrow sequential spaces $\Longrightarrow k$-spaces \Longrightarrow quasi- k-spaces.
2. k_{ω}-spaces $\Longrightarrow k$-spaces \Longrightarrow quasi- k-spaces.

Definition 4 ([5]). A topological space X is called the sequential fan, which is denoted briefly as S_{ω}, if X is the quotient space by identifying all the limit points of ω many non-trivial convergent sequences.

2. Main results

Lemma 1. Every subspace of a stric \mathfrak{B}_{0}-space is a stric \mathfrak{B}_{0}-space.
Proof. Let Y be a subspace of a stric \mathfrak{B}_{0}-space X. Since X is a stric \mathfrak{B}_{0}-space, X is regular and has a countable $s p$-network \mathcal{P}. Observe that Y is regular. If we put

$$
\mathcal{G}=\{P \cap Y: P \in \mathcal{P}\}
$$

then it is easy to check that \mathcal{G} is a countable $s p$-network for Y. Therefore, Y is a stric \mathfrak{B}_{0}-space.

By Remark 1 and Lemma 1, we obtained the following theorem.
Theorem 1. Let X be a space. If $\mathcal{F}(X)$ is a stric \mathfrak{B}_{0}-space then so is X.

Lemma 2. For each $n \geq 2,\left(S_{\omega}\right)^{n}$ is sequential but $\left(S_{\omega}\right)^{2}$ is not Fréchet -Urysohn.

Proof. It follows from [5, Example 4.3] that S_{ω} is a regular Fréchet-Urysohn and k_{ω}-space. Therefore, $\left(S_{\omega}\right)^{n}$ is sequential for each $n \geq 2$ by Remark $3,[6$, 7.5] and [8, Theorem 2.2]. Furthermore, we have $\left(S_{\omega}\right)^{2}$ is not Fréchet-Urysohn. Otherwise, since the Fréchet-Urysohn property is hereditary, $S_{\omega} \times\left(\left\{x_{1}(m)\right.\right.$: $m \in \mathbb{N}\} \cup\{x\})$ is Fréchet-Urysohn, where the sequence $\left\{x_{1}(m): m \in \mathbb{N}\right\}$ converges to x in S_{ω} such that the set $\left\{x_{1}(m): m \in \mathbb{N}\right\} \cup\{x\}$ is not discrete. By [9, Theorem 12], S_{ω} is strongly Fréchet-Urysohn. This is a contradiction.

Lemma 3 (Theorem 4.2 [5]). The following conditions are equivalent for a topological space X.
(1) X is a k-space with a point-countable sp-network.
(2) X is a Fréchet-Urysohn space with a point-countable cs*-network.

Example 1. There exists a stric \mathfrak{B}_{0}-space X such that $\mathcal{F}_{n}(X)$ is not a stric \mathfrak{B}_{0}-space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_{0}-space.

Proof. For each $n \geq 2,\left(S_{\omega}\right)^{n}$ is sequential but $\left(S_{\omega}\right)^{2}$ is not FréchetUrysohn by Lemma 2. It follows from Remark 1(2) and [10, Remark 4.2, Lemma 4.4] that $\mathcal{F}_{n}\left(S_{\omega}\right)$ is sequential for each $n \geq 2$ but $\mathcal{F}_{2}\left(S_{\omega}\right)$ is not Fréchet-Urysohn. On the other hand, by Remark $1(4), \mathcal{F}_{2}\left(S_{\omega}\right)$ is closed in $\mathcal{F}_{n}\left(S_{\omega}\right)$ for each $n>2$. Therefore, $\mathcal{F}_{n}\left(S_{\omega}\right)$ is not Fréchet-Urysohn for each $n \geq 2$. Furthermore, it follows from [5, Example 4.3] that the sequential fan S_{ω} is a regular Fréchet-Urysohn space with a countable $s p$-network. This implies that it is a stric \mathfrak{B}_{0}-space. However, $\mathcal{F}_{n}\left(S_{\omega}\right)$ does not have a point-countable $s p$-network for each $n \geq 2$. Otherwise, there exists $n \geq 2$ such that $\mathcal{F}_{n}\left(S_{\omega}\right)$ has a point-countable $s p$-network. Since $\mathcal{F}_{n}\left(S_{\omega}\right)$ is sequential, $\mathcal{F}_{n}\left(S_{\omega}\right)$ is a k-space by Remark 3 . It follows from Lemma 3 that $\mathcal{F}_{n}\left(S_{\omega}\right)$ is a Fréchet-Urysohn space, which is a contradiction. Therefore, $\mathcal{F}_{n}\left(S_{\omega}\right)$ does not have a point-countable sp-network for each $n \geq 2$. This proves that $\mathcal{F}_{n}\left(S_{\omega}\right)$ is not a stric \mathfrak{B}_{0}-space for each $n \geq 2$. By Remark $1(1)$ and Lemma $1, \mathcal{F}\left(S_{\omega}\right)$ is not a stric \mathfrak{B}_{0}-space.

Lemma 4. Let X be a space. If \mathcal{U} is an open subset of $\mathcal{F}(X)$, then $\bigcup \mathcal{U}$ is an open subset of X.

Proof. Let \mathcal{U} be an open subset of $\mathcal{F}(X)$ and $x \in \bigcup \mathcal{U}$. Then, $x \in$ $\left\{x, x_{1}, \ldots, x_{r}\right\}$ with $\left\{x, x_{1}, \ldots, x_{r}\right\} \in \mathcal{U}$. It follows from Notation 2 that we can find open subsets $U_{x}, U_{x_{1}}, \ldots, U_{x_{r}}$ of X such that $x \in U_{x}, x_{j} \in U_{x_{j}}$ for each $j \leq r$, and

$$
\left\{x, x_{1}, \ldots, x_{r}\right\} \in\left\langle U_{x}, U_{x_{1}}, \ldots, U_{x_{r}}\right\rangle_{\mathcal{F}(X)} \subset \mathcal{U}
$$

On the other hand, if $z \in U_{x}$ then $\left\{z, x_{1}, \ldots, x_{r}\right\} \in\left\langle U_{x}, U_{x_{1}}, \ldots, U_{x_{r}}\right\rangle_{\mathcal{F}(X)} \subset$ \mathcal{U}. Hence, $z \in \bigcup \mathcal{U}$. Thus, $U_{x} \subset \bigcup \mathcal{U}$. Therefore, $\bigcup \mathcal{U}$ is an open subset of X.

Theorem 2. Let X be a space. Then, X is a P-space if and only if so is $\mathcal{F}(X)$.

Proof. Necessity. Let X be a P-space and \mathcal{U} be a G_{δ}-set in $\mathcal{F}(X)$. Then, there exists a sequence $\left\{\mathcal{U}_{m}: m \in \mathbb{N}\right\}$ consisting of open subsets of $\mathcal{F}(X)$ such that $\mathcal{U}=\bigcap_{m \in \mathbb{N}} \mathcal{U}_{m}$. We prove that \mathcal{U} is open in $\mathcal{F}(X)$.

In fact, let $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{U}$. Then, $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{U}_{m}$ for each $m \in \mathbb{N}$. For each $m \in \mathbb{N}$, since \mathcal{U}_{m} is open in $\mathcal{F}(X)$, by Notation 2 , there exist open subsets $U_{x_{1}}^{(m)}, \ldots, U_{x_{r}}^{(m)}$ of X such that $x_{j} \in U_{x_{j}}^{(m)}$ for each $j \leq r$, and

$$
\left\{x_{1}, \ldots, x_{r}\right\} \in\left\langle U_{x_{1}}^{(m)}, \ldots, U_{x_{r}}^{(m)}\right\rangle_{\mathcal{F}(X)} \subset \mathcal{U}_{m}
$$

Moreover, since $x_{j} \in \bigcap_{m \in \mathbb{N}} U_{x_{j}}^{(m)}$ for each $j \leq r$, we have

$$
\begin{aligned}
\left\{x_{1}, \ldots, x_{r}\right\} & \in\left\langle\bigcap_{m \in \mathbb{N}} U_{x_{1}}^{(m)}, \ldots, \bigcap_{m \in \mathbb{N}} U_{x_{r}}^{(m)}\right\rangle_{\mathcal{F}(X)} \\
& \subset \bigcap_{m \in \mathbb{N}}\left\langle U_{x_{1}}^{(m)}, \ldots, U_{x_{r}}^{(m)}\right\rangle_{\mathcal{F}(X)} \subset \bigcap_{m \in \mathbb{N}} \mathcal{U}_{m}=\mathcal{U} .
\end{aligned}
$$

Since X is a P-space, $\bigcap_{m \in \mathbb{N}} U_{x_{j}}^{(m)}$ is open in X for each $j \leq r$. It shows that the set $\left\langle\bigcap_{m \in \mathbb{N}} U_{x_{1}}^{(m)}, \ldots, \bigcap_{m \in \mathbb{N}} U_{x_{r}}^{(m)}\right\rangle_{\mathcal{F}(X)}$ is open in $\mathcal{F}(X)$. Hence, \mathcal{U} is open in $\mathcal{F}(X)$.

Sufficiency. By definition of P-spaces, it is easy to check that P-spaces are hereditary. Hence, by Remark 1, if $\mathcal{F}(X)$ is a P-space, then X is a P-space.

Theorem 3. Let X be a space. Then, X is sequentially separable if and only if so is $\mathcal{F}(X)$.

Proof. Necessity. Assume that X is sequentially separable and D is a countable sequentially dense subset of X. We put

$$
\mathcal{D}=\left\{\left\{d_{1}, \ldots, d_{t}\right\} \in \mathcal{F}(X): d_{1}, \ldots, d_{t} \in D, t \in \mathbb{N}\right\}
$$

Then, it is clear that \mathcal{D} is a countable subset of $\mathcal{F}(X)$. Moreover, \mathcal{D} is sequentially dense in $\mathcal{F}(X)$.

In fact, let $\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{F}(X)$. Then, for each $j \leq r$, there exists a sequence $\left\{x_{j}^{(n)}: n \in \mathbb{N}\right\}$ of points of D such that $\left\{x_{j}^{(n)}: n \in \mathbb{N}\right\}$ converges to x_{j} in X. For each $n \in \mathbb{N}$, we put

$$
F_{n}=\left\{x_{1}^{(n)}, \ldots, x_{r}^{(n)}\right\}
$$

Let \mathcal{U} be an open neighborhood of $\left\{x_{1}, \ldots, x_{r}\right\}$ in $\mathcal{F}(X)$. By Notation 2, there exist open subsets $U_{x_{1}}, \ldots, U_{x_{r}}$ of X such that $x_{j} \in U_{x_{j}}$ for each $j \leq r$, and

$$
\left\{x_{1}, \ldots, x_{r}\right\} \in\left\langle U_{x_{1}}, \ldots, U_{x_{r}}\right\rangle_{\mathcal{F}(X)} \subset \mathcal{U}
$$

Thus, for each $j \leq r$, there exists $m_{j} \in \mathbb{N}$ such that $x_{j}^{(n)} \in U_{x_{j}}$ for every $n \geq m_{j}$. If we put $m=\max \left\{m_{j}: j \leq r\right\}$ then $F_{n} \in \mathcal{U}$ for every $n \geq m$. This proves that the sequence $\left\{F_{n}: n \in \mathbb{N}\right\}$ of points of \mathcal{D} converges to $\left\{x_{1}, \ldots, x_{r}\right\}$ in $\mathcal{F}(X)$.

Sufficiency. Suppose that $\mathcal{F}(X)$ is sequentially separable and \mathcal{D} is a countable sequentially dense subset of $\mathcal{F}(X)$. If we put $D=\bigcup \mathcal{D}$ then D is a countable subset of X. Furthermore, D is sequentially dense in X.

In fact, let $x \in X$. Then, $\{x\} \in \mathcal{F}(X)$. Since \mathcal{D} is sequentially dense in $\mathcal{F}(X)$, there exists a sequence $\left\{F_{n}: n \in \mathbb{N}\right\}$ of points of \mathcal{D} such that $\left\{F_{n}: n \in \mathbb{N}\right\}$ converges to $\{x\}$ in $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, take $x_{n} \in F_{n}$ then $x_{n} \in D$ and it is obvious that the sequence $\left\{x_{n}: n \in \mathbb{N}\right\}$ converges to x in X.

References

[1] Arhangel'skii A.V., Tkachenko M.G., Topological Groups and Related Structures, Atlantis Press/World Scientific, Paris-Amsterdam, 2008.
[2] Davis S.W., More on Cauchy conditions, Topology Proc., 9(1984), 31-36.
[3] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989.
[4] Good C., Macías S., Symmetric products of generalized metric spaces, Topology Appl., 206(2016), 93-114.
[5] Liu X., Liu C., Lin S., Strict Pytkeev networks with sensors and their applications in topological groups, Topology Appl., 258(2019), 58-78.
[6] Michael E., Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, 18(1968), 287-302.
[7] Peng L.-X., Sun Y., A study on symmetric products of generalized metric spaces, Topology Appl., 231(2017), 411-429.
[8] Tanaka Y., On quasi- k-spaces, Proc. Japan Acad., 46(1970), 1074-1079.
[9] Tanaka Y., Tanaka spaces and products of sequential spaces, Comment. Math. Univ. Carolinae, 48(3)(2007), 529-540.
[10] Tang Z., Lin S., Lin F., Symmetric products and closed finite-to-one mappings, Topology Appl., 234(2018), 26-45.
[11] Tuyen L.Q., Tuyen O.V., On the n-fold symmetric product of a space with a $\sigma-(P)$-property $c n$-network ($c k$-network), Comment. Math. Univ. Carolinae, 61(2)(2020), 257-263.

Luong Quoc Tuyen
Department of Mathematics
Da Nang University of Education 459 Ton Duc Thang Street
Da Nang City, Vietnam
e-mail: tuyendhdn@gmail.com
Ong Van Tuyen
Hoa Vang High School
101 Ong Ich Duong Street
Da Nang City, Vietnam
e-mail: tuyenvan612dn@gmail.com

Received on 17.09.2021 and, in revised form, on 24.01.2022.

