FASCICULI MATHEMATICI

Nr 65

2021 DOI: 10.21008/j.0044-4413.2021.0006

LUONG QUOC TUYEN AND ONG VAN TUYEN

A NOTE ON THE HYPERSPACE OF FINITE SUBSETS

ABSTRACT. In this paper, we study the relation between a space X satisfying certain generalized metric properties and its hyperspace of finite subsets $\mathcal{F}(X)$ satisfying the same properties. We prove that if $\mathcal{F}(X)$ is a stric \mathfrak{B}_0 -space then so is X. However, there exists a stric \mathfrak{B}_0 -space X such that $\mathcal{F}_n(X)$ is not a stric \mathfrak{B}_0 -space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_0 -space. Moreover, we prove that X is a P-space (resp., sequentially separable) if and only if so is $\mathcal{F}(X)$.

KEY WORDS: symmetric product, hyperspace, *sp*-network, stric \mathfrak{B}_o -space, *P*-space, sequentially separable.

AMS Mathematics Subject Classification: 54B20, 54D20, 54G10.

1. Introduction and preliminaries

Recently, the generalized metric properties on hyperspaces such as $\mathcal{F}(X)$, the space of finite subsets of X, and $\mathcal{F}_n(X)$, the *n*-fold symmetric product of X have been studied by some authors ([4], [7], [10], [11], for example). They considered several generalized metric properties and studied the relation between a space X satisfying such property and its *n*-fold symmetric product or its hyperspace of finite subsets satisfying the same property.

In this paper, we study the relation between a space X satisfying certain generalized metric properties and its hyperspace of finite subsets $\mathcal{F}(X)$ satisfying the same properties. We prove that if $\mathcal{F}(X)$ is a stric \mathfrak{B}_0 -space then so is X. However, there exists a stric \mathfrak{B}_0 -space X such that $\mathcal{F}_n(X)$ is not a stric \mathfrak{B}_0 -space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_0 -space. Moreover, we prove that X is a P-space (resp., sequentially separable) if and only if so is $\mathcal{F}(X)$.

Throughout this paper, all spaces are Hausdorff, \mathbb{N} denotes the set of all positive integers, the first infinite ordinal denoted by ω .

Given a space X, we define its *hyperspaces* as the following sets:

- (1) $CL(X) = \{A \subset X : A \text{ is closed and nonempty}\};$
- (2) $2^X = \{A \in CL(X) : A \text{ is compact}\};$
- (3) $\mathcal{F}_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}, \text{ where } n \in \mathbb{N};$

(4) $\mathcal{F}(X) = \{A \in 2^X : A \text{ is finite}\}.$

The set CL(X) is topologized by the *Vietoris topology*, the base of which consists of all subsets of the following form:

$$\mathcal{B} = \{ \langle U_1, \dots, U_k \rangle : U_1, \dots, U_k \text{ are open subsets of } X, \ k \in \mathbb{N} \},\$$

where

$$\langle U_1, \dots, U_k \rangle = \{ A \in CL(X) : A \subset \bigcup_{i \le k} U_i, \ A \cap U_i \neq \emptyset \text{ for each } i \le k \}.$$

Note that, by definition, 2^X , $\mathcal{F}_n(X)$ and $\mathcal{F}(X)$ as the subspaces of CL(X), every element of the sets 2^X , $\mathcal{F}_n(X)$ and $\mathcal{F}(X)$ is nonempty. Hence, they are topologized with the appropriate restriction of the Vietoris topology. Moreover,

(1) CL(X) is called the hyperspace of nonempty closed subsets of X;

- (2) 2^X is called the hyperspace of nonempty compact subsets of X;
- (3) $\mathcal{F}_n(X)$ is called the *n*-fold symmetric product of X;

(4) $\mathcal{F}(X)$ is called the hyperspace of finite subsets of X.

It is obvious that $\mathcal{F}(X) = \bigcup_{n=1}^{\infty} \mathcal{F}_n(X)$ and $\mathcal{F}_n(X) \subset \mathcal{F}_{n+1}(X)$ for each $n \in \mathbb{N}$.

Remark 1 ([10]). Let X be a space and let $n \in \mathbb{N}$.

- (1) $\mathcal{F}_n(X)$ is closed in $\mathcal{F}(X)$.
- (2) $f_n: X^n \to \mathcal{F}_n(X)$ given by $f_n((x_1, \ldots, x_n)) = \{x_1, \ldots, x_n\}$ is a closed finite-to-one mapping.
- (3) $f_1: X \twoheadrightarrow \mathcal{F}_1(X)$ is a homeomorphism.
- (4) Every $\mathcal{F}_m(X)$ is a closed subset of $\mathcal{F}_n(X)$ for each $m, n \in \mathbb{N}, m < n$.

Notation 1 ([7]). If U_1, \ldots, U_s are open subsets of a space X then $\langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$ denotes the intersection of the open set $\langle U_1, \ldots, U_s \rangle$ of the Vietoris Topology, with $\mathcal{F}(X)$.

Notation 2. Let X be a space. If $\{x_1, \ldots, x_r\}$ is a point of $\mathcal{F}(X)$ and $\{x_1, \ldots, x_r\} \in \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$, then for each $j \leq r$, we let $U_{x_j} = \bigcap \{U \in \{U_1, \ldots, U_s\} : x_j \in U\}$. Observe that $\langle U_{x_1}, \ldots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$.

Definition 1 ([5]). Let \mathcal{P} be a family of subsets of a space X.

- (1) The family \mathcal{P} is a network for X, if for any neighborhood U of a point $x \in X$, there exists a set $P \in \mathcal{P}$ such that $x \in P \subset U$.
- (2) The family \mathcal{P} is an sp-network for X, if for each $x \in U \cap \overline{A}$ with U open and A subset in X, there is a set $P \in \mathcal{P}$ such that $x \in P \subset U$ and $x \in \overline{P \cap A}$.

Remark 2 ([5]). Base \implies sp-network \implies network.

Definition 2. Let X be a space.

- (1) The space X is said to be a stric \mathfrak{B}_0 -space [5], if X is regular and has a countable sp-network.
- (2) The space X is called a P-space [1], if every G_{δ} -set in X is open.
- (3) The space X is said to be sequentially separable [2], if it has a countable sequentially dense subset. A set D is sequentially dense in a space X if each point $x \in X$ is the limit of some sequence of points of D.

Definition 3. Let X be a space.

- (1) The space X is a strongly Fréchet-Urysohn space [9], if for every decreasing sequence $\{A_n : n \in \mathbb{N}\}$ of subsets of X with $x \in \overline{A_n}$ for any $n \in \mathbb{N}$, there exist points $x_n \in A_n$ $(n \in \mathbb{N})$ such that $\{x_n : n \in \mathbb{N}\}$ converges to the point x.
- (2) The space X is a Fréchet-Urysohn space [3], if for any $A \subset X$ and any $x \in \overline{A}$, there exist points $x_n \in A$ such that $\{x_n : n \in \mathbb{N}\}$ converges to x.
- (3) The space X is called a quasi-k-space [8] (resp., k-space [6], sequential space [8]), if a subset A of X is closed whenever $A \cap K$ is closed in K for every countably compact (resp., compact, compact metric) subset K of X.
- (4) The space X is called a k_{ω} -space [6], if it is the union of countably many compact subsets K_n such that a subset A of X is closed whenever $A \cap K_n$ is closed in K_n for all $n \in \mathbb{N}$.

Remark 3 ([3], [5], [8]). 1. Strongly Fréchet-Urysohn spaces \implies Fréchet-Urysohn spaces \implies sequential spaces \implies k-spaces \implies quasi-k-spaces.

2. k_{ω} -spaces $\implies k$ -spaces \implies quasi-k-spaces.

Definition 4 ([5]). A topological space X is called the sequential fan, which is denoted briefly as S_{ω} , if X is the quotient space by identifying all the limit points of ω many non-trivial convergent sequences.

2. Main results

Lemma 1. Every subspace of a stric \mathfrak{B}_0 -space is a stric \mathfrak{B}_0 -space.

Proof. Let Y be a subspace of a stric \mathfrak{B}_0 -space X. Since X is a stric \mathfrak{B}_0 -space, X is regular and has a countable *sp*-network \mathcal{P} . Observe that Y is regular. If we put

$$\mathcal{G} = \{ P \cap Y : P \in \mathcal{P} \},\$$

then it is easy to check that \mathcal{G} is a countable *sp*-network for Y. Therefore, Y is a stric \mathfrak{B}_0 -space.

By Remark 1 and Lemma 1, we obtained the following theorem.

Theorem 1. Let X be a space. If $\mathcal{F}(X)$ is a stric \mathfrak{B}_0 -space then so is X.

Lemma 2. For each $n \ge 2$, $(S_{\omega})^n$ is sequential but $(S_{\omega})^2$ is not Fréchet - Urysohn.

Proof. It follows from [5, Example 4.3] that S_{ω} is a regular Fréchet-Urysohn and k_{ω} -space. Therefore, $(S_{\omega})^n$ is sequential for each $n \geq 2$ by Remark 3, [6, 7.5] and [8, Theorem 2.2]. Furthermore, we have $(S_{\omega})^2$ is not Fréchet-Urysohn. Otherwise, since the Fréchet-Urysohn property is hereditary, $S_{\omega} \times (\{x_1(m) : m \in \mathbb{N}\} \cup \{x\})$ is Fréchet-Urysohn, where the sequence $\{x_1(m) : m \in \mathbb{N}\}$ converges to x in S_{ω} such that the set $\{x_1(m) : m \in \mathbb{N}\} \cup \{x\}$ is not discrete. By [9, Theorem 12], S_{ω} is strongly Fréchet-Urysohn. This is a contradiction.

Lemma 3 (Theorem 4.2 [5]). The following conditions are equivalent for a topological space X.

- (1) X is a k-space with a point-countable sp-network.
- (2) X is a Fréchet-Urysohn space with a point-countable cs^* -network.

Example 1. There exists a stric \mathfrak{B}_0 -space X such that $\mathcal{F}_n(X)$ is not a stric \mathfrak{B}_0 -space for each $n \geq 2$, hence $\mathcal{F}(X)$ is not a stric \mathfrak{B}_0 -space.

Proof. For each $n \geq 2$, $(S_{\omega})^n$ is sequential but $(S_{\omega})^2$ is not Fréchet-Urysohn by Lemma 2. It follows from Remark 1(2) and [10, Remark 4.2, Lemma 4.4] that $\mathcal{F}_n(S_{\omega})$ is sequential for each $n \geq 2$ but $\mathcal{F}_2(S_{\omega})$ is not Fréchet-Urysohn. On the other hand, by Remark 1(4), $\mathcal{F}_2(S_{\omega})$ is closed in $\mathcal{F}_n(S_{\omega})$ for each n > 2. Therefore, $\mathcal{F}_n(S_{\omega})$ is not Fréchet-Urysohn for each $n \geq 2$. Furthermore, it follows from [5, Example 4.3] that the sequential fan S_{ω} is a regular Fréchet-Urysohn space with a countable *sp*-network. This implies that it is a stric \mathfrak{B}_0 -space. However, $\mathcal{F}_n(S_{\omega})$ does not have a point-countable *sp*-network for each $n \geq 2$. Otherwise, there exists $n \geq 2$ such that $\mathcal{F}_n(S_{\omega})$ has a point-countable *sp*-network. Since $\mathcal{F}_n(S_{\omega})$ is sequential, $\mathcal{F}_n(S_{\omega})$ is a *k*-space by Remark 3. It follows from Lemma 3 that $\mathcal{F}_n(S_{\omega})$ does not have a point-countable *sp*-network for each $n \geq 2$. This proves that $\mathcal{F}_n(S_{\omega})$ is not a stric \mathfrak{B}_0 -space.

Lemma 4. Let X be a space. If \mathcal{U} is an open subset of $\mathcal{F}(X)$, then $\bigcup \mathcal{U}$ is an open subset of X.

Proof. Let \mathcal{U} be an open subset of $\mathcal{F}(X)$ and $x \in \bigcup \mathcal{U}$. Then, $x \in \{x, x_1, \ldots, x_r\}$ with $\{x, x_1, \ldots, x_r\} \in \mathcal{U}$. It follows from Notation 2 that we can find open subsets $U_x, U_{x_1}, \ldots, U_{x_r}$ of X such that $x \in U_x, x_j \in U_{x_j}$ for each $j \leq r$, and

$$\{x, x_1, \dots, x_r\} \in \langle U_x, U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

On the other hand, if $z \in U_x$ then $\{z, x_1, \ldots, x_r\} \in \langle U_x, U_{x_1}, \ldots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}$. Hence, $z \in \bigcup \mathcal{U}$. Thus, $U_x \subset \bigcup \mathcal{U}$. Therefore, $\bigcup \mathcal{U}$ is an open subset of X.

Theorem 2. Let X be a space. Then, X is a P-space if and only if so is $\mathcal{F}(X)$.

Proof. Necessity. Let X be a P-space and \mathcal{U} be a G_{δ} -set in $\mathcal{F}(X)$. Then, there exists a sequence $\{\mathcal{U}_m : m \in \mathbb{N}\}$ consisting of open subsets of $\mathcal{F}(X)$ such that $\mathcal{U} = \bigcap_{m \in \mathbb{N}} \mathcal{U}_m$. We prove that \mathcal{U} is open in $\mathcal{F}(X)$.

In fact, let $\{x_1, \ldots, x_r\} \in \mathcal{U}$. Then, $\{x_1, \ldots, x_r\} \in \mathcal{U}_m$ for each $m \in \mathbb{N}$. For each $m \in \mathbb{N}$, since \mathcal{U}_m is open in $\mathcal{F}(X)$, by Notation 2, there exist open subsets $U_{x_1}^{(m)}, \ldots, U_{x_r}^{(m)}$ of X such that $x_j \in U_{x_j}^{(m)}$ for each $j \leq r$, and

$$\{x_1,\ldots,x_r\}\in \langle U_{x_1}^{(m)},\ldots,U_{x_r}^{(m)}\rangle_{\mathcal{F}(X)}\subset \mathcal{U}_m.$$

Moreover, since $x_j \in \bigcap_{m \in \mathbb{N}} U_{x_j}^{(m)}$ for each $j \leq r$, we have

$$\{x_1, \dots, x_r\} \in \left\langle \bigcap_{m \in \mathbb{N}} U_{x_1}^{(m)}, \dots, \bigcap_{m \in \mathbb{N}} U_{x_r}^{(m)} \right\rangle_{\mathcal{F}(X)}$$
$$\subset \bigcap_{m \in \mathbb{N}} \left\langle U_{x_1}^{(m)}, \dots, U_{x_r}^{(m)} \right\rangle_{\mathcal{F}(X)} \subset \bigcap_{m \in \mathbb{N}} \mathcal{U}_m = \mathcal{U}.$$

Since X is a P-space, $\bigcap_{m \in \mathbb{N}} U_{x_j}^{(m)}$ is open in X for each $j \leq r$. It shows that the set $\langle \bigcap_{m \in \mathbb{N}} U_{x_1}^{(m)}, \dots, \bigcap_{m \in \mathbb{N}} U_{x_r}^{(m)} \rangle_{\mathcal{F}(X)}$ is open in $\mathcal{F}(X)$. Hence, \mathcal{U} is open in $\mathcal{F}(X)$.

Sufficiency. By definition of P-spaces, it is easy to check that P-spaces are hereditary. Hence, by Remark 1, if $\mathcal{F}(X)$ is a P-space, then X is a P-space.

Theorem 3. Let X be a space. Then, X is sequentially separable if and only if so is $\mathcal{F}(X)$.

Proof. Necessity. Assume that X is sequentially separable and D is a countable sequentially dense subset of X. We put

$$\mathcal{D} = \{\{d_1, \ldots, d_t\} \in \mathcal{F}(X) : d_1, \ldots, d_t \in D, t \in \mathbb{N}\}.$$

Then, it is clear that \mathcal{D} is a countable subset of $\mathcal{F}(X)$. Moreover, \mathcal{D} is sequentially dense in $\mathcal{F}(X)$.

In fact, let $\{x_1, \ldots, x_r\} \in \mathcal{F}(X)$. Then, for each $j \leq r$, there exists a sequence $\{x_j^{(n)} : n \in \mathbb{N}\}$ of points of D such that $\{x_j^{(n)} : n \in \mathbb{N}\}$ converges to x_j in X. For each $n \in \mathbb{N}$, we put

$$F_n = \{x_1^{(n)}, \dots, x_r^{(n)}\}.$$

Let \mathcal{U} be an open neighborhood of $\{x_1, \ldots, x_r\}$ in $\mathcal{F}(X)$. By Notation 2, there exist open subsets U_{x_1}, \ldots, U_{x_r} of X such that $x_j \in U_{x_j}$ for each $j \leq r$, and

 $\{x_1,\ldots,x_r\} \in \langle U_{x_1},\ldots,U_{x_r}\rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$

Thus, for each $j \leq r$, there exists $m_j \in \mathbb{N}$ such that $x_j^{(n)} \in U_{x_j}$ for every $n \geq m_j$. If we put $m = \max\{m_j : j \leq r\}$ then $F_n \in \mathcal{U}$ for every $n \geq m$. This proves that the sequence $\{F_n : n \in \mathbb{N}\}$ of points of \mathcal{D} converges to $\{x_1, \ldots, x_r\}$ in $\mathcal{F}(X)$.

Sufficiency. Suppose that $\mathcal{F}(X)$ is sequentially separable and \mathcal{D} is a countable sequentially dense subset of $\mathcal{F}(X)$. If we put $D = \bigcup \mathcal{D}$ then D is a countable subset of X. Furthermore, D is sequentially dense in X.

In fact, let $x \in X$. Then, $\{x\} \in \mathcal{F}(X)$. Since \mathcal{D} is sequentially dense in $\mathcal{F}(X)$, there exists a sequence $\{F_n : n \in \mathbb{N}\}$ of points of \mathcal{D} such that $\{F_n : n \in \mathbb{N}\}$ converges to $\{x\}$ in $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, take $x_n \in F_n$ then $x_n \in D$ and it is obvious that the sequence $\{x_n : n \in \mathbb{N}\}$ converges to xin X.

References

- ARHANGEL'SKII A.V., TKACHENKO M.G., Topological Groups and Related Structures, Atlantis Press/World Scientific, Paris-Amsterdam, 2008.
- [2] DAVIS S.W., More on Cauchy conditions, Topology Proc., 9(1984), 31-36.
- [3] ENGELKING R., General Topology, Heldermann Verlag, Berlin, 1989.
- [4] GOOD C., MACÍAS S., Symmetric products of generalized metric spaces, *Topology Appl.*, 206(2016), 93-114.
- [5] LIU X., LIU C., LIN S., Strict Pytkeev networks with sensors and their applications in topological groups, *Topology Appl.*, 258(2019), 58-78.
- [6] MICHAEL E., Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, 18(1968), 287-302.

- [7] PENG L.-X., SUN Y., A study on symmetric products of generalized metric spaces, *Topology Appl.*, 231(2017), 411-429.
- [8] TANAKA Y., On quasi-k-spaces, Proc. Japan Acad., 46(1970), 1074-1079.
- [9] TANAKA Y., Tanaka spaces and products of sequential spaces, Comment. Math. Univ. Carolinae, 48(3)(2007), 529-540.
- [10] TANG Z., LIN S., LIN F., Symmetric products and closed finite-to-one mappings, *Topology Appl.*, 234(2018), 26-45.
- [11] TUYEN L.Q., TUYEN O.V., On the *n*-fold symmetric product of a space with a σ -(*P*)-property *cn*-network (*ck*-network), *Comment. Math. Univ. Carolinae*, 61(2)(2020), 257-263.

Luong Quoc Tuyen Department of Mathematics Da Nang University of Education 459 Ton Duc Thang Street Da Nang City, Vietnam *e-mail:* tuyendhdn@gmail.com

ONG VAN TUYEN HOA VANG HIGH SCHOOL 101 ONG ICH DUONG STREET DA NANG CITY, VIETNAM *e-mail:* tuyenvan612dn@gmail.com

Received on 17.09.2021 and, in revised form, on 24.01.2022.