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1. Introduction

The concept of connectedness is one of the principal topological prop-
erties used to distinguish topological spaces. Undoubtedly, the concept of
connectedness has always been an indispensable characteristic in the world
of topology. That concept has constituted the basis of many precious re-
searches in general topology. These researches have played so significant
roles in many areas of real life, and the findings of such researches have had
reflections in many applications. However, as the technology has progressed,
and the industry has been revolutionized, the needs of the individuals have
also changed, and so the general topology has fallen behind in real life. Be-
sides, the impacts of these findings have decreased on the real-life practises.
Moreover, classical methods are insufficient in dealing with several practical
problems in some other disciplines, such as economics, engineering, environ-
ment, social science, medical science, etc. Therefore, according to the new
theories put forward, it has become inevitable for scientists to re-examine
some of the fundamental issues of Mathematics and find new types of spaces
[6, 7, 16, 19, 26, 34, 38]. Connected spaces have occupied an important area
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in these topological spaces. In 2005, Smarandache introduced the concept
of a neutrosophic set [33] as a generalization of classical sets, and this idea
has been the leading actor in many studies, as in [1, 2, 3, 4, 5, 8, 9, 11, 12,
13, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 32, 35, 36, 37]. Using
this new concept in [33], Salma and Alblowi [31] have also put forth the
neutrosophic topological theory of space. The concept of the univalent neu-
trosophic number (SVN-number) has been introduced in a different mode by
examining its structural properties by Bera et al. [10]. They have developed
an assignment problem model in the neutrosophic setting, along with the
solution methodology. Yang et al. [37] have presented a Data Envelopment
Analysis (DEA) model in the context of neutrosophic sets. This new model
has been used in the healthcare system. Thus, they have achieved useful
practical results. In [24], Edalatpanah has attempted to establish a new
model of DEA, where the information on decision-making units is triangu-
lar neutrosophic numbers (TNNs). Duran et al. [22] have introduced an
application of neutrosophic logic in the confirmatory data analysis of the
life satisfaction scale. Dhar [20] has gived an application of the concept of
an algorithm-based neutrosophic soft matrix to solve some of the problems
in diagnosing a disease caused by the appearance of various symptoms in
patients. Radha and Stanis Arul Mary [30] have applied the concept of
quadripartitioned neutrosophic pythagorean sets to Lie Algebras. The idea
of neutrosophic connectivity is introduced and its features are investigated
in this study. We also investigate neutrosophic super-connectedness and
neutrosophic strongly connectedness in neutrosophic topological spaces, as
well as their characterizations. The idea of neutrosophic connectivity is
introduced and its features are investigated in this study. We also investi-
gate neutrosophic super-connectedness and neutrosophic strongly connect-
edness in neutrosophic topological spaces, as well as their characterizations.
Throughout the paper, without any explanation, we use the symbols and
definitions introduced in [21, 31, 33]. We use the notation N instead of
neutrosophic due of its brevity. We hope that many researchers will benefit
from the findings in this document to further their studies on neutrosophic
topology to carry out a general framework for their applications in practical
life.

2. Necessary definitions

Following are a few new descriptions that will be useful in the next sec-
tion.

Definition 1 ([4]). An N-point xr,t,s is said to be N-quasi-coincident
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(N-q-coincident, for short) with F , denoted by xr,t,sqF iff xr,t,s ̸⊂ F c. If
xr,t,s is not N-quasi-coincident with F , we denote by xr,t,sq̃F .

Definition 2 ([4]). An N-set F is an N-topological space (X, τ) is said
to be an N-q-neighbourhood of an N-point xr,t,s iff there exists an N-open set
G providing that xr,t,sqG ⊂ F .

Definition 3 ([4]). An N-set G is said to be N-quasi-coincident (N-q-coin-
cident, for short) with F , denoted by GqF iff G ̸⊂ F c. If G is not N-quasi-
coincident with F , we denote by Gq̃F .

Definition 4. An N-point xr,t,s is said to be N-interior point of an N-set
F if and only if there exists an N-open q-neighbourhood G of xr,t,s providing
that G ⊂ F . The union of all N-interior points of F is called the N-interior
of F and denoted by F ◦.

Definition 5 ([4]). An N-point xr,t,s is said to be N-cluster point of an
N-set F if and only if every N-open q-neighbourhood G of xr,t,s is q-coincident
with F . The union of all N-cluster points of F is called the N-closure of F
and denoted by F .

Definition 6. An N-set F in an N-topological space (X, τ) is called an
N-regular open (N-regular closed) set if and only if F = (F )◦(F = F ◦). The
complement of an N-regular open set is called an N-regular closed set.

Definition 7. An N-set F in an N-topological space (X, τ) is called an
N-semi open set if and only if there exists an N-open set K providing that
K ⊂ F ⊂ K. An N-set F is N-semi open if and only if F ⊂ F ◦. The
complement of an N-semi open set is called an N-semi closed set.
Equivalently, an N-set H in an N-topological space (X, τ) is called an N-semi
closed set if and only if there exists an N-closed set G providing that G◦ ⊂
H ⊂ G. An N-set H is N-semi closed if and only if (H)◦ ⊂ H.

Definition 8 ([4]). Consider that f is a function from X to Y . Let B
be an N-set in Y with membership function TB(y), indeterminacy function
IB(y) and non-membership function FB(y).Then, the inverse image of B
under f , written as f−1(B), is an N-subset of X whose membership func-
tion, indeterminacy function and non-membership function are defined as
Tf−1(B)(x) = TB(f(x)), If−1(B)(x) = IB(f(x)) and Ff−1(B)(x) = FB(f(x))
for all x in X, respectively.
Conversely, let A be an N-set in X with membership function TA(x), indeter-
minacy function IA(x) and non-membership function FA(x). The image of
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A under f , written as f(A), is an N-subset of Y whose membership function,
indeterminacy function and non-membership function are defined as

Tf(A)(y) =

{
supz∈f−1(y){TA(z)} , if f−1(y) is not empty,

0 , if f−1(y) is empty,

If(A)(y) =

{
supz∈f−1(y){IA(z)} , if f−1(y) is not empty,

0 , if f−1(y) is empty,

Ff(A)(y) =

{
infz∈f−1(y){FA(z)} , if f−1(y) is not empty,

1 , if f−1(y) is empty,

for all y in Y , where f−1(y) = {x : f(x) = y}, respectively.
Let (X, τ) be an N-topological space and A ⊂ X. In this paper, we denote any
N-set, whose supports are members of, by µA. It means that, if x ∈ X −A,
then TµA(x) = 0, IµA(x) = 0 and FµA(x) = 1. Otherwise, 0 ≤ TµA(x) ≤ 1,
0 ≤ IµA(x) ≤ 1 and 0 ≤ FµA(x) ≤ 1.

3. Neutrosophic connectedness

In this section, the concept of N -connectedness is introduced and its
properties are investigated.

Definition 9. An N -topological space (X, τ) said to be N -connected, if
there don’t exist proper N -open sets δ, µ in (X, τ) providing that δq̃µ and
δcq̃µc. If (X, τ) is not N -connected, then it is said to be N -disconnected.

Theorem 1. Let (X, τ) be an N -topological space. If (X, τ) is an
N -connected topological space then, it has no proper N -clopen set (N -closed
and N -open). (An N -set µ is in (X, τ) is said to be proper, if it is neither
a null N -set nor an absolute N -set).

Proof. It follows directly from the above definition. ■

Theorem 2. An N -topological space (X, τ) is N -connected if and only
if it doesn’t have any N -open sets A and B providing that TA(x) = FB(x),
FA(x) = TB(x) and IA(x) + IB(x) = 1.

Proof. Suppose that there exist N -open sets A and B providing that
TA(x) = FB(x), FA(x) = TB(x) and IA(x) + IB(x) = 1. Then, A and B are
N -clopen sets (N -closed and N -open) in (X, τ). This implies that (X, τ) is
not N -connected.
Conversely, assume that (X, τ) is not N -connected. This means that it has
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a proper N -clopen set A. So, Ac is also N -open in (X, τ). Say Ac = B
Then, TA(x) = FB(x), FA(x) = TB(x) and IA(x) + IB(x) = 1. ■

Corollary 1. An N -topological space (X, τ) is N -connected if and only
if it does not have any N -open sets A and B providing that TA(x) = FB(x),
FA(x) = TB(x) and IA(x) + IB(x) = 1.

Definition 10. Let (X, τ) be an N -topological space. A subfamily β of
τ is an N -base for τ if and only if each member of τ can be expressed as the
union of some members of β.

Definition 11. Let (X, τ) be an N -topological space. A subfamily δ of
τ is an N -subbase for τ if and only if the family of finite intersections of
members of δ forms an N -base for τ .

Definition 12. Let {Xi}i∈I be a family of non-empty sets. Let X =
Πi∈IXi be be the usual product of Xi’s and let Pi the projection from X to Xi.
Suppose that (Xi, τi) be an N -topological space for each i ∈ I. N -topology
generated by ρ = {P−1

i (Bi) : foreachi ∈ I,Bi ∈ τi} as N -subbasis, is called
the N -product topology in X.
Clearly, if µ is a basic element in the product topology, then for x = (xi)i∈I ∈
X, there exist i1, i2, i3, ..., in ∈ I providing that

Tµ(x) = min
{
TBik

: k = 1, 2, 3, ... ..., n
}
,

Iµ(x) = min
{
IBik

: k = 1, 2, 3, ... ..., n
}
,

Fµ(x) = max
{
FBik

: k = 1, 2, 3, ... ..., n
}
.

An N -product of N -topological spaces may not be N -connected as seen in
the following example.

Example 1. Regard as sets X1 = {a1, b1}, and X2 = {a2, b2}. Then,
(X1, τ1), (X2, τ2) are two N -topological spaces, where

τ1 =

{
0X1 , 1X1 ,

{
⟨a1, 0.3, 0.3, 0.7⟩, ⟨b1, 0.3, 0.3, 0.7⟩

}}
,

τ2 =

{
0X2 , 1X2 ,

{
⟨a2, 0.7, 0.7, 0.3⟩, ⟨b2, 0.7, 0.7, 0.3⟩

}}
and τ3 =

{
0X3 , 1X3

}
.

Then, (X1, τ1), (X2, τ2) and (X3, τ3) are N -connected topological spaces but
Π3

i=1Xi is not N -connected with the N -product topology.
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Definition 13. Let (X, τ) be an N -topological space and Y ⊆ X. Let H
be an N -set over Y providing that

TH(x) =

{
1 , x ∈ Y ,
0 , x /∈ Y ,

IH(x) =

{
1 , x ∈ Y ,
0 , x /∈ Y ,

FH(x) =

{
0 , x ∈ Y ,
1 , x /∈ Y .

Let τY = {H ∩ F : F ∈ τ}, then (Y, τY ) is called N -subspace of (X, τ). If
H ∈ τ (resp. Hc ∈ τ), then (Y, τY ) is called N -open (resp. closed) subspace
of (X, τ). And, the restriction of an N -set F to Y is denoted as F/Y .

Definition 14. If A ⊂ X, (X, τ) is an N -topological space,then A is
said to be an N -connected subset of X if A is an N -connected space as an
N -subspace of X.
Clearly, if A ⊂ Y ⊂ X, then A is an N -connected subset of the N -topological
space X if and only if it is an N -connected subset of the N -subspace Y of
X.

Theorem 3. If (X, τ) is an N -topological space and Y is an N -connected
subset of X. For any non-null N -open sets A and B in (X, τ) satisfying
TA(x) = FB(x) ,FA(x) = TB(x) and IA(x)+ IB(x) = 1 for all x ∈ X, either
TA/Y (x) = 1, IA/Y (x) = 1, FA/Y (x) = 0 or TB/Y (x) = 1, IB/Y (x) = 1,
FB/Y (x) = 0.

Proof. Let (X, τ) is an N -topological space, Y be an N -connected subset
of X and A and B be non-null N -open sets in (X, τ). Suppose that, for
some points a, b ∈ Y , it isn’t satisfied that TA/Y (a) = 1, IA/Y (a) = 1,
FA/Y (a) = 0 and TB/Y (b) = 1, IB/Y (b) = 1, FB/Y (b) = 0. If TA(x) =
FB(x), FA(x) = TB(x) and IA(x)+IB(x) = 1 for all x ∈ X, then TA/Y (y) =
FB/Y (y), FA/Y (y) = TB/Y (y) and IA/Y (y)+IB/Y (y) = 1 for all y ∈ Y , where
TA/Y (y) ̸= 0, IA/Y (y) ̸= 0, FA/Y (y) ̸= 1 and TB/Y (y) ̸= 0, IB/Y (y) ̸= 0,
FB/Y (y) ̸= 1. From Theorem 11, Y is not N -connected. This discrepancy
shows that TA/Y (x) = 1, IA/Y (x) = 1, FA/Y (x) = 0 or TB/Y (x) = 1,
IB/Y (x) = 1, FB/Y (x) = 0 for all x ∈ X. ■

Definition 15. N -sets A and B in an N -topological space (X, τ) are
said to be separated from each other if Aq̃B and Aq̃B.

Theorem 4. Let (X, τ) be an N -topological space and {Ai}i∈I be a
family of N -connected subsets in (X, τ) providing that for each j, k ∈ I,
where j ̸= k, µAj and muAk

are not separated from each other. Then,⋃
i∈I Ai is an N -connected subset of X.
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Proof. Assume that Y =
⋃

i∈I Ai is not N -connected. Then, there
exist non-null N -open sets A and B in Y providing that TA(y) = FB(y),
FA(y) = TB(y) and IA(y) + IB(y) = 1 for all y ∈ Y . Clearly, A and B
are N -clopen in Y . Fix i0 ∈ I. Then, Ai0 is N -connected in (X, τ). From
Theorem 4, TµA/Ai0

(x) = 1, IµA/Ai0
(x) = 1, FµA/Ai0

(x) = 0 or TµB/Ai0
(x) =

1, IµB/Ai0
(x) = 1, FµB/Ai0

(x) = 0. This means that µAi0
⊂ A or µAi0

⊂
B. Assume that µAi0

⊂ A. So, µAi0
⊂ A. Take i1 ∈ I. Then, Ai1

is N -connected in (X, τ). Alike, µAi1
⊂ A or µAi1

⊂ B. Assume that

µAi1
⊂ B. So, µAi1

⊂ B. Since A and B are N -clopen in Y , TA(y) = FB(y),
FA(y) = TB(y), IA(y) + IB(y) = 1, and TA(y) = FB(y), FA(y) = TB(y) and
IA(y) + IB(y) = 1. This implies that µAi1

q̃µAi0
and µAi1

q̃µAi0
. So, µAi0

and µAi1
are separated from each other. This discrepancy shows that Y is

N -connected. ■

Corollary 2. Let (X, τ) be an N -topological space and {Ai}i∈I be a
family of N -connected subsets in (X, τ) providing that

⋂
i∈I Ai = ∅. Then,⋃

i∈I Ai is an N -connected subset of X.

Corollary 3. Let (X, τ) be an N -topological space and {Ai : i = 1, 2, 3, ...}
be a sequence of N -connected subsets in (X, τ) providing that µAj and µAj+1

are not separated from each other, where j = 1, 2, ... . Then,
⋃∞

i∈I Ai is an
N -connected subset of X.

Theorem 5. Let (X, τ) be an N -topological space , C be an N -connected
subset of X, V ⊂ X − C and µV /(X − C) be an N -clopen subset in (X −
C, τX−C). Then, C ∪ V is an N -connected subset of X.

Proof. Assume that Y = C ⊂ V is not N -connected. Then, there
exist non-null N -open sets A and B in Y providing that TA(y) = FB(y),
FA(y) = TB(y) and IA(y) + IB(y) = 1. From Theorem 4, TA/C(x) = 1,
IA/C(x) = 1, FA/C(x) = 0 or TB/C(x) = 1, IB/C(x) = 1, FB/C(x) = 0.
Since C is N -connected in (X, τ), µC ⊂ A or µC ⊂ B. Assume that µC ⊂ A.
Then, TB/C(x) = 0, IB/C(x) = 0, FB/C(x) = 1. As B is an N -open set in
in (Y, τY ), B is an N -open set in (V, τV ). Let us define an N -set B1 in X as

TB1(x) =

{
TB(x) , if x ∈ V ,

0 , if x /∈ V ,

IB1(x) =

{
IB(x) , if x ∈ V ,

0 , if x /∈ V ,

FB1(x) =

{
FB(x) , if x ∈ V ,

1 , if x /∈ V .
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Now B1/V = B/V and B/V is N -closed in V . Therefore B1/V is N -closed
in V . Also µV is N -closed in (X−C, τX−C). For this reason, B1/(X−C) is
N -closed in (X−C, τX−C). Now, B1/(X−C) = B/(X−C)∩µV /(X−C).
For this reason, B1/(X−C) is N -open in (X−C, τX−C). Thus, B1/(X−C)
is N -clopen in (X−C, τX−C). Further, B1/Y = B/Y . As B/Y is N -clopen
in Y , For this reason, B1/Y is N -clopen in Y . So, B1 is N -clopen in
(X − C) ∪ Y = X. As B1 is a proper N -set in X. This implies that X is
not connected. From this discrepancy, Y is N -connected. ■

Theorem 6. Let A and B be subsets of X in an N -topological space
(X, τ). If µA ⊂ µB ⊂ µA and A is N -connected in an N -topological space
(X, τ), then B is also N -connected in (X, τ).

Proof. Use the method of prof by discrepancy. To do this, assume that B
is not N -connected. Then, there exist N -open sets λ and δ in (X, τ), where
λ/B and δ/B are not null N -sets and Tλ/B(y) = Fδ/B(y), Fλ/B(y) = Tδ/B(y)
and Iλ/B(y) + Iδ/B(y) = 1. We first show that λ/A is not a null N -set. If
λ/A is a null N -set, then µA ⊂ λc, which implies that µA ⊂ λc. So, µB ⊂ λc.
This implies that λ/B is a null N -set. From this discrepancy, λ/A is not
a null N -set. Similarly we can show that δ/A is not a null N -set. Since
µA ⊂ µB, Tλ/A(y) = Fδ/A(y), Fλ/A(y) = Tδ/A(y) and Iλ/A(y) + Iδ/A(y) = 1.
So, A is not N -connected. From this discrepancy, B is N -connected. ■

4. N-connected subsets

In this section, we present the concept of N -connected subset and inves-
tigate its properties.

Definition 16. Let (X, τ) be an N -topological space. Then, (X, τ) is
said to be an N -super-connected space, if there doesn’t exist any proper
N -regular open set in (X, τ). Since an N -clopen set is an N -regular open
set, N -super-connectedness implies N -connectedness but the following ex-
ample shows that the converse is not true.

Example 2. Let X = {a, b} and τ =
{
0X , 1X ,

{
⟨a, 16 ,

1
6 ,

5
6⟩, ⟨b,

1
6 ,

1
6 ,

5
6⟩
}
,{

⟨a, 23 ,
2
3 ,

1
3⟩, ⟨b,

2
3 ,

2
3 ,

1
3⟩
}}

. Then, (X, τ) isN -connected but it is notN -super-

connected, since it has a proper N -regular open set. We also define N -super-
connected subsets of an N -topological space and study their properties.

Theorem 7. Let (X, τ) be an N -topological space. Then, the following
statements are equivalent:

(a) (X, τ) is N -super-connected.
(b) Closure of every non-null N -open set in X is 1X .
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(c) Interior of every non-absolute N -closed set in (X, τ) is a null N -set.
(d) There don’t exist any non-null N -open sets λ and δ providing that

λ ⊂ δc.
(e) There don’t exist any non-null N -sets λ and δ satisfying λ = δc or

δ = λc.
(f) There don’t exist any non-null N -closed sets η and Ω satisfying η◦ =

Ωc or Ω◦ = ηc.

Proof.
(a) =⇒ (b) If there exists a non-null N -open set λ providing that λ ̸= 1X ,

then (λ)◦ is a proper N -regular open set.
(b) =⇒ (c) Let λ be a non-absolute N -closed set in (X, τ). Now, λ◦ =

((λc))c = 0X , as λc is a non-null N -open set.
(c) =⇒ (d) If there exist non-null N -open sets λ and δ providing that

λ ⊂ δc, then λ ⊂ δc. For δ is non-null, λ is non-absolute. Since λ is non-null,
λ
◦
is non-null. This contradicts with (c).
(d) =⇒ (a) If there exists a proper N -regular open set λ, then λ and

δ = (λ)c are non-null N -open sets satisfying λ ⊂ δc. This is a discrepancy.
(e) =⇒ (a) Suppose that (X, τ) is not N -super-connected. Then, there

exists a proper N -regular open set λ in (X, τ). If δ = (λ)c, then δ is non-null.

In addition, δ = (λ)c = (λc)◦ = λc as λc is an N -regular closed set. For this
reason, δ = λc. This is a discrepancy.
Conversely, if there exist non-null N -open sets λ and δ providing that λ = δc

or δ = λc, then (λ)◦ = (δc)◦ = (δ)c = λ. Since δ is non-null and δ = δc, λ
is non-absolute. In addition, λ is non-null. For this reason, λ is a proper
N -regular open set. For this reason, (X, τ) is not N -super-connected. This
is a discrepancy.
(e) =⇒ (f), (e) =⇒ (f) follows if we take η = λc and Ω = δc. Reverse
implication can be proved similarly. ■

Theorem 8. An N -topological space (X, τ) is N -super-connected if and
only if there doesn’t exist any proper N -open set which is also N -semi-closed
or equivalently if and only if there doesn’t exist any proper N -closed set which
is also N -semi-open.

Proof. It is clear from the definitions ofN -regular open sets, N -semi-open
sets and N -semi-closed sets. ■

Theorem 9. Let (X1, τ1), (X2, τ2) and f be an N -continuous function
from (X1, τ1) to (X2, τ2). If (X1, τ1) is N -super-connected then (X2, τ2) is
also N -super-connected.

Proof. Assume that (X2, τ2) is not N -super-connected. Then there
exists a non-null N -open set λ in (X2, τ2) providing that λ ̸= 1X . Since f



14 Ahu Açikgöz and Ferhat Esenbel

is N -continuous f−1(λ) ⊂ f−1(λ). Since λ is non-null, there exist N -points
y1 ∈ λ providing that Tλ(y1) ̸= 0 or Iλ(y1) ̸= 0 or Fλ(y1) ̸= 1. And, since λ
is non-absolute, there exist N -points (y2) ∈ λ providing that Tλ(y2) ̸= 1 or
Iλ(y2) ̸= 1 or Fλ(y2) ̸= 0. From f is onto, there exist N -points x1, x2 ∈ X
providing that f(x1) = y1 and f(x2) = y2. Then, Tf−1(λ)(x1) ̸= 0 and
If−1(λ)(x1) ̸= 0 and Ff−1(λ)(x1) ̸= 1. In addition, Tf−1(λ)(x1) ̸= 0 and

If−1(λ)(x1) ̸= 0 and Ff−1(λ)(x1) ̸= 1. Then, f−1(λ) a non-null N -open set

in (X1, τ1) providing that f−1(λ) ̸= 1X . As (X1, τ1) is N -super-connected,
this is a discrepancy. ■

Theorem 10. Finite product of N -super-connected spaces N -super-con-
nected.

Proof. Let (X, τX) and (Y, τY ) be N -super-connected topological spaces.
Assume that (XxY, τXxY ) is not N -super-connected. Then, there exist
λ, µ ∈ τX and δ, η ∈ τY providing that λxδ ⊂ (µxη)c, where λxδ, µxη ∈
τXxY , λxδ = P−1

X (λ) ∩ P−1
Y (δ), PX and PY are projection maps of XxY

onto X and Y , respectively. So, min
{
Tλ(x), Tδ(y)

}
≤ max

{
Fµ(x), Fη(y)

}
and min

{
Iλ(x), Iδ(y)

}
+min

{
Iµ(x), Iη(y)

}
≤ 1 and max

{
Fλ(x), Fδ(y)

}
≥

min
{
Tµ(x), Tη(y)

}
for all (x, y) ∈ XxY .

As (X, τX) and (Y, τY ) are N -super-connected topological spaces, if λ ∩
µ ̸= 0X and δ ∩ η ̸= 0Y then there exist x1 ∈ X and y1 ∈ Y provid-
ing that Tλ∈µ(x1) > Fλ∈µ(x1), Iλ∈µ(x1) > 0.5 and Tδ∈η(y1) > Fδ∈η(y1),

Iδ∈η(y1) > 0.5. Therefore min
{
Tλ(x1), Tδ(y1)

}
> max

{
Fµ(x1), Fη(y1)

}
and min

{
Iλ(x1), Iδ(y1)

}
+min

{
Iµ(x1), Iη(y1)

}
> 1 and max

{
Fλ(x1), Fδ(y1)

< min
{
Tµ(x1), Tη(y1)

}
.

If λ∩µ = 0X , then for each x ∈ X, min
{
Tλ(x), Tµ(x)

}
= 0 and min

{
Iλ(x),

Iµ(x)
}

= 0 and max
{
Fλ(x), Fµ(x)

}
= 1. If Tλ(x) < Fµ(x) and Iλ(x) +

Iµ(x) ≤ 1, then λ ⊂ µc. As λxδ and µxη are non-null, λ and µ are non-null.
This implies that (X, τX) is not N -super-connected. Alike, it can be proved
that (Y, τY ) is also not N -super-connected. This discrepancys shows that
(XxY, τXxY ) is N -super-connected. ■

Theorem 11. Any N -product of N -super-connected spaces is twN -super-
connected.

Proof. Let (Xi, τXi) be a family ofN -super-connected spaces and (X, τX)
be an N -product-space, where X = Πi∈IXi and τX is N -product topology.
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Assume that there are two non-nullN -open sets λ and µ in (X, τX) providing
that λ ⊂ µc.
Then, there exists i1, i2, ..., im, j1, j2, ..., jn ∈ I providing that λik ∈ τXik

for

k = 1, 2, ...,m, µjp ∈ τXjp
for p = 1, 2, ..., n satisfying that min

{
Tλik

(xik) :

k = 1, 2, ...,m
}

≤ max
{
Fµjp

(xjp) : p = 1, 2, ..., n
}

and min
{
Iλik

(xik) :

k = 1, 2, ...,m
}
+ min

{
Iµjp

(xjp) : p = 1, 2, ..., n
}
≤ 1 for every xik ∈ Xik ,

k = 1, 2, ...,m and for every xjp ∈ Xjp , p = 1, 2, ..., n.
Case 1. Let {i1, i2, ..., im}∩{j1, j2, ..., jn} = ∅. Since each Xi is N -super-

connected, there exist x
′
ik

∈ Xik , k = 1, 2, ...,m and x
′
jp

∈ Xjp , p = 1, 2, ..., n

providing that min
{
Tλik

(x
′
ik
), k = 1, 2, ...,m

}
> max

{
Fµjp

(x
′
jp
) : p =

1, 2, ..., n
}

and min
{
Iλik

(x
′
ik
), k = 1, 2, ...,m

}
+ min

{
Iµjp

(x
′
jp
) : p =

1, 2, ..., n
}
> 1. This contradicts with our assumption.

Case 2. Let {i1, i2, ..., im} ∩ {j1, j2, ..., jn} ̸= ∅. If min
{
Tλik

(xik) :

k = 1, 2, ...,m
}
, max

{
Fµjp

(xjp) : p = 1, 2, ..., n
}
, min

{
Iλik

(xik) : k =

1, 2, ...,m
}

and min
{
Iµjp

(xjp) : p = 1, 2, ..., n
}

have different subscripts,

we can complete our proof in the same sense as in Case 1. If they have the
same subscript γ, then Tλγ (xγ) ≤ Fµγ (xγ) and Iλγ (xγ) + Iµγ (xγ) ≤ 1 for

all xγ ∈ Xγ . But, λγ ∩ µγ ∈ τXγ . If min
{
Tλγ (xγ), Tµγ (xγ)

}
> Fλγ (xγ) for

some xγ ∈ Xγ , this is contradicts with our assumption. ■

Definition 17. A subset A of X is said to be N -super-connected, if
(A, τA) is an N -super-connected topological space as an N -subspace of (X, τ).

Theorem 12. If A ⊂ Y ⊂ X, then A is an N -super-connected subset of
X if and only if it is an N -super-connected subset of the N -subspace Y of
X.

Proof. The proof is obvious. ■

Theorem 13. Let A be an N -super-connected subset of X. If there exist
N -closed sets λ and δ in (X, τ) providing that λ◦ = δc and δ◦ = λc then
λ\A = 1A or δ\A = 1A.

Proof. Suppose that Tλ(x0) ̸= 1, Iλ(x0) ̸= 1, Fλ(x0) ̸= 0 and Tδ(y0) ̸= 1,
Iδ(y0) ̸= 1, Fδ(y0) ̸= 0 for some x0, y0 ∈ A. Clearly, Tλ◦(x0) = Fδ(y0),
Fλ◦(x0) = Tδ(y0), Tδ◦(y0) = Fλ(x0), F

◦
δ (y0) = Tλ(x0), Iλ◦(x0) = 1 − Iδ(y0)

and I◦δ (y0) = 1− Iλ(x0).
So, Tλ◦(x0) ≤ Fδ◦(y0), Fλ◦(x0) ≥ Tδ◦(y0),Tδ◦(y0) ≤ Fλ◦(x0), Fδ◦(y0) ≥
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Tλ◦(x0), Iλ◦(x0) ≤ 1 − Iδ◦(y0) and Iδ◦(y0) ≤ 1 − Iλ◦(x0). Thus λ◦\A and
δ◦\A are non-null N -open sets in A providing that λ◦\A ⊂ (δ◦\A)c. This
is a discrepancy. So, Tλ(x0) = 1, Iλ(x0) = 1, Fλ(x0) = 0 and Tδ(y0) = 1,
Iδ(y0) = 1, Fδ(y0) = 0. ■

Theorem 14. Let (X, τ) be an N -topological space and A ⊂ X be
N -super-connected subset providing that A is an N -open set in (X, τ). If λ
is an N -regular open set in (X, τ), then either µA ⊂ λ or µA ⊂ λc.

Proof. If λ = 1X or λ = 0X , then it is clear. Suppose that λ ̸= 1X
and λ ̸= 0X . Then, (λ)◦ = (λc)c and (λc)◦ = (λ)c. According to the prior
theorem, λ\A = 1A or λc\A = 1A. Then µA ⊂ λ or µA ⊂ λc. Since µA is
n-open, µA ⊂ (λ)◦ or µA ⊂ (λc)◦. For this reason, µA ⊂ λ or µA ⊂ λc. ■

Theorem 15. Let
{
Ai

}
i∈I be a family of subsets of X providing that

each µAi is n-open. If
⋂

i∈I Ai and each Ai is an N -super-connected subset
of X, then

⋃
i∈I Ai is also an N -super-connected subset of X.

Proof. Let Y =
⋃

i∈I Ai and assume that Y is not an N -super-connected
subset of X. Then, there exists a proper N -regular open set λA in the
N -subspace Y of X. Each µAi is N -open in (X, τ). So, each µAi\Y is
N -open in (Y, τY ). In addition, each Ai is an N -super-connected subset in
(Y, τY ). From the previous theorem, for each i ∈ I, µAi\Y ⊂ λY or µAi\Y ⊂
(λY )

c. Suppose x0 ∈
⋂

i∈I Ai. Then, either TλY
(x0) = 1, IλY

(x0) = 1,
FλY

(x0) = 0 or TλY
(x0) = 0, IλY

(x0) = 0, FλY
(x0) = 1. If TλY

(x0) = 1,
IλY

(x0) = 1, FλY
(x0) = 0, then µAi\Y ⊂ λY for every i ∈ I. Hence,

µY \Y =
⋃

i∈I µAi\Y ⊂ λY . But, λY ⊂ µY \Y . So, λY is an absolute N -set.
Since λY is a proper N -set, this is a discrepancy. Alike, if TλY

(x0) = 0,
IλY

(x0) = 0, FλY
(x0) = 1, it will be seen that λY is a null N -set, which is

also a discrepancy. ■

Theorem 16. Let A and B be N -super-connected subsets of X. If
(µB)

◦\A ̸= 0X or (µA)
◦\A ̸= 0X then, A ∪ B is an N -super-connected

subset of X.

Proof. Assume that Y = A ∪ B is not an N -super-connected subset
of X. Then, there exist N -open sets λ and δ providing that λ\Y ̸= 0X ,
δ\Y ̸= 0X and λ\Y ⊂ (δ\Y )c. Since A is an N -super-connected subset of
X either λ\A ̸= 0X or δ\A = 0X . Suppose that δ\A = 0X . Since B is also
N -super-connected, we λ\A ̸= 0X , δ\B ̸= 0X , δ\A = 0X and λ\B = 0X .
From λ\B = 0X , λ\A ⊂ ((µB)

◦\A)c. Let (µB)
◦ ̸= 0X . Since λ\A ̸= 0X

and λ\A ⊂ ((µB)
◦\A)c,A is not an N -super-connected subset of X. Alike,

let (µA)
◦ ̸= 0X . Since δ\B ̸= 0X and δ\B ⊂ ((µA)

◦\B)c, B is not an
N -super-connected subset of X. This is a discrepancy. ■
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Theorem 17. Let
{
Ai

}
i∈I be a family of N -super-connected subsets of

X. If (
⋂

i∈I µAi)
◦ ̸= 0X , then

⋃
i∈I µAi is an N -super-connected subset of

X.

Proof. Assume that Y =
⋃
Aii∈I is not an N -super-connected subset of

X. Then, there existN -open sets λ and δ in (X, τ) providing that λ\Y ̸= 0X ,
δ\Y ̸= 0X and λ\Y ⊂ (δ\Y c. Since λ\Y ̸= 0X and δ\Y ̸= 0X , for some i1
and i2 ∈ I, λ\Ai1 ̸= 0X , δ\Ai2 ̸= 0X .

Case 1. Let i1 = i2. Then, Ai1 isn’t an N -super-connected subset of X.
This is a discrepancy.

Case 2. Let i1 ̸= i2. Then, (
⋂

i∈I µAi)
◦ ⊂

⋂
i∈I(Ai)

◦ and (
⋂

i∈I µAi)
◦ ̸=

0X . Then, (µAi1
)◦ ∩ (µAi2

)◦ ̸= 0X . This implies that (µAi1
)◦\Ai2 ̸= 0X .

From the previous theorem, Ai1 ∪Ai2 is an N -super-connected subset of X .
Whereas, it is obvious that λ\Ai1 ∪Ai2 ̸= 0X , δ\Ai1 ∪Ai2 ̸= 0X and λ\Ai1 ∪
Ai2 ⊂ (δ\Ai1 ∪ Ai2)

c. This means that Ai1 ∪ Ai2 is not N -super-connected.
This is a discrepancy. ■

Theorem 18. Let (X, τ) be an N -super-connected topological space and
C ⊂ X be N -super-connected subset. If there exists a subset V ⊂ X
providing that V ∩ C = ∅ and µV \(X − C) ∈ τ(X−C), then C ∪ V is an
N -super-connected subset of X.

Proof. Suppose that Y = C ∪ V is not an N -super-connected subset
of X. Then, there exist N -open sets λ and δ providing that λ\Y ̸= 0X ,
δ\Y ̸= 0X and λ\Y ⊂ (δ\Y )c. As C is an N -super-connected subset of X,
either λ\C = 0X or δ\C = 0X . Assume that λ\C = 0X . For this reason,
λ\V ̸= 0X . Let λV = λ ∩ µV . Then, λV is N -open in (X, τ). So, λV is
N -regular closed in (X, τ). Since λ\Y ⊂ (δ\Y )c, λV ⊂ δc. This implies that
λV ⊂ δc. From δ ̸= 0X , λV ̸= 1X . In addition, λV ̸= 0X . Because, λV ̸= 0X
implies λV = 0X . Then, λ\V = 0X . This discrepancy implies that C ∪ V is
N -super-connected. ■

Theorem 19. Let (X, τ) be an N -topological space. If A and B are
subsets of X and µA ⊂ µB ⊂ µA and A is an N -super-connected subset of
X, then B is also N -super-connected.

Proof. Similar to that of Theorem 6. ■

5. N-eutrosophic strong connectedness

This part contains the following information that we present the concept
of N -strong connectedness and investigate its properties.
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Definition 18. Let (X, τ) be an N -topological space. (X, τ) is said to be
N -strongly connected if it has no non-null N -closed sets f and k providing
that k ⊂ f c. If (X, τ) is not N -strongly connected then it will be called
N -weakly disconnected.

Theorem 20. Let (X, τ) be an N -topological space. This implies that,
it is weakly connected if and only if there exist non-null N -closed sets f
and k providing that f ⊂ kc. So, it is weakly connected if and only if there
exist non-null N -open sets f c and kc providing that (kc)c ⊂ f c. Clearly,
N -strong connectedness implies N -connectedness. However, the converse
statement is not always true. In addition, the following example shows that
N -strong connectedness and N -super-connectedness are unrelated.

Example 3. Let X = {a, b} and τ1 =
{
0X , 1X ,

{
⟨a, 23 ,

2
3 ,

1
3⟩, ⟨b,

2
3 ,

2
3 ,

1
3⟩
}

and τ2 =
{
0X , 1X ,

{
⟨a, 13 ,

1
3 ,

2
3⟩, ⟨b,

1
3 ,

1
3 ,

2
3⟩
}}

. Then, (X, τ1) is N -connected,

N -super-connected, but not N -strongly connected and (X, τ2) is N -strongly
connected but not N -super-connected.

Theorem 21. Let (X, τ) be an N -topological space and A ⊂ X. Then,
A is an N -strongly connected subset of X if and only if, for all N -open sets
λ and δ providing that TµA(x) ≤ Tλ(x) + Tδ(x), IµA(x) ≤ Iλ(x) + Iδ(x),
FµA(x) ≥ Fλ(x) + Fδ(x) for all x ∈ X, either µA ⊂ λ or µA ⊂ δ.

Proof. Regard as an N -weakly connected subset A of X. Then, there
exist N -closed sets f and k in (X, τ) providing that f\A ̸= 0A, k\A ̸= 0A
and f\A ⊂ (k\A)c. Let λ = f c and δ = kc. Then, λ\A = (f\A)c and δ\A =
(k\A)c. Clearly, TµA(x) ≤ Tλ(x) + Tδ(x), IµA(x) ≤ Iλ(x) + Iδ(x), FµA(x) ̸=
Fλ(x) + Fδ(x), for all x ∈ X. But, µA ̸⊂ λ and µA ̸⊂ δ. Conversely, assume
that there exist N -open sets λ and δ providing that TµA(x) ≤ Tλ(x)+Tδ(x),
IµA(x) ≤ Iλ(x) + Iδ(x), FµA(x) ̸= Fλ(x) + Fδ(x) for all x ∈ X, but neither
µA ⊂ λ or µA ⊂ δ. Then λ\A ̸= 1A, δ\A ̸= 1A and (λ\A)c ⊂ δ\A. So, A is
N -weakly connected. ■

Theorem 22. Let (X, τ) be an N -topological space and F be a subset of
X providing that µF is N -closed in (X, τ). If (X, τ) is N -strongly connected
then F is an N -strongly connected subset of X.

Proof. Let F be a subset of X providing that µF is N -closed in an
N -strongly connected topological space (X, τ). Suppose that F is notN -strongly
connected. Then, there exist N -closed sets f and k in (X, τ) providing that
f\F ̸= 0F , k\F ̸= 0F and f\F ⊂ (k\F )c. So, f ∩µF ̸= 0X , k∩µF ̸= 0X and
f ∩ µF ⊂ (f ∩ µF )

c. This means that (X, τ) is not N -strongly connected.
This is a discrepancy. ■
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Theorem 23. Let (X1, τ1) and (X2, τ2) N -topological spaces and f :
(X1, τ1) −→ (X2, τ2) be an N -continuous function. Then, if (X1, τ1) is
N -strongly connected then (X2, τ2) is also N -strongly connected.

Proof. Omitted. ■

Theorem 24. A finite product of N -strongly connected spaces is N -stron-
gly connected.

Proof. Let (X, τX) and (Y, τY ) be N-strongly connected topological
spaces. Suppose that (X × Y, τX×Y ) is not N -strongly connected. The
members of τX×Y are of the λ × δ, where λ ∈ τX and δ ∈ τY . Then, there
exist non-absoluteN -sets λ×δ, µ×η providing that (µ×η)c ⊂ λ×δ, λ, µ ∈ τX
and δ, η ∈ τY . Suppose that λ is an absoluteN -set. Then, δ is a non-absolute
N -set. Then, max

{
Fµ(x), Fη(y)

}
≤ Tδ(y) and 1 − min

{
Iµ(x), Iη(y)

}
≤

Iδ(y) and min
{
Tµ(x), Tη(y)

}
≥ Fδ(y), for any x ∈ X and y ∈ Y . Neither

µ nor η is null. Because, if µ or η was null, then it would be impossible
that max

{
Fµ(x), Fη(y)

}
≤ Tδ(y) and 1 − min

{
Iµ(x), Iη(y)

}
≤ Iδ(y) and

min
{
Tµ(x), Tη(y)

}
≥ Fδ(y).

Since µ× η is non-absolute, µ or η is non-absolute,
Case 1. µ is non-absolute. For any x ∈ X and providing that Fµ(x) >

Tδ(y) or 1 − Iµ(x) > Iδ(y) or Tµ(x) < Fδ(y), (µ × η)c ̸⊂ λ × δ. This is a
discrepancy.

Case 2. η is non-absolute. Since δ is a non-absolute N -set and (Y, τY )
is N -strongly connected, there exists y1 ∈ Y providing that Fη(y1) >
Tδ(y1) or 1 − Iη(y1) > Iδ(y1) or Tη(y1) < Fδ(y1). Then, for any x ∈
X, max

{
Fµ(x), Fη(y1)

}
> Tδ(y1) or 1 − min

{
Iµ(x), Iη(y1)

}
> Tδ(y1) or

min
{
Tµ(x), Tη(y1)

}
< Fδ(y1). Since (µ× η)c ⊂ λ× δ, this is a discrepancy.

So, λ is a non-absoluteN -set. Alike, it can be proved that δ is a non-absolute
N -set. So, neither (µ)c ⊂ λ nor (η)c ⊂ δ. Then, (µ× η)c ̸⊂ λ× δ. From this
discrepancy, (X × Y, τX×Y ) is N -strongly connected.
An infiniteN -product ofN -strongly connected spaces may not beN -strongly
connected as seen in the following example. ■

Example 4. Let Xn = {a, b} and τn =
{
0X , 1X , λn

}
, λn =

{
⟨a, n

2(n+1) ,

n
2(n+1) , 1 − n

2(n+1)⟩, ⟨b,
n

2(n+1) ,
n

2(n+1) , 1 − n
2(n+1)⟩

}
for any n ∈ N . Then,

(Xn, τn) is N -strongly connected. But, (X, τX) is not N -strongly con-
nected, where X = Πi∈NXi and τX is the N -product topology.Because,
T⋃

i∈N P−1(λn)(x) = 1
2 , I

⋃
i∈N P−1(λn)(x) = 1

2 and F⋃
i∈N P−1(λn)(x) = 1

2 , for
all x ∈ X.
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6. Conclusion

We describe the definition of neutrosophic connectedness and include
some characterizations in this paper. We also introduce neutrosophic prod-
uct space and demonstrate that this form of connectivity is not preserved
neutrosophic product spaces. We also present and investigate the concepts
of neutrosophic super-connected spaces and neutrosophic strongly connected
spaces. As a result, we have given the world of topology a new perspective
connectedness in N -topological spaces. Furthermore, we have provided a
new description for the N -function, and we assume that the N -function
will be useful in other mathematical research, particularly in topology. It
is expected that the results in this document will encourage and lead sci-
entists to develop their further work on neutrosophic topology to run it in
a general framework for its applications in practical life. We also hope the
new terms and concepts we propose to help develop new research disciplines
and life-changing innovations.
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