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1. Introduction

In 1940, S. M. Ulam (see [32]) raised the following question:
Given a group G1, a metric group (G2, d) and a positive number ϵ, does

there exist a δ > 0 such that if a function f : G1 −→ G2 satisfies the
inequality d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ G1, then there exists a
homomorphism T : G1 → G2 such that d(f(x), T (x)) ≤ ϵ for all x ∈ G1?

If the answer to this question is affirmative, then we say that the homo-
morphisms from G1 to G2 are stable or that the functional equation defining
homomorphisms is stable in the sense of Ulam.

One of the first results concerning the question of Ulam was given in 1941
by D. H. Hyers [16], where he gave an affirmative answer to Ulam’s question
for the case of approximate additive mappings under the assumption that G1

and G2 are Banach spaces. Hyers proved that each solution of the inequality

∥f(x+ y)− f(x)− f(x)∥ ≤ ϵ, ∀x, y ∈ G1
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can be approximated by an exact solution. That is by an additive mapping.
In 1949, D. G. Bourgin [5], investigated the approximately isometric and

multiplicative transformations on continuous function rings.
In 1950, T. Aoki [2] studied Ulam stability for additive mappings. In fact

the work of T. Aoki was submitted in 1947, where a generalization of [16]
was done in the following way. Let E and E′ be two real Banach spaces and
let f be a map from E into E′. T. Aoki defined f to be ”approximately
linear”, when there exists K ≥ 0 and a number p ∈ [0, 1) such that

∥f(x+ y)− f(x)− f(y)∥ ≤ K(∥x∥p + ∥y∥p),

for any x and y in E.
Let f and φ be transformations from E into E′. T. Aoki called these

mappings ”near”, when there exists K ≥ 0 and p ∈ [0, 1) such that

||f(x)− φ(x)|| ≤ K∥x∥p, ∀x ∈ E.

Using the concepts above, T. Aoki established the following result.

Theorem 1 (T. Aoki [2]). Let E and E′ be two real Banach spaces and
let f be a map from E into E′.

If f is an approximately linear transformation from E into E′, then
there is a linear transformation φ near f . And such φ is unique.

For more informations and discussions concerning the work of T. Aoki,
the reader is invited to read the following paper [20] of L. Maligranda.

According to [20], T. Aoki was the first author dealing with unbounded
Cauchy differences.

In 1978, Th. M. Rassias [24] extended the results of T. Aoki and estab-
lished an important generalization of the result of Hyers by considering the
stability problem for unbounded Cauchy differences. This phenomenon of
stability studied by Th. M. Rassias in [24] was called by Th. M. Rassias
(see [27]) the generalized Hyers–Ulam stability. Many authors used also the
name of Hyers–Ulam–Rassias stability.

Theorem 2 (Th. M. Rassias [24]). Let f : E1 −→ E2 be a mapping
from a real normed vector space E1 into a Banach space E2 satisfying the
inequality

(1) ∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ E1, where ϵ and p are constants with ϵ > 0 and p < 1. Then
there exists a unique additive mapping T : E1 −→ E2 such that

(2) ∥f(x)− T (x)∥ ≤ 2ϵ

2− 2p
∥x∥p, ∀x ∈ E1.
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If p < 0 then inequality (1) holds for all x, y ̸= 0, and (2) for x ̸= 0. Also, if
the function t 7→ f(tx) from R into E2 is continuous for each fixed x ∈ E,
then T is linear.

In [14], Gajda considered also the stability problem with unbounded
Cauchy differences. From the papers of Hyers, Rassias and Gajda, we have
the following Theorem which completes the results of Theorem 2.

Theorem 3 (Hyers-Rassias-Gajda [14], [17], [24]). Suppose that E1 is
a real normed space, E2 is a real Banach space, f : E1 −→ E2 is a given
function, and the following condition holds

∥f(x+ y)− f(x)− f(y)∥E2
≤ θ(∥x∥pE1

+ ∥y∥pE1
), ∀x, y ∈ E1, (Cp)

for some p ∈ [0,+∞) \ {1}. Then there exists a unique additive function
T : E1 −→ E2 such that

∥f(x)− T (x)∥E2
≤ 2θ

2− 2p
∥x∥pE1

, ∀x ∈ E1. (Estp)

The methods used in the previous theorems are called direct methods.
L. Székelyhidi (see [29], [30] and [31]) has developped other methods to

treat the stability of functional equations.
In 1994, P. Gǎvruta (see [15]) established a generalization of the Hyers-

Ulam-Rassias stability of approximately additive mappings by using a new
method.

In 1991, J. A. Baker (see [4]) studied the stability of certain functional
equations by using the Banach contraction principle.

In 2003, V. Radu [23] obtained some stability results via the alternative
fixed point theorem. In their paper [7], L. Cǎdariu and V. Radu have used
the same fixed point method to establish the stability of functional equations
of Jensen type.

In 2011, M. Akkouchi (see [1]) extended the results of [4] by using a Ćirić
fixed point theorem.

Fixed point methods are now successfully used to investigate the stabil-
ity of various algebraic–differential–integral–functional equations. See for
example [9], [6], [19], [22], [23] and others.

During the last decades, the results of Hyers, Rassias, Székelyhidi, Gajda,
Gǎvruta and other leading mathematicians have been generalized in various
directions and contexts by using different methods. The reader is invited to
consult the list of references given at the end of this paper and the references
therein.

R. Badora in [3] proved the following result concerning the stability of a
ring homomorphism.
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Theorem 4 (R. Badora). Let R be a ring and B be a Banach algebra
and let ϵ, δ > 0. Assume that f : R −→ B satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ

and
∥f(xy)− f(x)f(y)∥ ≤ δ,

for all x, y ∈ R. Then there exists a unique ring homomorphism T : R −→ B
such that

∥f(x)− T (x)∥ ≤ ϵ, ∀x ∈ R.

D. Zhang and H-X. Cao [33], by using direct methods have established
the following generalization of Badora’s result.

Theorem 5 (D. Zhang and H-X. Cao). Let R be a ring and B be a
Banach algebra and r ∈ N, r ≥ 2 and ϵ, δ > 0. Assume that f : R −→ B
satisfies the following conditions:

(3)

∥∥∥∥∥f(
r∑

k=1

xk)−
r∑

k=1

f(xk)

∥∥∥∥∥ ≤ ϵ, ∀ x1, x2, . . . , xr ∈ R

and

(4) ∥f(x1x2 . . . xr)− f(x1)f(x2) . . . f(xr)∥ ≤ δ, ∀ x1, x2, . . . , xr ∈ R.

Then there exists a unique ring homomorphism T : R −→ B such that

(5) T (x1x2 . . . xr) = T (x1)T (x2) . . . T (xr), ∀ x1, x2, . . . , xr ∈ R

and

(6) ∥f(x)− T (x)∥ ≤ 1

r − 1
ϵ, ∀x ∈ R.

Before proving this theorem, D. Zhang and H-X. Cao [33] have inves-
tigated the Ulam-Hyers stability of the following functional equation of
Cauchy type:

(7) f(
r∑

k=1

xk) =
r∑

k=1

f(xk), ∀x1, . . . , xr ∈ G

where r ≥ 2 is an integer and f is a function defined on an Abelian group
G and taking values in a Banach space F .

If G is a ring, then beside the equation (7), one should consider the
following (multiplicative) Cauchy type functional equation:

(8) f(x1x2 . . . xr) = f(x1)f(x2) . . . f(xr), ∀x1, . . . , xr ∈ G.
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The first aim of this paper is to investigate the generalized Ulam-Hyers
stability of equation (7) by a fixed point method using the Banach con-
traction principle. The main result obtained in this direction is Theorem 7
which is established in Section 2.

In the third section, we apply Theorem 7 to establish the generalized
Ulam-Hyers stability of the system of functional equations (7) and (8) on a
ring. The result obtained is stated in Theorem 8 which is a general version
of Badora’s result and Theorem 1.4 of Zhang and Cao.

At the end, we apply Theorem 8 to deduce in Theorem 3.3 the general-
ized Ulam-Hyers stability of ring homomorphisms yielding an extension of a
result of [33]. So, in particular, the results of our study complete and extend
those obtained by Badora [3] and D. Zhang and H-X. Cao in [33].

2. Generalized Ulam-Hyers stability of group
homomorphisms

Our result will make use of the Banach contraction principle. For sake
of completeness, we recall this theorem.

Theorem 6 (Banach’s contraction principle). Let (X, d) be a complete
metric space, and consider a mapping Λ : X → X, which is strictly contrac-
tive, that is

(B1) d(Λx,Λy) ≤ Ld(x, y), ∀x, y ∈ X,

for some (Lipschitz constant) 0 ≤ L < 1.
Then
(i) The mapping Λ has one, and only one, fixed point x∗ = Λx∗;
(ii) The fixed point x∗ is globally attractive, that is

(B2) lim
n→∞

Λnx = x∗;

for any starting point x in X;
(iii) One has the following estimation inequalities:

(B3) d(Λnx, x∗) ≤ Ln d(x, x∗), ∀n ≥ 0, ∀x ∈ X;

(B4) d(Λnx, x∗) ≤ 1

1− L
d(Λnx,Λn+1x), ∀n ≥ 0, ∀x ∈ X;

(B4) d(x, x∗) ≤ 1

1− L
d(x,Λx), ∀x ∈ X.
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Throughout this paper, N will designate the set of all nonnegative inte-
gers. We fix a positive integer r such that r ≥ 2. Let G be an Abelian group
and let F be (a real or complex) Banach space. We study the generalized
Ulam-Hyers-Rassias stability of equation (5). To be precise, we introduce
the following definition.

Definition 1. Let φ : Gr := G×G× . . .×G −→ [0,+∞) be a mapping.
We say that the equation (5) is generalized Ulam-Hyers-Rassias stable with
respect to φ, if there exists a positive constant c such that for all function
f : Gr −→ F satisfying

(9)

∥∥∥∥∥f(
r∑

k=1

xk)−
r∑

k=1

f(xk)

∥∥∥∥∥ ≤ φ(x1, . . . , xr), ∀x1, . . . , xr ∈ G,

there exists a mapping g : G −→ F which is additive (that is g(x+y) = g(x)+
g(y) for all x, y ∈ X) and satisfying the following estimation inequality:

(10) ∥f(x)− g(x)∥ ≤ c φ(x, . . . , x), ∀x ∈ G.

The first main result of this papers reads as follows.

Theorem 7. Let (G,+) be an Abelian group. Let r ≥ 2 be an integer.
Let (F, ∥·∥) be a complete (real or complex) normed vector space endowed
with a norm ∥·∥. Let f : G −→ F be a mapping for which there exists a
function φ : Gr → [0,∞) such that

(11) ∥f(
r∑

k=1

xk)−
r∑

k=1

f(xk)∥ ≤ φ(x1, . . . , xr), ∀x1, . . . , xr ∈ G,

We suppose also that there exists a constant L, 0 < L < 1 such that

(12) φ(rx, . . . , rx) ≤ rLφ(x, . . . , x), ∀x ∈ G

and

(13) lim
n→∞

φ(rnx1, . . . , r
nxr)

rn
= 0, ∀x1, . . . , xr ∈ G.

Then there exists a unique additive mapping f∗ : G→ F such that

(14) ∥f(x)− f∗(x)∥ ≤ 1

r

1

1− L
φ(x, . . . , x), ∀x ∈ G.

Proof. By setting x1 = x2 = . . . = xr = x in the inequality (11), we
obtain

∥f(rx)− rf(x)∥ ≤ φ(x, . . . , x), ∀x ∈ G,
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which implies that

(15) ∥1
r
f(rx)− f(x)∥ ≤ 1

r
φ(x, . . . , x), ∀x ∈ G.

We consider the set
X = {h : G→ F}.

For all g ∈ X , we set

(16) (Λg)(x) :=
1

r
g(rx), ∀x ∈ G.

For each pair g, h of elements of X , we consider the set given by

(17) Iφ(g, h) := {c ∈ [0,+∞) : ∥g(x)− h(x)∥ ≤ c φ(x, . . . , x), ∀x ∈ G}.

We observe that Iφ(g, h) = Iφ(h, g).
We introduce the set Xφ defined by the following.

(18) Xφ := {h ∈ X : Iφ(h, f) ̸= ∅}

Obviousely, we have f ∈ Xφ. Also, from (15), we deduce that Λf ∈ Xφ.
Hence the set Xφ is not empty.

By using the triangle inequality, it is easy to see that Iφ(g, h) is not empty
for all g, h ∈ Xφ.

For all g, h ∈ Xφ we set

dφ(g, h) := inf{c ∈ [0,∞) : ∥g(x)− h(x)∥ ≤ cφ(x, . . . , x), for allx ∈ G},

Then it is easy to see that dφ is a distance on the set Xφ.
We observe that for all g, h ∈ Xφ, the number dφ satisfies the following

property:

(19) ∥g(x)− h(x)∥ ≤ dφ(g, h).φ(x, . . . , x), for all x ∈ G.

By classical arguments, one can prove that the metric space (Xφ, dφ) is
complete.

Now, we prove that (Xφ, dφ) is invariant under the map Λ. To this end,
let g ∈ Xφ be given. By the triagle inequality, for all x ∈ G, we have

∥f(x)− (Λg)(x)∥ ≤ ∥f(x)− (Λf)(x)∥+ ∥(Λf)(x)− (Λg)(x)∥.

By the assumption (15), we have

(20) ∥f(x)− (Λf)(x)∥ ≤ 1

r
φ(x, . . . , x), ∀x ∈ G.
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By using the assumption (12), we have the following inequalities:

∥(Λg)(x)− (Λh)(x)∥ =

∥∥∥∥g(rx)− h(rx)

r

∥∥∥∥(21)

≤ dφ(g, h)
φ(rx, . . . , rx)

r
≤ dφ(g, h)Lφ(x, . . . , x), ∀x ∈ G.

From (20) and (21), we obtain that

∥f(x)− (Λg)(x)∥ ≤
[
Ldφ(g, h) +

1

r

]
φ(x, . . . , x), ∀x ∈ G,

which implies that Λg ∈ Xφ.
The inequality (20) implies that

dφ(f,Λf) ≤
1

r

The inequality (21) implies that

dφ(Λg,Λh) ≤ Ldφ(g, h), ∀g, h ∈ Xφ.

That is Λ is a strict contractive self-mapping of the complete metric space
(Xφ, dφ). By applying the Banach contraction principle (see 6). It follows
that there exists a unique function f∗ in the set Xφ which is fixed by Λ,
i.e, Λ(f∗) = f∗ such that limn→∞ dφ(Λ

ng, f∗) = 0 for each g ∈ Xφ. In
particular, we have limn→∞ dφ(Λ

nf, f∗) = 0, i.e,

(22) lim
n→∞

1

rn
f(rnx) = f∗(x), ∀x ∈ G.

From (B4) of (iii) of Theorem 6, we obtain

(23) dφ(f, f
∗) ≤ 1

1− L
dφ(Λf, f) ≤

1

r

1

1− L
,

which implies that the inequality (14) is true for all x ∈ G.

Now, we prove that f∗ is additive. To this respect, we start by replacing
each xk by rnxk for k = 1, 2, . . . , r in (11). We obtain∥∥∥∥∥f(

r∑
k=1

(rnxk))−
r∑

k=1

f(rnxk)

∥∥∥∥∥ ≤ φ(rnx1, r
nx2, . . . , r

nxr),

which gives after dividing by rn the following inequality

(24)

∥∥∥∥∥(Λnf)(
r∑

k=1

xk)−
r∑

k=1

(Λnf)(xk)

∥∥∥∥∥ ≤ φ(rnx1, r
nx2, . . . , r

nxr)

rn
,
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for all x1, x2, . . . , xr ∈ G.
According to (13) and (22), by letting n tend to infinity in (24), we get

f∗(

r∑
k=1

xk) =

r∑
k=1

f∗(xk), ∀x1, x2, . . . , xr ∈ G.

Thus f∗ satisfies the functional equation (5). This implies that f∗(0) = 0
and that f∗ is additive.

Finally, we prove that f∗ is uniquely determined. Assume that inequality
(14) is also satisfied with another additive function f ♯ : G → F besides f∗.
As f ♯ is an additive function, f ♯ satisfies that

(Λf ♯)(x) =
1

r
f ♯(rx) = f ♯(x), ∀x ∈ G.

That is, f ♯ is a fixed point of Λ. Since f ♯ satisfies (14), it follows that f ♯ is
in the space Xφ. By the Banach contraction principle (see Theorem 6), it
follows that f ♯ = f∗. This ends the proof. ■

3. Generalized Ulam-Hyers stability of
ring homomorphisms

In this section, we intend to study the generalized Ulam-Hyers stability
of ring homomorphisms.

We start by proving a general stability result in the sense of Ulam-Hyers
for a system of two functional equations of Cauchy type on rings. This result
generalizes both R. Badora’s theorem and Theorem 3.1 of [33].

Theorem 8. Let R be a ring. Let r ≥ 2 be an integer. Let (B, ∥.∥) be a
(real or complex) Banach algebra endowed with a norm ∥.∥. Let φ,ψ : Rr →
[0,∞) be functions satisfying the following conditions:

(1)φ : There exists a constant L, 0 < L < 1 such that

(25) φ(rx, . . . , rx) ≤ rLφ(x, . . . , x), ∀x ∈ R.

(2)φ :

(26) lim
n→∞

φ(rnx1, . . . , r
nxr)

rn
= 0, ∀x1, . . . , xr ∈ R.

(3)ψ : There exists an index j ∈ {1, 2, . . . , r} such that

(27) lim
n→∞

ψ(x1, . . . , xj−1, r
nxj , xj+1, . . . , xr)

rn
= 0, ∀x1, . . . , xr ∈ R.
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Let f : R −→ B be a mapping satisfying the following inequalities:

(28) ∥f(
r∑

k=1

xk)−
r∑

k=1

f(xk)∥ ≤ φ(x1, . . . , xr), ∀x1, . . . , xr ∈ R,

and

∥f(x1x2 . . . xr)− f(x1)f(x2) . . . f(xr)∥ ≤ ψ(x1, . . . , xr),(29)

∀x1, . . . , xr ∈ R.

Then there exists a unique additive mapping f∗ : R→ B such that

(30) f∗(x1x2 . . . xr) = f∗(x1)f
∗(x2) . . . f

∗(xr), ∀x1, . . . , xr ∈ R,

and

(31) ∥f(x)− f∗(x)∥ ≤ 1

r

1

1− L
φ(x, . . . , x)

for all x ∈ R.

Proof. From Theorem 7, it follows that there exists a unique additive
mapping f∗ : R −→ B which satisfies the inequality (30). From the proof of
Theorem 7, we know that the additive mapping f∗ is given by

(32) f∗(x) = lim
n→∞

1

rn
f(rnx), ∀x ∈ R.

For all x1, . . . , xr ∈ R, we put

g(x1, . . . , xr) := f(x1x2 . . . xr)− f(x1)f(x2) . . . f(xr).

Let j ∈ {1, 2, . . . , r} be such that

(33) lim
n→∞

ψ(x1, . . . , xj−1, r
nxj , xj+1, . . . , xr)

rn
= 0, ∀x1, . . . , xr ∈ R.

From (28) and (32), it follows that

(34) lim
n→∞

g(x1, . . . , xj−1, r
nxj , xj+1, . . . , xr)

rn
= 0, ∀x1, . . . , xr ∈ R.

Therefore, for all x1, . . . , xr ∈ R, we have

f∗(x1x2 . . . xr) = lim
n→∞

f(x1. . . . xj−1r
nxjxj+1. . . . xr)

rn

= lim
n→∞

[
g(x1, . . . , xj−1, r

nxj , xj+1, . . . , xr)

rn

+
f(x1) . . . f(xj−1)f(r

nxj)f(xj+1) . . . f(xr)

rn

]
= f(x1) . . . f(xj−1)f

∗(xj)f(xj+1) . . . f(xr).
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Hence, we have proved the following identity:

(35) f∗(x1x2 . . . xr) = f(x1) . . . f(xj−1)f
∗(xj)f(xj+1) . . . f(xr),

for all x1, . . . , xr ∈ R.
We recall that N is the set of nonnegative integers. Let m1, . . .mr ∈ N

with mj = 0. By using (35) and the additivity of f∗, we have the following
inequalities:

rm1+...+mrf∗(x1x2 . . . xr)

= f∗((rm1x1) . . . (r
mj−1xj−1)xj(r

mj+1xj+1) . . . (r
mrxr))

= f(rm1x1) . . . f(r
mj−1xj−1)f

∗(xj)f(r
mj+1xj+1) . . . f(r

mrxr),

∀ x1, . . . , xr ∈ R,

from which, we deduce the following identity

f∗(x1x2 . . . xr) =
f(rm1x1)

rm1
. . .

f(rmj−1xj−1)

rmj−1
f∗(xj)

f(rmj+1xj+1)

rmj+1
(36)

. . .
f(rmrxr)

rmr
,

for all x1, . . . , xr ∈ R.
By sending the integers m1, . . . ,mj−1,mj+1, . . . ,mr to infinity, we obtain

the following identity

f∗(x1x2 . . . xr) = f∗(x1)f
∗(x2) . . . f

∗(xr), ∀ x1, . . . , xr ∈ R,

which is the desired identity (29). This ends the proof. ■

A first consequence of Theorem 8 is the next corollary.

Corollary 1. Let R be a ring. Let r ≥ 2 be an integer. Let (B, ∥·∥) be a
(real or complex) Banach algebra endowed with a norm ∥·∥. Let φ,ψ : Rr →
[0,∞) be functions satisfying the following conditions:

(4)φ : There exists a constant L, 0 < L < 1 such that

(37) φ(rx1, rx2, . . . , rxr) ≤ rLφ(x1, x2, . . . , xr), ∀x1, . . . , xr ∈ R.

(3)ψ : There exists an index j ∈ {1, 2, . . . , r} such that

lim
n→∞

ψ(x1, . . . , xj−1, r
nxj , xj+1, . . . , xr)

rn
= 0, ∀x1, . . . , xr ∈ R.

Let f : R −→ B be a mapping satisfying the following inequalities:

(38) ∥f(
r∑

k=1

xk)−
r∑

k=1

f(xk)∥ ≤ φ(x1, . . . , xr), ∀x1, . . . , xr ∈ R,
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and

∥f(x1x2 . . . xr)− f(x1)f(x2) . . . f(xr)∥ ≤ ψ(x1, . . . , xr),(39)

∀x1, . . . , xr ∈ R.

Then there exists a unique additive mapping f∗ : R→ B such that

(40) f∗(x1x2 . . . xr) = f∗(x1)f
∗(x2) . . . f

∗(xr), ∀x1, . . . , xr ∈ R,

and

(41) ∥f(x)− f∗(x)∥ ≤ 1

r

1

1− L
φ(x, . . . , x)

for all x ∈ R.

Proof. Clearly the condition (4)φ implies the condition (1)φ of Theorem
8. By induction, the condition (4)φ yields to the following:

φ(rnx1, . . . , r
nxr)

rn
≤ Ln φ(x1, . . . , xr) −→ 0, as n −→ ∞, ∀x1, . . . , xr ∈ R.

Thus, the condition (2)φ is also satisfied. Hence, all the conditions of The-
orem 8 are satisfied. Therefore, By applying Theorem 8, we obtain the
desired conclusions. ■

Remark 1. Thorem 1.4 of D. Zhang and H-X. Cao [33] is a consequence
of Corollary 1. Indeed, Let R be a ring and let ϵ > 0 and δ > 0 be given. We
set φ(x1, x2, . . . , xr) = ϵ and ψ(x1, x2, . . . , xr) = δ, for all x1, . . . , xr ∈ R.
Then it is easy to see that φ satisfies the condition (4)φ with L = 1

r and
that ψ satisfies the condition (3)ψ for all index j ∈ {1, 2, . . . , r}.

Concerning the generalized Ulam-Hyers-Rassias stability of ring homo-
morphisms, we have the following theorem.

Theorem 9. Let r ≥ 2 be an integer. Let R be a ring with a unit 1 and
(B, ∥·∥) be a (real or complex) Banach algebra endowed with a norm ∥·∥ and
a unit e. Let φ,ψ : Rr → [0,∞) be functions satisfying the conditions (1)φ,
(2)φ and (3)ψ of Theorem 8.

If a mapping f : R −→ B satisfies the conditions (28) and (29) and
f(1) = e, then there exists a unique homomorphism f∗ : R→ B such that

(42) ∥f(x)− f∗(x)∥ ≤ 1

r

1

1− L
φ(x, . . . , x), ∀x ∈ R.
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Proof. From Theorem 8, there exists a unique additive mapping f∗ :
R→ B satisfying the identity (30) and the inequality (42).

Let j ∈ {1, 2, . . . , r} be an index for which (3)ψ is true. We set k := j−1
if j > 1 and k := j + 1 if j < r. By using the identity (36), it is easy to
derive the following identity
(43)
f∗(x1x2. . . . xr) = fs1(x1)f

s2(x2) . . . f
sj−1(xj−1)f

∗(xj)f
sj+1(xj+1) . . . f

sr(xr),

for all x1, . . . , xr ∈ R, where the powers s1, . . . , sj−1, sj+1, . . . sr are in the
set of symbols {1, ∗}.

In (43), we put xl = 1 for all index l /∈ {k, k + 1} and xk = x and
xk+1 = y, where x, y are arbitrary elements in R. Since f(1) = e, it follows
the following identity:

(44) f∗(xy) = f∗(x)f∗(y).

Since (44) holds true for all x, y ∈ R, it follows that the additive mappings
f∗ : R→ B is a ring homomorphism. This compltes the proof. ■

Remark 2. The assumptions of Therem 9 do not imply that f∗(1) = e,
where f∗ is the function involved in (42) and defined by (22). For example,
let R = B = R be the real field. We put f(1) = 1 and f(x) = 0 for all
x ∈ R \ {1}. Let r ∈ N with r ≥ 2. We set

φ(x1, x2, . . . , xr) = r and ψ(x1, x2, . . . , xr) = 1, ∀x1, . . . , xr ∈ R.

From Remark 1, we know that φ satisfies the condition (4)φ with L = 1
r and

that ψ satisfies the condition (3)ψ for all index j ∈ {1, 2, . . . , r}.
It is easy to prove the following inequalities:

∥f(x1 + x2 + . . .+ xr)− f(x1)− f(x2)− . . .− f(xr)∥ ≤ φ(x1, . . . , xr),

∀x1, . . . , xr ∈ R

and

∥f(x1x2 . . . xr)− f(x1)f(x2) . . . f(xr)∥ ≤ ψ(x1, . . . , xr), ∀x1, . . . , xr ∈ R.

So, all the conditions of Theorem 9 are satisfied. It is easy to show that the
function f∗ (involved in (42) and) defined by (22) is identically zero. Thus,
in this example, we have f∗(1) = 0 but f(1) = 1.
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