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SOLVABILITY OF NEW (SSIE) INVOLVING

THE CONTINUOUS AND RESIDUAL SPECTRA

OF THE GENERALIZED DIFFERENCE

OPERATOR B (r, s) ON c0

Abstract. Let U+ be the set of all positive sequences. Then,
given any sequence z = (zn)n≥1 ∈ U+ and any set E of complex
sequences, we write Ez for the set of all sequences y = (yn)n≥1

such that y/z = (yn/zn)n≥1 ∈ E. We use the notation sz = (ℓ∞)z.
In this paper, for given r, s ̸= 0 and for every λ ∈ C, we determine
the set of all positive sequences x = (xn)n≥1 that satisfy the
(SSIE) with an operator (c0)B(r,s)−λI ⊂ E + sx, where E ⊂ sθ for

some θ ∈ U+ is a linear space of sequences, in each of the cases,
(1) |λ− r| > |s|, or λ = r, (2) |λ− r| = |s| and (3) |λ− r| < |s|
and λ ̸= r. These cases are associated with the continuous and
residual spectra σc (B (r, s) , c0) and σr (B (r, s) , c0), of B (r, s) on
c0, determined by Altay and Başar in [2]. We apply these results to

the solvability of the (SSIE) (c0)B(r,s)−λI ⊂ s
(c)
R + sx for all λ ∈ C

and R > 0. Then we deal with the (SSIE) (c0)∆−λI ⊂ bvp + sx
and (c0)B(r,s)−λI ⊂ ERa

+ sx, for E = c0, c, or ℓ∞, where Ra,

a ∈ U+, is the Rhaly matrix. These results extend those stated
in [21].
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1. Preliminary results

Let A = (ank)n,k≥1 be an infinite matrix and consider the sequence
x = (xn)n≥1. We define the sequence Ax = (An (x))n≥1 with An (x) =∑∞

k=1 ankxk whenever the series are convergent for all n ≥ 1. Let ω denote
the set of all complex sequences. We write c0, c and ℓ∞ for the sets of all
null, convergent and bounded sequences respectively. By U+ we define the
set of all positive sequences. For any given subsets E, F of ω, we say that
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the operator represented by the infinite matrix A = (ank)n,k≥1 maps E into
F , that is, A ∈ (E,F ), see [15], if the series defined by An (x) =

∑∞
k=1 ankxk

are convergent for all n ≥ 1 and for all x ∈ E, and Ax ∈ F for all x ∈ E.
If F is a subset of ω, then we denote the so-called matrix domain of A in E
by FA = {x ∈ ω : y = Ax ∈ F}. Let E ⊂ ω be a Banach space, with norm
∥∥E . By B (E) we denote the set of all bounded linear operators, mapping
E into itself. We say that L ∈ B (E) if and only if L : E 7→ E is a linear
operator and ∥L∥∗B(E) = supx ̸=0 (∥Lx∥E / ∥x∥E) < ∞. It is well known that

B (E) is a Banach algebra with the norm ∥L∥∗B(E), see [1]. A Banach space
E ⊂ ω is a BK space if the projection Pn : x 7→ xn from E into C is
continuous for all n. A BK space E ⊃ φ is said to have AK if for every
x ∈ E, then x = limp→∞

∑p
k=1 xke

(k),where e(k) = (0, ..., 1, ...), 1 being in
the k− th position. It is well known that if E has AK then B (E) = (E,E).
If E is a BK space with the norm ∥∥E , then (E,E) ⊂ B (E). Indeed, by
([26], Theorem 4.2.8 p. 57), the matrix map A ∈ (E,E) is continuous and
there is M > 0 such that ∥Ax∥E ≤ M ∥x∥E for all x ∈ E.

We call sequence spaces inclusion equations (SSIE) an inclusion, for which
each term is a sum or a sum of products of sets of the form (Ea)T and(
Ef(x)

)
T
, where f maps U+ to itself, E is any linear space of sequences

and T is a triangle, (cf. [7], [19], [20], [21]).
In this manuscript, we establish a connection between the fine spectrum of

the operator B (r, s) and the solvability of some (SSIE) involving this opera-
tor. For s ̸= 0, we write B (r, s) for the generalized difference operator, which
is a double band matrix, entries of which are determined by [B (r, s)]nn = r
for all n, and [B (r, s)]n,n−1 = s for n ≥ 2. If r = −s = 1, we obtain the
operator ∆ = B (1,−1) of the first difference. Then, for every λ ∈ C, using
some results obtained in the fine spectrum theory, we determine the set of
all positive sequences x = (xn)n≥1 that satisfy the (SSIE) with operator of
the form (c0)B(r,s)−λI ⊂ E + sx, where E is a linear space of sequences in
each of the cases,

(a) λ ∈ ρ (B (r, s) , c0) ∪ {r},
(b) λ ∈ σc (B (r, s) , c0),
(c) λ ∈ σr (B (r, s) , c0)⧹ {r}.
We apply these results to the solvability of the (SSIE) (c0)B(r,s)−λI ⊂

s
(c)
R + sx for all λ ∈ C and R > 0. Then we study the solvability of each of
the (SSIE)

(c0)∆−λI ⊂ bvp + sx, and
(c0)B(r,s)−λI ⊂ ERa + sx,

for E = c0, c, or ℓ∞, where Ra, a ∈ U+, is the Rhaly matrix.
This paper is organized as follows. In Section 2, we define the Banach

algebra Sa and the multipliers of some sets. In Section 3, we recall some
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definitions and results on the spectrum and the fine spectrum of operators
represented by triangles. In Section 4, we give some definitions and results
related to sequence spaces inclusions. Finally, in Section 5, we deal with the
solvability of the (SSIE) of the form (c0)B(r,s)−λI ⊂ E + sx.

2. The Banach algebra Sa and the multipliers
of classical sets

For a ∈ U+ we write sa = (ℓ∞)a, s
0
a = (c0)a, and s

(c)
a = ca. Each of the

sets sa, s
0
a, and s

(c)
a is a BK space with the norm ∥x∥sa = supn (|xn| /an).

Then, the set Sa of all infinite matrices A = (ank)n,k≥1, that satisfy
∥A∥Sa

= supn≥1

(
a−1
n

∑∞
k=1 |ank| ak

)
< ∞, is a Banach algebra with identity

normed by ∥A∥Sa
, (cf. [21], p. 161). Recall that, if A ∈ (sa, sa), then we

have ∥Ax∥sa ≤ ∥A∥Sa
∥x∥sa for all x ∈ sa. We have B (sa)

⋂
(sa, sa) = Sa =

(sa, sa), for any given a ∈ U+. Each of the sets B (E) for E ∈
{
sα, s

0
a, s

(c)
a

}
, is

a Banach algebra, and B
(
s0a
)
=

(
s0a, s

0
a

)
, since s0a has AK. When a = (rn)n≥1,

r > 0, Sa, sa, s
0
a and s

(c)
a are denoted by Sr and sr, s

0
r and s

(c)
r . When

r = 1, s1 = ℓ∞, s01 = c0 and s
(c)
1 = c. It is well-known that for each

E ∈ {c0, c, ℓ∞}, we have (E, ℓ∞) = S1, for E ∈ {c0, c, ℓ∞}. We will use
the next elementary result, where Du, u ∈ ω denotes the diagonal matrix,
determined by [Du]nn = un for all n. If ξ ̸= 0, then we write Dξ for the
diagonal matrix D(ξn)n≥1

.

Lemma 1. Let a, b ∈ U+, and E, F ⊂ ω. Then A ∈ (Ea, Fb) if and
only if D1/bADa ∈ (E,F ).

Now, let y and z be sequences and let E and F be two subsets of ω, we
then write yz = (ynzn)n≥1. Then we denote by

M (E,F ) = {y ∈ ω : yz ∈ F for all z ∈ E} ,

the multiplier space of E and F . In this way, we recall the following
well-known results.

Lemma 2. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then

(i) M (E,F ) ⊂ M
(
Ẽ, F

)
for all Ẽ ⊂ E,

(ii) M (E,F ) ⊂ M
(
E, F̃

)
for all F ⊂ F̃ .

By ([22], Lemma 3.1, p. 648) and ([23], Example 1.28, p. 157), we obtain
the next lemma.

Lemma 3. We have: (i) M (c, c0) = M (ℓ∞, c) = M (ℓ∞, c0) = c0 and
M (c, c) = c. (ii) M (E, ℓ∞) = M (c0, F ) = ℓ∞ for E, F = c0, c, or ℓ∞.
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3. On the spectrum and the fine spectrum of operators
represented by triangles

In this section, we give a short survey on the fine spectrum and we recall
some notions on this topic. We also deal with the fine spectrum of B (r, s).

3.1. The point spectrum, continuous spectrum and
residual spectrum

Let E be a BK space and let T be an operator mapping E to itself, (note
that T is continuous since E is a BK space). We denote by σ (T,E) the set of
all complex numbers λ such that T−λI considered as an operator from E to
itself is not invertible. Then we write ρ (T,E) = [σ (T,E)]c for the resolvent
set, which is the set of all complex numbers λ such that T − λI considered
as an operator from E to itself is invertible. Recall that the resolvent set of
a linear operator on E is an open subset of the complex plane C. We use
the notation D (λ0, r) = {λ ∈ C : |λ− λ0| < r}, with λ0 ∈ C and r > 0, for
the disk centered at λ0 and of radius r.

Recall that the spectrum and the fine spectrum of the linear operators
defined by infinite matrices over certain sequence spaces have been studied
by many authors. We only give a short survey on this study. Recently, the
fine spectra of the operator of the first difference over the sequence spaces ℓp
and bvp, were studied in [3], where bvp is the space of p−bounded variation
sequences, with 1 ≤ p < ∞. In [7], there is a study on the fine spectrum
of the generalized difference operator B (r, s) on the each of the sets ℓp and
bvp. In [25], Srivastava and Kumar dealt with the fine spectrum of the gen-
eralized difference operator ∆v over ℓ1, where ∆v is the triangle the nonzero
entries of which are defined by (∆v)nn = vn and (∆v)n+1,n = −vn. Then,
Akhmedov and El-Sabrawy [4] determined the spectrum of the generalized
difference operator ∆a,b defined as a double band matrix mapping in c. In
[20], using the generalized operator of the first difference B (r̃, s̃), where
r̃ = (rn)n≥1 , s̃ = (sn)n≥1 are two convergent sequences, we determined its
spectrum over each of the spaces Ea, where E = w0 (Λ), or w∞ (Λ) and Λ
is a nondecreasing exponentially bounded sequence. In [17], we determined
the spectrum of the operator represented by B (r̃, s̃) over each of the spaces

sa, s
0
a, s

(c)
a , ℓpa, W 0

a and Wa, with 1 ≤ p < ∞. In [27] Yeşilkayagil and Başar
gave a survey on the spectrum of triangles. Some other results on this topic,
were stated in [12], [10], [8], [6], [4], [2], [13].

Now we briefly recall some definitions and results on the partition of
the spectrum σ (T,E) of the operator T over the normed space E. We
refer the reader to ([14], pp. 370-371), for the basic concepts in spectral
theory, concerning the operators T , Tλ = T − λI and T−1

λ and recalled as
follows. The spectrum σ (T,E) is partitioned into the next three sets, (see
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[14], Definition 7.2.1, p. 371, for more precisions), defined as follows. We
begin with the discrete point spectrum σp (T,E), which is the set of all λ ∈ C
such that T−1

λ does not exist. Then, the continuous spectrum σc (T,E) is

the set of all λ ∈ C such that (T − λI)−1 exists and is unbounded, and the
domain of T−1

λ is dense in E. Finally, the residual spectrum σr (T,E) is the
set of all λ ∈ C such that T−1

λ exists and is unbounded, but the domain of
T−1
λ is not dense in E.
To avoid confusion, notice that, in this theory, the expression, ”T−1

λ exists”
means Tλ is injective, that is, KerTλ ∩ E = {0}, where KerTλ ∩ E, is the
set of all sequences x ∈ E such that Tλx = 0.

In ([2], were stated the following results on the fine spectrum of B (r, s).

Lemma 4. Let r, s ∈ C and s ̸= 0. Then we have,
(i) σp (B (r, s) , c0) = ∅,
(ii) σc (B (r, s) , c0) = {λ ∈ C : |λ− r| = |s|},
(iii) σr (B (r, s) , c0) = {λ ∈ C : |λ− r| < |s|}.

Then we have σ (B (r, s) , c0) = {λ ∈ C : |λ− r| ≤ |s|} and σ (B (r, s) , c0)
= σc (B (r, s) , c0) ∪ σr (B (r, s) , c0). Then we write a• = (a•n)n≥1, where
a•n = an−1/an, for n ≥ 1 with the convention a•1 = 1. In the next lemma,
we use the set ℓp, (p ≥ 1), of p−absolutely convergent series, determined

by ℓp =
{
x = (xk)k≥1 :

∑∞
k=1 |xk|

p < ∞
}
, and the spaces w∞ and w0, of

sequences that are strongly bounded or strongly summable to zero by the
Cesàro method of order 1, (cf. [16]).

Lemma 5 ([17], Theorem 5.1.1, p.14). Let r, s ̸= 0, let a ∈ U+, and let
E be any of the sets c0, c, ℓ∞, ℓp, w0, or w∞, with 1 ≤ p < ∞ and assume
a• ∈ c. Then we have

σ (B (r, s) , Ea) =
{
λ ∈ C : |λ− r| ≤ |s| lim

n→∞
a•n

}
.

We obtain the next result, where we recall that ER = E(Rn)n
, R > 0. As

a direct consequence of ([17], Corollary 5.1.4, p.15), we obtain the following
result.

Lemma 6. Let r, s, R be reals with r ̸= 0 and R > 0 assume E ∈
{c0, c, ℓ∞, ℓp, w0, w∞} with 1 ≤ p < ∞. Then we have: σ (B (r, s) , ER) =
σ (B (r, s/R) , E) = {λ ∈ C : |λ− r| ≤ |s| /R}.

4. Some definitions and results related to the sequence
spaces inclusions equations

Let a ∈ U+ and let E , F and F ′ be linear spaces of sequences. Our aim
is to determine the set of all positive sequences x = (xn)n≥1 that satisfy the
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sequence spaces inclusion equation, (SSIE) F ⊂ E + F ′
x, (cf. [21]). Then we

use the notation I (E , F, F ′) = {x ∈ U+ : F ⊂ E + F ′
x}, (cf. [21], p. 236).

Of course, if F ⊂ E , then I (E ,F , F ′) = U+, then, for any set χ of sequences
we let χ = {x ∈ U+ : 1/x ∈ χ}. We begin to state the next elementary
properties of the set I (E , F, F ′).

Lemma 7 ([18], Lemma 10, p. 4). Let E, E1, F , F ′, F and F ′′ be linear
spaces of sequences. Then we have:

(i) If E1 ⊂ E, then I (E1, F, F ′) ⊂ I (E , F, F ′),
(ii) If F ⊂ F , then I (E , F, F ′) ⊂ I (E ,F , F ′),
(iii) If F ′ ⊂ F ′′, then I (E , F, F ′) ⊂ I (E , F, F ′′),

To state the following results, we need the next lemma.

Lemma 8 ([18], Lemma 10, p. 5). Let E, E0, F , G, F and F ′ be linear
spaces of sequences. Then we have:

(i) M (F, F ′) ⊂ I (E ,F , F ′),
(ii) If I (E0, F, F ′) ⊂ M (F, F ′), for any linear space of sequences E0 such

that E ⊂ E0, then we have I (E , F, F ′) = M (F, F ′),
(iii) If I (E ,F , F ′) ⊂ M (F, F ′), for some linear space of sequences F ⊂

F , then we have I (E , F, F ′) = M (F, F ′).

5. The main results. Solvability of the (SSIE) of the form
(c0)B(r,s)−λI ⊂ E + sx

In this section, we solve some (SSIE) with the operator, involving the
fine spectrum of B (r, s).

5.1. Some properties of the operator B (r, s)

In all that follows, we use the notation α = −s/r, where r, s ̸= 0, belong
to C. Then we write s1/|α| = s(|r/s|n)n≥1

= s|r/s|.

Lemma 9. Let r, s ̸= 0 and α = −s/r, and let E ∈ {c0, c, s1}. Then we
have:

(i) The operator B (r, s) ∈ (E,E), is bijective if and only if |s| < |r|,
(ii) If |s| > |r|, then we have EB(r,s) ⊂ s|α|, and B−1 (r, s) ∈

(
E, s|α|

)
.

Proof. (i) follows from ([17], Corollary 5.3.1, p. 17), see also, ([13],
Theorem 3.1, p. 1303). (ii) It is well known that the nonzero entries of the
triangle B−1 (r, s) are determined by

[
B−1 (r, s)

]
nk

= αn−k/r, for k ≤ n,
for all n. Then, the entries of the triangle D1/αB

−1 (r, s) are given by[
D1/αB

−1 (r, s)
]
nk

= r−1α−k, for k ≤ n, for all n. Then we have |α| > 1 and
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|α|−k

)
k≥1

∈ ℓ1. This implies D1/αB
−1 (r, s) ∈ (E, s1), and EB(r,s) ⊂ s|α|,

for E ∈ {c0, c, s1}. ■

5.2. Determination of the multiplier M
(
(c0)B(r,s)−λI , s1

)
In this Part, we determine the multiplier M0,1 = M

(
(c0)B(r,s)−λI , s1

)
for all λ ∈ C. For this study, the set C is partitioned into the next three sets,
σ1 = ρ (B (r, s) , c0)∪{r}, σ2 = σc (B (r, s) , c0) and σ3 = σr (B (r, s) , c0)⧹ {r}.
We can state the next result, where we let αλ = s/ (r − λ) and we write
s1/|αλ| = s(|(r−λ)/s|n)n≥1

= s|(r−λ)/s|.

Lemma 10. Let r, s ̸= 0 and λ ∈ C. Then we have

M0,1 =


s1 if λ ∈ σ1,

s(1/n)n≥1
if λ ∈ σ2,

s1/|αλ| if λ ∈ σ3.

Proof. We show that the condition λ ∈ σ1 implies M0,1 = s1. Indeed,
if λ = r, then we have (c0)B(r,s)−λI = (c0)B(0,s) and (c0)B(0,s) = c0 and we

conclude M
(
(c0)B(r,s)−rI , s1

)
= s1. Then, if λ ∈ ρ (B (r, s) , c0), by Lemma

9, we have (c0)B(r−λ,s) = c0 and again we have M0,1 = M (c0, s1) = s1.
Then we let λ ∈ σc (B (r, s) , c0). Then we have |αλ| = 1, and the condi-

tion γ ∈ M0,1 is equivalent to DγB
−1 (r − λ, s) ∈ (s1, s1), and to

(1) χn = |γn|
n−1∑
i=0

|αλ|i ≤ K for some K > 0 and for all n.

The statement in (1), means, n |γn| ≤ K for all n and M0,1 = s(1/n)n≥1
.

Now we show that the condition λ ∈ σ3 implies M0,1 = s1/|αλ|. We
have |αλ| = |s/ (r − λ)| > 1, that is, |r − λ| < |s|, and χn ∼ K ′ |γn| |αλ|n
(n → ∞) for some K ′ > 0. So the condition in (1), implies there is K ′′

such that |γn| ≤ K ′′ |αλ|−n for all n, and we have shown that the condition
λ ∈ σ3 implies M0,1 = s1/|αλ|. This completes the proof. ■

5.3. Application to the solvability of the (SSIE) with an
operator (c0)B(r,s)−λI ⊂ E + sx, for λ ∈ C and E ⊂ sθ

In this part, we deal with the set I
(
E , (c0)B(r,s)−λI , s1

)
of all positive

sequences x that satisfy the (SSIE)

(2) (c0)B(r,s)−λI ⊂ E + sx, for λ ∈ C.
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For instance, the condition x ∈ I
(
c, (c0)B(r,s)−λI , s1

)
means that for every

y ∈ ω, such that limn→∞ [(r − λ) yn + syn−1] = 0, there are u, v ∈ ω with
y = u + v, such that limn→∞ un = L and |vn| /xn ≤ K for some scalars L
and K, with K > 0 and for all n.

We need the next lemma.

Lemma 11. Let a, b ∈ U+ and let ĩ∞ (a, b) be the set of all b ∈ U+

such that xn + an ≥ Kbn for some K > 0 and for all n. If a/b ∈ c0, then
ĩ∞ (a, b) ⊂ s1/b.

Proof. Let x ∈ ĩ∞ (a, b). Then we have xn + an ≥ Kbn, and

xn ≥ Kbn − an ≥ bn (K − an/bn) for all n.

Since a/b ∈ c0, there is an integer N such that for every n ≥ N , we have
an/bn ≤ K/2 and

K − an/bn ≥ K/2.

If we let χ = min {x1/b1, x2/b2, ..., xN−1/bN−1} > 0, and K ′ = min {K/2, χ}
> 0, then we have 1/xn ≤ K1/bn for all n, with K1 = 1/K ′, and x ∈ s1/b.

So we have shown the inclusion ĩ∞ (a, b) ⊂ s1/b. This concludes the proof. ■

To state the following theorem on the solvability of the (SSIE) in (2),
with E ⊂ sθ, and θ ∈ U+, we use the set

σ̃θ =
{
λ ∈ C : αλ ∈ s01/θ

}
=

{
λ ∈ C : lim

n→∞
θn

∣∣∣∣λ− r

s

∣∣∣∣n = 0

}
.

Theorem 1. Let a ∈ U+, λ ∈ C, r, s ̸= 0, αλ = s/ (r − λ), and let E ⊂
sθ be a linear space of sequences. Then, the set I1

0 (E , λ) = I
(
E , (c0)B(r,s)−λI ,

s1
)
of all sequences x ∈ U+, that satisfy the (SSE) in (2), is determined in

the following way,

I1
0 (E , λ) =


s1 if λ ∈ σ1 and θ ∈ c0,

s(1/n)n≥1
if λ ∈ σ2 and θ ∈ s0(n)n≥1

,

s1/|αλ| if λ ∈ σ3 ∩ σ̃θ.

Proof. By Part (ii) of Lemma 8, it is enough to show the inclusion
I1
0 (sθ, λ) ⊂ M0,1 in each of the cases (a) λ ∈ σ1 and θ ∈ c0, (b) λ ∈ σ2 and

θ ∈ s0(n)n≥1
and (c) λ ∈ σ3 ∩ σ̃θ with λ ̸= r

Case (a). Let θ ∈ c0 and λ = r. We have (c0)B(r,s)−λI = (c0)B(0,s) = c0,
since y ∈ (c0)B(0,s) means that syn−1 → 0 (n → ∞) and y ∈ c0. Then we



Solvability of new (SSIE) involving . . . 69

have c0 ⊂ sθ+x and 1/ (θ + x) ∈ s1. This implies there is K > 0 such that
θn + xn ≥ K, and since θ ∈ c0, by Lemma 11, with a = θ and b = e, we
obtain x ∈ s1 and I1

0 (sθ, λ) ⊂ s1. By Part (ii) of Lemma 8 and Lemma 10,
where M0,1 = s1, we conclude I1

0 (sθ, λ) = s1.
Now, let λ ∈ ρ (B (r, s) , c0) and θ ∈ c0. This implies |r − λ| > |s|, and

by Part (i) of Lemma 9, we have (c0)B(r,s)−λI = c0. Then c0 ⊂ sθ+x and
1/ (θ + x) ∈ s1. As we have just seen, the condition θ ∈ c0 implies there
is K > 0 such that xn ≥ K > 0 for some K > 0 and for all n, and
I1
0 (sθ, λ) ⊂ s1. As above, by Part (ii) of Lemma 8 and Lemma 10, where

M0,1 = s1, we conclude I1
0 (sθ, λ) = s1.

Now we consider the cases (b) and (c). For this study, notice that sθ+sx =
sθ+x, (cf. [21], Remark 4.1, p. 162), and the inclusion (c0)B(r,s)−λI ⊂ sθ+sx
is equivalent to (c0)B(r,s)−λI ⊂ sθ+x and to 1/ (θ + x) ∈ M0,1.

Case (b). We have 1/ (θ + x) ∈ M0,1 = s(1/n)n≥1
, and n/ (θn + xn) ≤ K

and θn + xn ≥ K−1n for some K > 0 and for all n. Since θ ∈ s0(n)n≥1
,

we can apply Lemma 11, with a = θ and b = (n)n≥1 and we conclude

1/x ∈ s(1/n)n≥1
. So we have shown that, under the conditions θ ∈ s0(n)n≥1

and λ ∈ σ2, the inclusion I1
0 (sθ, λ) ⊂ s(1/n)n≥1

holds. Then, by Lemma 10,

the condition λ ∈ σ2 implies M0,1 = s(1/n)n≥1
and again, by Part (ii) of

Lemma 8, we conclude I1
0 (sθ, λ) = s(1/n)n≥1

.

Case (c). Here we have 1/ (θ + x) ∈ M0,1 = s1/|αλ|, and θn + xn ≥
K |αλ|n for some K > 0 and for all n. Then, using the condition λ ∈ σ̃θ,
and applying Lemma 11, with a = θ and b = (|αλ|n)n≥1, and conclude

1/x ∈ s1/|αλ|, and we have shown the inclusion I1
0 (sθ, λ) ⊂ s1/|αλ|. By

Lemma 10, we have M0,1 = s1/|αλ| for λ ∈ σ3, and again, by Part (ii) of
Lemma 8, we conclude I1

0 (sθ, λ) = s1/|αλ|. This completes the proof. ■

As a direct consequence of Theorem 1, we obtain the next corollary.

Corollary 1. Let θ ∈ U+, λ ∈ C, r, s ̸= 0, and let E ⊂ sθ be a linear
space of sequences. Then,the identity

(3) I1
0 (E , λ) = s1/|αλ|

holds in each of the cases: (i) 1/θ ∈ ℓ∞, and λ ∈ σ̃θ⧹ {r}, and (ii) θ ∈ ℓ∞,
and λ ∈ σr (B (r, s) , c0)⧹ {r}.

Proof. (i) Assume 1/θ ∈ ℓ∞. Then we have θn |(λ− r) /s|n ≥ K
∣∣ (λ− r)

/s
∣∣n, for some K > 0 and for all n, and since λ ∈ σ̃θ, we conclude |(λ− r) /s|

< 1 and λ ∈ σr (B (r, s) , c0). So we have
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σr (B (r, s) , c0) ∩ σ̃θ = σ̃θ,

and by Theorem 1, the condition λ ∈ σr (B (r, s) , c0)⧹ {r} implies the iden-
tity in (3).

(ii) If θ ∈ ℓ∞, then the condition |(λ− r) /s| < 1 implies limn→∞ θn
∣∣ (λ− r)

/s
∣∣n = 0 and

σr (B (r, s) , c0) ∩ σ̃θ = σr (B (r, s) , c0) ,

and again by Theorem 1, the condition λ ∈ σr (B (r, s) , c0) implies (3). This

concludes the proof. ■

5.4. Application to the solvability of the (SSIE) with

operator (c0)B(r,s)−λI ⊂ s
(c)
R + sx

In this part, we solve the (SSIE) (c0)B(r,s)−λI ⊂ s
(c)
R + sx for all R > 0

and all λ ∈ C. We have D1/RB (r, s)DR = B (r, s/R), and the condition
B (r, s) ∈

(
s0R, s

0
R

)
holds if and only if B (r, s/R) ∈ (c0, c0). So we have

κ
(
B (r, s) , s0R

)
= κ (B (r, s/R) , c0) ,

where κ is any of the symbols σr, σc, and ρ. In the following result, we solve

the (SSIE) (c0)B(r,s)−λI ⊂ s
(c)
R + sx, for all λ ∈ C and R > 0, except, for

λ ∈ σc
(
B (r, s) , s0R

)
with R > 1. More precisely, for R ≤ 1, we consider the

cases, (1) |r − λ| > |s|, or λ = r, (2) |r − λ| = |s| and (3) |r − λ| < |s| and
λ ̸= r. Then, for R > 1 and inside this condition, we deal with the cases,
(1) |r − λ| > |s| /R, or λ = r and (2) |r − λ| < |s| /R and λ ̸= r.

We can state the next result.

Corollary 2. Let R > 0, r, s ̸= 0. The set I1
0

(
s
(c)
R , λ

)
of all the solutions

of the (SSIE) (c0)B(r,s)−λI ⊂ s
(c)
R + sx, where λ ∈ C,is determined in the

following way.

(i) Let R < 1. Then

I1
0

(
s
(c)
R , λ

)
=


s1 if λ ∈ σ1,

s(1/n)n≥1
if λ ∈ σ2,

s| r−λ
s | if λ ∈ σ3.

(ii) Let R = 1. Then

I1
0

(
s
(c)
R , λ

)
=


U+ if λ ∈ σ1,

s(1/n)n≥1
if λ ∈ σ2,

s| r−λ
s | if λ ∈ σ3.
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(iii) Let R > 1. Then

I1
0

(
s
(c)
R , λ

)
=

 U+ if λ ∈ ρ
(
B (r, s) , s0R

)
∪ {r} ,

s| r−λ
s | if λ ∈ σr

(
B (r, s) , s0R

)
⧹ {r} .

Proof. We apply Theorem 1, with θ = (Rn)n≥1, and we write σ̃θ = σ̃R.

Case R < 1. By Theorem 1, since (Rn)n≥1 ∈ c0, the condition λ ∈ σ1

implies I1
0

(
s
(c)
R , λ

)
= s1. In the same way, by Theorem 1, since (Rn)n≥1 ∈

s0(n)n≥1
, the condition λ ∈ σ2, implies I1

0

(
s
(c)
R , λ

)
= s(1/n)n≥1

. Then, by

Part (ii) of Corollary 1, where (Rn)n≥1 ∈ ℓ∞, the condition λ ∈ σ3 implies

I1
0

(
s
(c)
R , λ

)
= s1/|αλ|. So we have shown Part (i).

Case R = 1. If λ ∈ ρ (B (r, s) , c0), it can easily be seen that since
|αλ| < 1 we have B−1 (r − λ, s) ∈ (c0, c) and (c0)B(r,s)−λI ⊂ c. This implies

I1
0 (c, λ) = U+ for all λ ∈ ρ (B (r, s) , c0). The remainder of the proof follows

from Theorem 1.

Case R > 1. First, for λ = r we have seen that (c0)B(r,s)−λI = c0 ⊂ s
(c)
R

and I1
0

(
s
(c)
R , r

)
= U+. Then, the inclusion (c0)B(r,s)−λI ⊂ s

(c)
R holds if and

only if D1/RB
−1 (r − λ, s) ∈ (c0, c). By the characterization of (c0, c), (cf.

[21], Theorem 1.23, p. 23), we obtain

(4)
1

Rn

n−1∑
i=0

|αλ|i ≤ K, for some K > 0 and for all n,

and

(5) lim
n→∞

(αλ

R

)n
= L for some scalar L.

We can see that the conditions in (4), and (5) hold for |αλ| < R. Indeed, if
1 < |αλ| < R, then we have τn =

∑n−1
i=0 |αλ|i ∼ |αλ|n / (|αλ| − 1) (n → ∞)

which implies the condition in (4), and we have L = 0 in (5). Then, the
conditions in (4), and (5) hold, if |αλ| ≤ 1, since the inequality |αλ| <
1, implies τn = O (1) (n → ∞), and the identity |αλ| = 1, implies τn =

nO (1) (n → ∞). We conclude the inclusion (c0)B(r,s)−λI ⊂ s
(c)
R holds and

I1
0

(
s
(c)
R , λ

)
= U+, if |r − λ| > |s| /R.

Then, assume |r − λ| < |s| /R and λ ̸= r. Then we have σ̃R = D (r, |s| /R),

and we conclude by Part (i) of Corollary 1, with θ = (Rn)n≥1, that I1
0

(
s
(c)
R , λ

)
= s|(r−λ)/s|. This completes the proof. ■
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Remark 1. In the case R > 1, with r, s ̸= 0, using the same arguments
as in Corollary 2, the set of the solutions of the (SSIE) (c0)B(r,s)−λI ⊂ sR+sx,
is determined by,

I1
0

(
s
(c)
R , λ

)
=

 U+ if |r − λ| ≥ |s| /R, or λ = r,

s| r−λ
s | if |r − λ| < |s| /R, and λ ̸= r.

5.5. On the (SSIE) (c0)∆−λI ⊂ bvp+sx, and (c0)B(r,s)−λI ⊂ ERa +sx,
for E = c0, c, or ℓ∞

In this part, we solve each of the (SSIE) (c0)∆−λI ⊂ bvp + sx, with
λ ∈ σ (∆, c0)⧹ {1}, and (c0)B(r,s)−λI ⊂ ERa + sx, for E = c0, c, or ℓ∞,

where Ra, a ∈ U+, is the Rhaly matrix.

5.5.1. Solvability of the (SSIE) (c0)∆−λI ⊂ bvp + sx

In the following, we use the set ℓp, for p ≥ 1 of all sequences x = (xk)k≥1

such that
∑∞

k=1 |xk|
p < ∞, and the set bvp = ℓp∆, (1 ≤ p ≤ ∞) of sequences

of p-bounded variation introduced by Başar and Altay [5], if p = 1 we write
bv1 = bv. We can state the next result.

Proposition 1. Let p ≥ 1. The set of all the positive sequences x =
(xk)k≥1, that satisfy the (SSIE) (c0)∆−λI ⊂ bvp+sx, where λ ∈ σ (∆, c0)⧹ {1},
is determined by

I1
0 (bvp, λ) =

 s(1/n)n≥1
if λ ∈ σc (∆, c0) ,

s|λ−1| if λ ∈ σr (∆, c0)⧹ {1} .

Proof. Case p > 1. The condition bvp ⊂ sθ, is equivalent to

D1/θΣ ∈ (ℓp, s1) ,

and by the characterization of (ℓp, s1), (cf. [21], Theorem 1.23, p. 23),
this condition is equivalent to nθ−q

n ≤ K, for some K > 0 and for all n,
where q = p/ (p− 1). So we can apply Theorem 1, with E = bvp, and since
θ =

(
n1/q

)
n≥1

∈ s0(n)n≥1
, the condition λ ∈ σc (∆, c0), implies I1

0 (bvp, λ) =

s(1/n)n≥1
. In a similar way, the condition limn→∞ n1/q |1− λ|n = 0 holds

if and only if |1− λ| < 1. This implies the identity σr (∆, c0) = σ̃θ, and
by Theorem 1, with r = −s = 1, the condition λ ∈ σr (∆, c0)⧹ {1} implies
I1
0 (bvp, λ) = s|1−λ|. So we have shown the proposition for p > 1.
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Case p = 1. We have ℓ1∆ ⊂ c, and for λ ∈ σ (∆, c0)⧹ {1}, we can apply
Part (ii) of Lemma 8, which implies I1

0 (bv, λ) = I1
0 (c, λ), where I1

0 (c, λ) is
defined in Part (ii) of Corollary 2, with r = −s = 1. This concludes the
proof. ■

5.5.2. Solvability of the (SSIE) (c0)B(r,s)−λI ⊂ ERa + sx

Let a ∈ U+, and for λ ∈ C, we write I (ERa , λ) for the set of all positive
sequences x, that satisfy the (SSIE) (c0)B(r,s)−λI ⊂ ERa + sx, for E = c0,

c, or ℓ∞, where Ra, a ∈ U+, is the Rhaly matrix, (cf. [24], [28]). The
nonzero entries of Ra are defined by [Ra]nk = an, for k ≤ n and for all n.
We have Ra = DaΣ, where Σ is the sum operator defined by Σny =

∑n
k=1 yk.

Then, the condition x ∈ I (cRa , λ) means that for every y ∈ ω, such that
limn→∞ [(r − λ) yn + syn−1] = 0, there are u, v ∈ ω with y = u + v, such
that limn→∞ an (

∑n
k=1 uk) = L, and |vn| /xn ≤ K, for some scalars L andK,

with K > 0 and for all n. By similar arguments as above, we can state the
following result, whose the proof follows from Theorem 1 and Corollary 1.

Corollary 3. Let a ∈ U+ and let E ∈ {c0, c, ℓ∞}. Then we have,
(i) If 1/a ∈ c0, then the condition λ /∈ σ (B (r, s) , c0) implies I (ERa , λ) =

s1.
(ii) If limn→∞ (1/nan) = 0, then the condition λ ∈ σc (B (r, s) , c0) im-

plies I (ERa , λ) = s(1/n)n≥1
.

(iii) If a ∈ s(1/n)n≥1
and λ = r, then we have I (ERa , λ) = U+.

(iv) (a) Let 1/a ∈ ℓ∞. Then, the condition λ ∈ σr (B (r, s) , c0)⧹ {r}
implies I (ERa , λ) = s|(r−λ)/s|,

(b) Let a ∈ ℓ∞. Then, the condition λ ∈ σ̃1/a⧹ {r} implies I (ERa , λ)
= s|(r−λ)/s|.

If a = e in Corollary 3, then we obtain the next application.

Example 1. For every λ ∈ σ (B (r, s) , c0), the set I (EΣ, λ) of all positive
sequences x, that satisfy the (SSIE) (c0)B(r,s)−λI ⊂ EΣ+sx, for E = c0, c, or

ℓ∞, is determined by I (EΣ, λ) =

{
s(1/n)n≥1

if |r − λ| = |s| ,
s|(r−λ)/s| if |r − λ| < |s| and λ ̸= r.

These results lead to the next conclusion.

Conclusion. In all this article, we only have considered the solvability of
the (SSIE) (c0)B(r,s)−λI ⊂ E + sx, for positive sequences. If E = {θ}, where
θ is the zero sequence, then we may solve the (SSIE) Dx ∗ EB(r,s)−λI ⊂ F ,
where E and F are linear spaces of sequences, for all x ∈ ω, since this
resolution consists in determining the set M

(
EB(r,s)−λI , F

)
. In future, we
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may extend the results stated above to the study of the (SSIE) of the form
EB(r,s)−λI ⊂ E + Fx, where E and F are any of the sets c0, c, or ℓ∞. For

instance, the solvability of the (SSIE) cB(r,s)−λI ⊂ E + s
(c)
x , is associated

with the multiplier M
(
cB(r,s)−λI , c

)
, and the solutions of this (SSIE) may

be stated using the continuous and residual spectra of the generalized dif-
ference operator B (r, s) on c. Then we may also extend these results, to the
solvability of the (SSIE) EB(r,s,t)−λI ⊂ E+Fx, where r, s, t ̸= 0, and E and F
are any of the sets c0, c, or ℓ∞, (cf. [9]). The solutions of these (SSIE) can be
stated, using the continuous and residual spectra of the infinite tridiagonal
matrix B (r, s, t) on E, (cf. [11]).
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Université du Havre 76600

e-mail: bdemalaf@wanadoo.fr

Received on 18.05.2022 and, in revised form, on 30.08.2022.


