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Abstract. The present paper deals with certain generalized sub-
classes of multivalent close-to-star functions defined with subordi-
nation. Various properties of these classes such as the coefficient
estimates, growth theorems, argument theorems and inclusion re-
lations are studied. Some earlier known results will follow as par-
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1. Introduction

Let the unit disc is defined as E = {z : z ∈ C, |z| < 1} where C denotes
the complex plane. Ap(p ≥ 1) denotes the class of analytic functions f in
the unit disc E and of the form

(1) f(z) = zp +
∞∑

k=p+1

akz
k.

In particular, Ap ≡ A1, the class of analytic functions of the form f(z) = z+∑∞
k=2 akz

k and which are normalized by the conditions f(0) = f ′(0)−1 = 0.
By S we denote the class of functions in A1 which are univalent in E.

Let U denotes the class of analytic functions in E which can be expressed
as

w(z) =
∞∑
k=1

ckz
k,

and with the conditions w(0) = 0, |w(z)| < 1. The functions in the class
U are known as Schwarz functions. It was proved in [15] that for w ∈ U ,
|c1| ≤ 1 and |c2| ≤ 1− |c1|2.

For two analytic functions f and g in E, f is said to be subordinate to
g if there exists a Schwarz function w ∈ U such that f(z) = g(w(z)) and
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symbolically it is written as f ≺ g. Further, if the function g is univalent in
E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

By S∗
p (α) and Kp(α) (0 ≤ α < p), we denote the subclasses of Ap which

are respectively the classes of p-valently starlike functions and p-valently
convex functions of order α and defined as

S∗
p (α) =

{
f : f ∈ Ap, Re

(
zf ′(z)

f(z)

)
> α, z ∈ E

}
and

Kp(α) =

{
f : f ∈ Ap, Re

(
(zf ′(z))′

f ′(z)

)
> α, z ∈ E

}
.

The classes S∗
p (α) and Kp(α) were investigated by Goluzin [5]. It can be

easily seen that f ∈ Kp(α) if and only if
zf ′

p
∈ S∗

p (α). For 0 ≤ α < 1,

S∗
1 (α) ≡ S∗(α) and K1(α) ≡ K(α), the classes of starlike functions of order
α and convex functions of order α respectively, introduced by Robertson
[19]. Also S∗

p (0) ≡ S∗
p and Kp(0) ≡ Kp, the classes of p-valent starlike

functions and p-valent convex functions respectively. Further S∗
1 (0) ≡ S∗

and K1(0) ≡ K, the well known classes of starlike functions and convex
functions respectively

Umezawa [21] established the class Cp(α) of p-valent close-to-convex func-
tions defined as

Cp(α) =
{
f : f ∈ Ap, Re

(
zf ′(z)

g(z)

)
> α, g ∈ S∗

p , z ∈ E

}
.

For p = 1, α = 0, the class Cp(α) reduces to C, the class of close-to-convex
functions introduced by Kaplan [8].

Reade [18] introduced the class CS∗ of close-to-star functions defined as

CS∗ =

{
f : f ∈ A1, Re

(
f(z)

g(z)

)
> 0, g ∈ S∗, z ∈ E

}
.

The class of close-to-star functions has the same relation with the class of
close-to-convex functions as the class of starlike functions bear to the class
of convex functions.

The corresponding class of p-valent close-to-star functions is denoted by
CS∗(p) and defined as

CS∗(p) =

{
f : f ∈ Ap, Re

(
pf(z)

g(z)

)
> 0, g ∈ S∗

p , z ∈ E

}
.

For p = 1, CS∗(p) agrees with the class CS∗. Various subclasses of close-to-star
functions were studied in [3, 10, 12, 13, 14, 16].
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For −1 ≤ B < A ≤ 1 and 0 ≤ α < p, Aouf [1] established the
class P(A,B; p;α) which consists of the functions of the form p(z) = p +∑∞

k=1 pkz
k such that p(z) ≺ p+ [pB + (A−B)(p− α)]z

1 +Bz
. In particular,

(i) P(A,B; 1;α) ≡ P(A,B;α), the class introduced by Polatoglu et
al. [17].

(ii) P(A,B; 1; 0) ≡ P(A,B), a subclass of A1 introduced by Janowski [7].
Further, for −1 ≤ B < A ≤ 1 and 0 ≤ α < p, Aouf [1, 2], introduced the

following useful classes:

S∗(A,B; p;α) =

{
f : f ∈ Ap,

zf ′(z)

f(z)
≺ p+ [pB + (A−B)(p− α)]z

1 +Bz
, z ∈ E

}
and

K(A,B; p;α) =

{
f : f ∈ Ap,

(zf ′(z))′

f ′(z)
≺ p+ [pB + (A−B)(p− α)]z

1 +Bz
, z ∈ E

}
.

The following observations are obvious:
(i) S∗(1,−1; p;α) ≡ S∗

p (α) and K(1,−1; p;α) ≡ Kp(α).
(ii) S∗(A,B; p; 0) ≡ S∗

p (A,B) and K(A,B; p; 0) ≡ Kp(A,B), the classes
studied by Hayami and Owa [6].

(iii) S∗(A,B; 1;α) ≡ S∗(A,B;α), the class studied by Polatoglu et al. [17].
(iv) S∗(A,B; 1; 0) ≡ S∗(A,B) and K(A,B; 1; 0) ≡ K(A,B), the sub-

classes of starlike and convex functions respectively, introduced by Janowski [7]
and studied further by Goel and Mehrok [4].

(v) S∗(1,−1; 1;α) ≡ S∗(α) and K(1,−1; 1;α) ≡ K(α).
(vi) S∗(1,−1; 1; 0) ≡ S∗ and K(1,−1; 1; 0) ≡ K.

Throughout this paper, we assume that −1 ≤ D < C ≤ 1, −1 ≤ B <
A ≤ 1, 0 ≤ α < p, 0 ≤ β < p and z ∈ E.

Getting motivated by the above work, we take into account the following
definitions:

Definition 1. Let CS∗(A,B;C,D; p;β;α) denote the class of functions
f ∈ Ap and satisfying the condition

pf(z)

g(z)
≺ p+ [pD + (C −D)(p− β)]z

1 +Dz
,

where

g(z) = zp +
∞∑

k=p+1

dkz
k ∈ S∗(A,B; p;α).

Definition 2. CS∗
1(A,B;C,D; p;β;α) is the class of functions f ∈ Ap

which satisfy the condition

pf(z)

h(z)
≺ p+ [pD + (C −D)(p− β)]z

1 +Dz
,
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where

h(z) = zp +

∞∑
k=p+1

bkz
k ∈ K(A,B; p;α).

The following points are to be noted:
(i) CS∗(A,B;C,D; p; 0; 0) ≡ CS∗(A,B;C,D; p).
(ii) CS∗(A,B;C,D; 1; 0; 0) ≡ CS∗(A,B;C,D), the subclass of close-to-star

functions investigated by Mehrok and Singh [12].
(iii) CS∗(1,−1;C,D; 1; 0; 0) ≡ CS∗(C,D), the subclass of close-to-star

functions studied by Mehrok et al. [13].
(iv) CS∗(1,−1; 1,−1; 1; 0; 0) ≡ CS∗.
(v) CS∗

1(A,B;C,D; p; 0; 0) ≡ CS∗
1(A,B;C,D; p).

(vi) CS∗
1(1,−1;C,D; 1; 0; 0) ≡ CS∗

1(C,D), the subclass of close-to-star
functions studied by Mehrok et al. [14].

In this paper, we investigate various properties such as the coefficient
estimates, growth theorems, argument theorems and inclusion relations for
the classes CS∗(A,B;C,D; p;β;α) and CS∗

1(A,B;C,D; p;β;α). The results
already proved by various authors, will follow as special cases.

2. Preliminary results

Lemma 1 ([1]). If P (z) =
p+ [pD + (C −D)(p− β)]w(z)

1 +Dw(z)
= p +∑∞

k=1 pkz
k ∈ P(C,D; p;β), then

|pn| ≤ (C −D)(p− β), n ≥ p.

The bounds are sharp for w(z) = zn and for the function

P (z) = p+ (C −D)(p− β)zn + ...

Lemma 2 ([11]). Let −1 ≤ D2 ≤ D1 < C1 ≤ C2 ≤ 1, then

1 + C1z

1 +D1z
≺ 1 + C2z

1 +D2z
.

Lemma 3 ([20]). If ψ(z) is regular in E, ϕ(z) and h(z) are convex
univalent in E such that ψ(z) ≺ ϕ(z), then ψ(z)∗h(z) ≺ ϕ(z)∗h(z), z ∈ E.

Lemma 4 ([1]). For g(z) = zp +
∑∞

k=p+1 dkz
k ∈ S∗(A,B; p;α),

|dn| ≤ Π
n−(p+1)
j=0

|(B −A)(p− α) +Bj|
j + 1

, n ≥ 1.
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Lemma 5 ([1]). Let g ∈ S∗(A,B; p;α), then for |z| = r, 0 < r < 1, we
have

rp(1−Br)
(A−B)(p−α)

B ≤ |g(z)| ≤ rp(1 +Br)
(A−B)(p−α)

B , B ̸= 0,

rpe−A(p−α)r ≤ |g(z)| ≤ rpeA(p−α)r, B = 0.

Lemma 6 ([1]). For g ∈ S∗(A,B; p;α),∣∣∣∣arg g(z)zp

∣∣∣∣ ≤
{

(A−B)(p−α)
B sin−1(Br) if B ̸= 0,

A(p− α)r if B = 0.

Lemma 7 ([2]). For h(z) = zp +
∑∞

k=p+1 bkz
k ∈ K(A,B; p;α),

|bn| ≤
p

n[(n− p)!]
Π

n−(p+1)
j=0 |(B −A)(p− α) +Bj|, n ≥ p+ 1.

Lemma 8 ([2]). Let h ∈ K(A,B; p;α), then for |z| = r, 0 < r < 1, we
have

p

∫ r

0
tp−1(1−Bt)

(A−B)(p−α)
B dt ≤ |h(z)| ≤ p

∫ r

0
tp−1(1+Bt)

(A−B)(p−α)
B dt, B ̸= 0,

p

∫ r

0
tp−1e−A(p−α)tdt ≤ |h(z)| ≤ p

∫ r

0
tp−1eA(p−α)tdt, B = 0,

Lemma 9. If g(z) = zp +
∑∞

k=p+1 dkz
k ∈ S∗(A,B; p;α), then

|dp+1| ≤
(A−B)(p− α)

p+ 1

and

|dp+2| ≤
(A−B)(p− α)

2
max

{
1,

|(A−B)(p− α)−B|
p+ 1

}
.

Proof. As g ∈ S∗(A,B; p;α), therefore we have

zg′(z)

g(z)
− p =

(A−B)(p− α)w(z)

(1 +Bw(z))
, w(z) =

∞∑
k=1

γkz
k ∈ U .

On expanding the above expression and equating the coefficients of zp+1 and
zp+2, it yields

dp+1 =
(A−B)(p− α)γ1

p+ 1

and

dp+2 =
(A−B)(p− α)γ2

2
+

[(A−B)(p− α)−B](A−B)(p− α)

2(p+ 1)
γ21 .
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On applying the triangle inequality in the above equations, we obtain

|dp+1| ≤
(A−B)(p− α)

p+ 1
|γ1|

and

|dp+2| ≤
(A−B)(p− α)

2

∣∣∣∣γ2 + [(A−B)(p− α)−B]

p+ 1
γ21

∣∣∣∣ .
It is well known [9] that for w(z) =

∑∞
k=1 γkz

k ∈ U , |γ1| ≤ 1 and
∣∣γ2 − sγ21

∣∣ ≤
max{1, |s|}.

Using these results in the above inequalities, the proof of the Lemma is
obvious. ■

3. Results for the class CS∗(A,B;C,D; p; β;α)

Theorem 1. If f ∈ CS∗(A,B;C,D; p;β;α), then for n ≥ 1,

|an| ≤ Π
n−(p+1)
j=0

|(B −A)(p− α) +Bj|
j + 1

+
(C −D)(p− β)

p
(2)

×

1 + n−1∑
m=p+1

Π
m−(p+1)
j=0

|(B −A)(p− α) +Bj|
j + 1

 .
The result is sharp.

Proof. As f ∈ CS∗(A,B;C,D; p;β;α), therefore by Definition 1, we
have

(3) pf(z) = g(z)P (z),

where

g(z) = zp +

∞∑
k=p+1

dkz
k ∈ S∗(A,B; p;α)

and

P (z) = p+
∞∑
k=1

pkz
k ∈ P(C,D; p;β).

Expansion of (3) yields,

p[1 + ap+1z + ap+2z
2 + ...+ anz

n−p + ...(4)

= [1 + dp+1z + dp+2z
2 + ...+ dnz

n−p + ... ]

× [p+ p1z + p2z
2 + ...+ pnz

n + ... ].
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On equating the coefficients of zn−p on both sides of (4), we have

(5) pan = pdn + p1dn−1 + p2dn−2...+ pn−p−1dp+1 + pn−p.

Application of triangle inequality and using Lemma 1 in (5), it gives

(6) p|an| ≤ p|dn|+ (C −D)(p− β) [1 + |dp+1|+ |dp+2|+ ...+ |dn−1|] .

Using Lemma 4 in (6), we can easily obtain the result (2). Equality is
attained in (2), for the functions fp defined by

(7) fp(z) =
zp

(1−Bδ1z)
(B−A)(p−α)

B

[
p+ {pD + (C −D)(p− β)}δ2z

1 +Dδ2z

]
,

|δ1| = |δ2| = 1, B ̸= 0. ■

Remark 1. (i) On putting α = 0, β = 0 in Theorem 1, we can easily
obtain the result for the class CS∗(A,B;C,D; p).

(ii) For p = 1, α = 0, β = 0, Theorem 1 agrees with the result due to
Mehrok and Singh [12].

(iii) For A = 1, B = −1, α = 0, β = 0, p = 1, Theorem 1 leads to the
result established by Mehrok et al. [13].

(iv) On putting A = 1, B = −1, C = 1, D = −1, α = 0, β = 0, p = 1 in
Theorem 1, we can easily obtain the result derived by Reade [18].

Theorem 2. For f ∈ CS∗(A,B;C,D; p;β;α) and for |z| = r, 0 < r < 1,
we have for B ̸= 0,

1

p
rp(1−Br)

(A−B)(p−α)
B

[
p− {pD + (C −D)(p− β)}r

1−Dr

]
≤ |f(z)|(8)

≤ 1

p
rp(1 +Br)

(A−B)(p−α)
B

[
p+ {pD + (C −D)(p− β)}r

1 +Dr

]
;

for B = 0,

1

p
rpe−A(p−α)r

[
p− {pD + (C −D)(p− β)}r

1−Dr

]
≤ |f(z)|(9)

≤ 1

p
rpeA(p−α)r

[
p+ {pD + (C −D)(p− β)}r

1 +Dr

]
.

Estimates are sharp.

Proof. By taking modulus, (3) yields

(10) |pf(z)| = |g(z)||P (z)|.
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It was proved in [2] that,

p− [pD + (C −D)(p− β)]r

1−Dr
≤ |P (z)|(11)

≤ p+ [pD + (C −D)(p− β)]r

1 +Dr
.

Using the result (11) and Lemma 5 in (10), the results (8) and (9) can be
easily obtained. Sharpness follows for the functions fp defined as

(12) fp(z) =


1
p(1 +Bδ3z)

(A−B)(p−α)
B

[
p+{pD+(C−D)(p−β)}δ4z

1+Dδ4z

]
if B ̸= 0,

1
pe

A(p−α)δ5z
[
p+{pD+(C−D)(p−β)}δ4z

1+Dδ4z

]
if B = 0,

where |δ3| = |δ4| = |δ5| = 1. ■

Remark 2. (i) On putting α = 0, β = 0 in Theorem 2, we can easily
obtain the result for the class CS∗(A,B;C,D; p).

(ii) For p = 1, α = 0, β = 0, Theorem 2 agrees with the result due to
Mehrok and Singh [12].

(iii) For A = 1, B = −1, α = 0, β = 0, p = 1, Theorem 2 leads to the
result established by Mehrok et al. [13].

(iv) On putting A = 1, B = −1, C = 1, D = −1, α = 0, β = 0, p = 1 in
Theorem 2, we can easily obtain the result derived by Reade [18].

Theorem 3. If f ∈ CS∗(A,B;C,D; p;β;α), then

(13)

∣∣∣∣argf(z)zp

∣∣∣∣ ≤


1
p

[
(A−B)(p−α)

B sin−1(Br)

+ sin−1
(

(C−D)(p−β)r
p−[pD+(C−D)(p−β)]Dr2

)]
if B ̸= 0,

1
p [A(p− α)r

+ sin−1
(

(C−D)(p−β)r
p−[pD+(C−D)(p−β)]Dr2

)]
if B = 0.

The results are sharp.

Proof. Again from (3), we have

pf(z) = g(z)P (z),

which implies

(14)

∣∣∣∣argf(z)zp

∣∣∣∣ ≤ |argP (z)|+
∣∣∣∣arg g(z)zp

∣∣∣∣ .
It was proved by Aouf [1] that

(15) |argP (z)| ≤ sin−1

(
(C −D)(p− β)r

p− [pD + (C −D)(p− β)]Dr2

)
.
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On using (15) and Lemma 6, the results (13) can be easily obtained. Results
are sharp for the function defined in (12). ■

Remark 3. (i) On putting α = 0, β = 0 in Theorem 3, we can easily
obtain the result for the class CS∗(A,B;C,D; p).

(ii) For p = 1, α = 0, β = 0, Theorem 3 agrees with the result due to
Mehrok and Singh [12].

(iii) For A = 1, B = −1, α = 0, β = 0, p = 1, Theorem 3 leads to the
result established by Mehrok et al. [13].

(iv) On putting A = 1, B = −1, C = 1, D = −1, α = 0, β = 0, p = 1 in
Theorem 3, we can easily obtain the result derived by Reade [18].

Theorem 4. Let f ∈ CS∗(A,B;C,D; p;β;α), then

(16) |ap+1| ≤
(p− β)(C −D)

p
+

(p− α)(A−B)

p+ 1

and

(17) |ap+2| ≤



(A−B)(p−α)
2 + (C−D)(p−β)

p

[
1 + (A−B)(p−α)

p+1

]
if |(A−B)(p− α)−B| ≤ p+ 1,

(A−B)(p−α)
2

[
|(A−B)(p−α)−B|

p+1

]
+ (C−D)(p−β)

p

[
(A−B)(p−α)

p+1 + 1

]
if |(A−B)(p− α)−B| > p+ 1.

The bounds are sharp.

Proof. From Definition 1, using the principle of subordination, it gives

pf(z)

g(z)
=
p+ [pD + (C −D)(p− β)]w(z)

1 +Dw(z)
, w(z) ∈ U .

On expanding and comparing the coefficients, it leads to

(18) ap+1 = dp+1 +
(C −D)(p− β)

p
c1

and

(19) ap+2 = dp+2 +
1

p
[(C −D)(p− β)]dp+1c1 +

(C −D)(p− β)

p
[c2 −Dc21].

From Lemma 9, for g(z) = zp +
∑∞

k=p+1 dkz
k ∈ S∗(A,B; p;α), we have

(20) |dp+1| ≤
(A−B)(p− α)

p+ 1
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and

(21) |dp+2| ≤
(A−B)(p− α)

2
max

{
1,

|(A−B)(p− α)−B|
p+ 1

}
.

Keogh and Merkes [9] proved that, for any complex number γ,

(22) |c2 − γc21| ≤ max{1, |γ|}.

Application of triangle inequality and using (20), (21) and (22) in (18) and
(19), along with the inequality |c1| ≤ 1, the results (16) and (17) are obvious.
The extremal function for (16) and first inequality of (17) is given by

f1(z) = zp +

[
(p− β)(C −D)

p
+

(p− α)(A−B)

p+ 1

]
zp+1

+

[
(A−B)(p− α)

2
+

(C −D)(p− β)

p

[
1 +

(A−B)(p− α)

p+ 1

]]
zp+2

+ ...

The extremal function for (16) and second inequality of (17) is given by

f2(z) = zp +

[
(p− β)(C −D)

p
+

(p− α)(A−B)

p+ 1

]
zp+1

+

[
(A−B)(p− α)

2

[
|(A−B)(p− α)−B|

p+ 1

]
+

(C −D)(p− β)

p

[
(A−B)(p− α)

p+ 1
+ 1

]]
zp+2 + ...

■

Theorem 5. Let −1 ≤ D2 = D1 < C1 ≤ C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p,
then

CS∗(A,B;C1, D1; p;β1;α) ⊂ CS∗(A,B;C2, D2; p;β2;α).

Proof. Since f ∈ CS∗(A,B;C1, D1; p;β1;α), so

pf(z)

g(z)
≺ p+ [pD1 + (C1 −D1)(p− β1)]z

1 +D1z
.

As −1 ≤ D2 = D1 < C1 ≤ C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p, we have

−1 ≤ D1 +
(p− β1)(C1 −D1)

p
≤ D2 +

(p− β2)(C2 −D2)

p
≤ 1.

Thus by Lemma 2, we obtain

pf(z)

g(z)
≺ p+ [pD2 + (C2 −D2)(p− β2)]z

1 +D2z
,

which implies f ∈ CS∗(A,B;C2, D2; p;β2;α). ■
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Theorem 6. If f ∈ CS∗(A,B;C,D; p;β;α), then there exists P (z) ∈
P(C,D; p;α) such that for all s and t with |s| ≤ 1, |t| ≤ 1 (s ̸= t),

f(sz)P (tz)(tz)p

f(tz)P (sz)(sz)p
=


(
1+Bsz
1+Btz

)(A−B
B )(p−α)

, if B ̸= 0,

eA(p−α)(s−t)z, if B = 0.

Proof. Firstly we discuss the case when B ̸= 0. On differentiating (3)
logarithmically, we get

zf ′(z)

f(z)
− zP ′(z)

P (z)
− p =

zg′(z)

g(z)
− p.

As g ∈ S∗(A,B; p;α), therefore

zf ′(z)

f(z)
− zP ′(z)

P (z)
− p ≺ (A−B)(p− α)z

1 +Bz
,

where
(A−B)(p− α)z

1 +Bz
is convex, univalent in E. For |s| ≤ 1, |t| ≤ 1

(s ̸= t),

h(z) =

∫ z

0

(
s

1− su
− t

1− tu

)
du

is convex univalent in E. Using Lemma 3, we have(
zf ′(z)

f(z)
− zP ′(z)

P (z)
− p

)
∗ h(z) ≺ (A−B)(p− α)z

1 +Bz
∗ h(z).

For any function q(z) analytic in E with q(0) = 0, we obtain

(q ∗ h)(z) =
∫ sz

tz
q(u)

du

u
, z ∈ E.

Therefore, we have∫ sz

tz

(
uf ′(u)

f(u)
− uP ′(u)

P (u)
− p

)
du

u
≺ (A−B)(p− α)

∫ sz

tz

du

1 +Bu
,

which follows the result. On the same lines, we can easily prove the result
for B = 0. ■
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4. Results for the class CS∗
1(A,B;C,D; p; β;α)

Theorem 7. Let f ∈ CS∗
1(A,B;C,D; p;β;α), then for n ≥ 1,

|an| ≤ p

n[(n− p)!]
Π

n−(p+1)
j=0 |(B −A)(p− α) +Bj|(23)

+
(C −D)(p− β)

p

×

1 + n−1∑
m=p+1

p

m[(m− p)!]
Π

m−(p+1)
j=0 |(B −A)(p− α) +Bj|

 .
The result is sharp.

Proof. The proof is obvious by folowing the procedure of Theorem 1
and applying Lemma 7. Equality holds in (23) for the functions fp defined
by

fp(z) = p

[∫ z

0
zp−1(1−Bδ6z)

(A−B)(p−α)
B dz

]
(24)

×
[
p+ {pD + (C −D)(p− β)}δ7z

1 +Dδ7z

]
,

where |δ6| = |δ7| = 1, B ̸= 0. ■

Remark 4. (i) On putting α = 0, β = 0 in Theorem 7, we can easily
obtain the result for the class CS∗

1(A,B;C,D; p).
(ii) On putting A = 1, B = −1, α = 0, β = 0, p = 1 in Theorem 7, we can

easily obtain the result established by Mehrok et al. [14].

Theorem 8. If f ∈ CS∗
1(A,B;C,D; p;β;α), then for |z| = r, 0 < r < 1,

we have for B ̸= 0,[∫ r

0
tp−1(1−Bt)

(A−B)(p−α)
B dt

] [
p− {pD + (C −D)(p− β)}r

1−Dr

]
(25)

≤ |f(z)|

≤
[∫ r

0
tp−1(1 +Bt)

(A−B)(p−α)
B dt

] [
p+ {pD + (C −D)(p− β)}r

1 +Dr

]
;

for B = 0,[∫ r

0
tp−1e−A(p−α)tdt

] [
p− {pD + (C −D)(p− β)}r

1−Dr

]
(26)

≤ |f(z)|

≤
[∫ r

0
tp−1eA(p−α)tdt

] [
p+ {pD + (C −D)(p− β)}r

1 +Dr

]
;
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Estimates are sharp.

Proof. Following the procedure of Theorem 2 and using Lemma 8, the
proof of Theorem 8 is obvious. Sharpness follows for the functions fp defined
as

(27) fp(z) =



1
p

[∫ z
0 z

p−1(1 +Bδ8z)
(A−B)(p−α)

B dz
]

×
[
p+{pD+(C−D)(p−β)}δ9z

1+Dδ9z

]
if B ̸= 0,

1
p

[∫ z
0 z

p−1eA(p−α)δ10zdz
]

×
[
p+{pD+(C−D)(p−β)}δ9z

1+Dδ9z

]
if B = 0,

where |δ8| = |δ9| = |δ10| = 1. ■

Remark 5. (i) On putting α = 0, β = 0 in Theorem 8, we can easily
obtain the result for the class CS∗

1(A,B;C,D; p).
(ii) For A = 1, B = −1, α = 0, β = 0, p = 1, Theorem 8 leads to the

result proved by Mehrok et al. [14].

Theorem 9. If f ∈ CS∗
1(A,B;C,D; p;β;α), then

(28)

∣∣∣∣argf(z)zp

∣∣∣∣ ≤


1
p

[
A(p−α)

B sin−1(Br)

+ sin−1
(

(C−D)(p−β)r
p−[pD+(C−D)(p−β)]Dr2

)]
if B ̸= 0,

1
p [A(p− α)r

+ sin−1
(

(C−D)(p−β)r
p−[pD+(C−D)(p−β)]Dr2

)]
if B = 0.

The results are sharp.

Proof. Using the result that, for h ∈ K(A,B; p;α),∣∣∣∣argh(z)zp

∣∣∣∣ ≤
{

A(p−α)
B sin−1(Br) if B ̸= 0,

A(p− α)r if B = 0,

and following the procedure of Theorem 3, the proof is obvious. Results are
sharp for the function defined in (27). ■

Remark 6. (i) On putting α = 0, β = 0 in Theorem 9, we can easily
obtain the result for the class CS∗

1(A,B;C,D; p).
(ii) For A = 1, B = −1, α = 0, β = 0, p = 1, Theorem 9 leads to the

result proved by Mehrok et al. [14].
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Theorem 10. If f ∈ CS∗
1(A,B;C,D; p;β;α), then

(29) |ap+1| ≤
p(p− α)(A−B)

p+ 1
+

(p− β)(C −D)

p

and

(30) |ap+2| ≤



p(p−α)(A−B)
2(p+2) + (C −D)(p− β)

[
(A−B)(p−α)

p+1 + 1
p

]
if |(A−B)(p− α)−B| ≤ 1,

p(p−α)(A−B)
2(p+2) [|(A−B)(p− α)p−B|]

+ (C −D)(p− β)

[
(A−B)(p−α)

p+1 + 1
p

]
if |(A−B)(p− α)−B| > 1.

The bounds are sharp.
Proof. It was proved by Aouf [2] that, for h ∈ K(A,B; p;α),

|bp+1| ≤
p(A−B)(p− α)

p+ 1

and

|bp+2| ≤
p(A−B)(p− α)

2(p+ 2)
max{1, |(A−B)(p− α)p−B|}.

Following the procedure of Theorem 4 and using the above results, the proof
of Theorem 10 is obvious. The results are sharp for the function defined in
(24). The extremal function for (29) and first inequality of (30) is given by

f3(z) = zp +

[
p(p− α)(A−B)

p+ 1
+

(p− β)(C −D)

p

]
zp+1

+

[
p(p− α)(A−B)

2(p+ 2)

+ (C −D)(p− β)

[
(A−B)(p− α)

p+ 1
+

1

p

]]
zp+2...

The extremal function for (29) and second inequality of (30) is given by

f3(z) = zp +

[
p(p− α)(A−B)

p+ 1
+

(p− β)(C −D)

p

]
zp+1

+

[
p(p− α)(A−B)

2(p+ 2)
[|(A−B)(p− α)p−B|]

+ (C −D)(p− β)

[
(A−B)(p− α)

p+ 1
+

1

p

]]
zp+2...

■
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Theorem 11. Let −1 ≤ D2 = D1 < C1 ≤ C2 ≤ 1 and 0 ≤ β2 ≤ β1 < p,
then

CS∗
1(A,B;C1, D1; p;β1;α) ⊂ CS∗

1(A,B;C2, D2; p;β2;α).

Proof. Following the procedure of Theorem 5 and using Lemma 2, the
proof is obvious. ■
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