FASCICULI MATHEMATICI

Nr 66

2023 DOI: 10.21008/j.0044-4413.2023.0009

EMINE K. SÖGÜTCÜ, NADEEM UR REHMAN AND EDA DERNEK

LIE IDEALS WITH GENERALIZED DERIVATIONS AND DERIVATIONS OF SEMIPRIME RINGS

ABSTRACT. Let \mathfrak{R} be a 2- torsion free semiprime ring, \mathfrak{L} a square-closed Lie ideal of \mathfrak{R} , ϕ be a derivation of \mathfrak{R} and α be an automorphism of \mathfrak{R} . We will demonstrate in this study that $\phi(\mathfrak{L}) = (0)$, and so ϕ is a zero map on \mathfrak{L} if any one of the following holds for all $\mathfrak{r} \in \mathfrak{L}$: (i) $\phi(\mathfrak{r})\mathfrak{r} = 0$ (or $\mathfrak{r}\phi(\mathfrak{r}) = 0$) (ii) $\phi(\mathfrak{r})\mathfrak{r} + \mathfrak{r}(\alpha(\mathfrak{r}) - \mathfrak{r}) = 0$, (iii) The mapping $\mathfrak{r} \to \phi(\mathfrak{r}) + \alpha(\mathfrak{r})$ is commuting on \mathfrak{L} . Moreover, if any one of the following are satisfied for two generalized derivations (\mathfrak{F}, ϕ) and ($\mathfrak{H}, \mathfrak{L}$) of \mathfrak{R} , then ϕ is a commuting map on \mathfrak{L} : (iv) $\mathfrak{F}(\mathfrak{r})\mathfrak{F}(\mathfrak{s}) - \mathfrak{H}(\mathfrak{rs}) \in Z(R)$, (v) $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{rs})$, (vi) $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{sr})$, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$.

KEY WORDS: semiprime ring, Lie ideal, derivation, generalized derivation.

AMS Mathematics Subject Classification: 16W25, 16N60, 16U80.

1. Introduction

 \mathfrak{R} will exhibit an associative ring with centre $Z(\mathfrak{R})$ throughout this article. The notation $[\mathfrak{r},\mathfrak{s}]$ denotes the commutator $\mathfrak{rs} - \mathfrak{sr}$ for every $\mathfrak{r},\mathfrak{s} \in \mathfrak{R}$, while the symbol $\mathfrak{r} \circ \mathfrak{s}$ denotes the anti-commutator $\mathfrak{rs} + \mathfrak{sr}$. Remember that a ring \mathfrak{R} is prime if $\mathfrak{rRs} = \{0\}$ implies $\mathfrak{r} = 0$ or $\mathfrak{s} = 0$, and \mathfrak{R} is semiprime if $\mathfrak{rRr} = \{0\}$ implies $\mathfrak{r} = 0$. An additive subgroup \mathfrak{L} of \mathfrak{R} is said to be a Lie ideal of \mathfrak{R} if $[\mathfrak{r}, r] \in \mathfrak{L}$, for all $\mathfrak{r} \in \mathfrak{L}, r \in \mathfrak{R}$. An additive mapping $\phi : \mathfrak{R} \to \mathfrak{R}$ is called a derivation if $\phi(\mathfrak{rs}) = \phi(\mathfrak{r})\mathfrak{s} + \mathfrak{r}\phi(\mathfrak{s})$ holds for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{R}$.

Posner [13] established the commutativity of prime rings with derivation. The history of commuting and centralizing mappings dates to 1955 when Divinsky [9] established that if a simple Artinian ring has a nontrivial commuting automorphism, it is commutative. Posner has shown in [13] that if a prime ring has a nontrivial derivation that is centralising on the entire ring, it must be commutative. The results of Divinsky, which we just described, was generalized by Luh [12] to arbitrary prime rings. Mayne [11] established that if a prime ring has a nontrivial centralizing automorphism, the ring is commutative. A map $\mathfrak{F}: \mathfrak{R} \to \mathfrak{R}$ is a generalized derivation of a ring \mathfrak{R} associated with a derivation ϕ if \mathfrak{F} is additive and satisfies $\mathfrak{F}(\mathfrak{rs}) = \mathfrak{F}(\mathfrak{r})\mathfrak{s} + \mathfrak{r}\phi(\mathfrak{s}), \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{R}$. Derivations and generalized inner derivations (i.e., $\mathfrak{r} \to a\mathfrak{r} + \mathfrak{r}b$ for some $a, b \in \mathfrak{R}$) are basic examples. It's worth noting that the concept of generalized derivations encompasses both derivations and left multipliers (i.e., $\mathfrak{F}(\mathfrak{rs}) = \mathfrak{F}(\mathfrak{r})\mathfrak{s}$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{R}$). As a result, it should be interesting to relate some of these results to generalized derivations.

Ashraf and Rehman demonstrated in [2] that \mathfrak{R} is commutative if \mathfrak{R} is a prime ring with nonzero ideal and ϕ is a derivation such that $\phi(\mathfrak{rs}) \pm \mathfrak{rs} \in Z(\mathfrak{R})$, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{I}$. In [1] and [14], this theorem was considered for generalized derivations. All of these situations related with a square closed Lie ideal \mathfrak{L} in a prime ring \mathfrak{R} were studied in [10] Gölbaşi and Koç. These conditions have been generalized and discussed by Dhara et al. in the prime ring in [8].

We will extend the aforementioned conclusions for a nonzero Lie ideal of semiprime rings using derivation and generalized derivation of \Re in the current article.

2. Preliminaries

We mention the following results which are crucial in developing the proof of our main result.

Lemma 1 ([4] Lemma 4). Let \mathfrak{R} be a prime ring with characteristic not two, $a, b \in \mathfrak{R}$. If \mathfrak{L} a noncentral Lie ideal of \mathfrak{R} and $a\mathfrak{L}b = 0$, then a = 0 or b = 0.

Lemma 2 ([4] Lemma 5). Let \mathfrak{R} be a prime ring with characteristic not two and \mathfrak{L} a nonzero Lie ideal of \mathfrak{R} . If ϕ is a nonzero derivation of \mathfrak{R} such that $\phi(\mathfrak{L}) = (0)$, then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Lemma 3 ([4] Lemma 2). Let \mathfrak{R} be a prime ring with characteristic not two. If \mathfrak{L} a noncentral Lie ideal of \mathfrak{R} , then $C_{\mathfrak{R}}(\mathfrak{L}) = Z(\mathfrak{R})$.

Lemma 4 ([3] Theorem 7). Let \mathfrak{R} be a prime ring with characteristic not two and \mathfrak{L} a nonzero Lie ideal of \mathfrak{R} . If ϕ is a nonzero derivation of \mathfrak{R} such that $[\mathfrak{r}, \phi(\mathfrak{r})] \in Z(\mathfrak{R})$, for all $\mathfrak{r} \in \mathfrak{L}$, then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Lemma 5 ([15] Lemma 2.4). Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} is a Lie ideal of \mathfrak{R} such that $\mathfrak{L} \not\subseteq Z(\mathfrak{R})$ and $a \in \mathfrak{L}$. If $a\mathfrak{L}a = 0$, then $a^2 = 0$ and there exists a nonzero ideal $K = \mathfrak{R}[\mathfrak{L}, \mathfrak{L}]\mathfrak{R}$ of \mathfrak{R} generated by $[\mathfrak{L}, \mathfrak{L}]$ such that $[K, \mathfrak{R}] \subseteq \mathfrak{L}$ and Ka = aK = 0.

Lemma 6 ([16] Corollary 2.1). Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a noncentral Lie ideal of \mathfrak{R} and $a, b \in \mathfrak{L}$.

- (i) If $a\mathfrak{L}a = 0$, then a = 0.
- (ii) If $a\mathfrak{L} = 0$ (or $\mathfrak{L}a = 0$), then a = 0
- (iii) If \mathfrak{L} is square-closed and $a\mathfrak{L}b = 0$, then ab = 0 and ba = 0.

Firstly, we prove the following lemma.

Lemma 7. Let \mathfrak{R} be a 2-torsion free semiprime ring and \mathfrak{L} be a square closed Lie ideal of \mathfrak{R} . Suppose that the relation $a\mathfrak{r}b + b\mathfrak{r}c = 0$ holds some $a, b, c \in \mathfrak{L}$ and for all $\mathfrak{r} \in \mathfrak{L}$. In this case $(a + c)\mathfrak{r}b = 0$ for all $\mathfrak{r} \in \mathfrak{L}$.

Proof. By the hypothesis, we get

(1)
$$a\mathbf{r}b + b\mathbf{r}c = 0, \forall \mathbf{r} \in \mathfrak{L}.$$

Replacing \mathfrak{r} by $2\mathfrak{rs}$, we get $2a\mathfrak{rs}b + 2b\mathfrak{rs}c = 0$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$. Again replacing \mathfrak{s} by $2b\mathfrak{s}$ and using the fact that \mathfrak{R} is 2-torsion free, we get

(2)
$$a\mathfrak{r}b\mathfrak{s}b + b\mathfrak{r}b\mathfrak{s}c = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

On the other hand right multiplication by $\mathfrak{s}b$ of (1) gives

(3)
$$a\mathfrak{r}b\mathfrak{s}b + b\mathfrak{r}c\mathfrak{s}b = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Subtracting (3) from (2) we obtain

(4)
$$b\mathfrak{r}(b\mathfrak{s}c-c\mathfrak{s}b)=0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$$

The substitution $2\mathfrak{w}\mathfrak{r}$ for \mathfrak{r} in (4) gives that $2b\mathfrak{w}\mathfrak{r}(b\mathfrak{s}c - c\mathfrak{s}b) = 0$. Now, replacing \mathfrak{w} by $2\mathfrak{s}c$ and \mathfrak{R} is 2-torsion free, we find that

(5)
$$b\mathfrak{s}c\mathfrak{r}(b\mathfrak{s}c-c\mathfrak{s}b)=0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Left multiplication by $c\mathfrak{s}$ of (4) gives

(6)
$$c\mathfrak{s}\mathfrak{b}\mathfrak{r}(\mathfrak{b}\mathfrak{s} c - c\mathfrak{s}\mathfrak{b}) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Subtracting (6) from (5) we obtain

(7)
$$(b\mathfrak{s}c - c\mathfrak{s}b)\mathfrak{r}(b\mathfrak{s}c - c\mathfrak{s}b) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

By Lemma 6, we see

$$b\mathfrak{s}c - c\mathfrak{s}b = 0,$$

and so $b\mathfrak{s}c = c\mathfrak{s}b$. Using this relation (1), we have $(a + c)\mathfrak{r}b = 0$, $\mathfrak{r} \in \mathfrak{L}$. The proof of the lemma is complete.

Lemma 8. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a Lie ideal of \mathfrak{R} , and let \mathfrak{F} be a generalized derivation of \mathfrak{R} associated with a nonzero derivation ϕ such that $\phi(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\mathfrak{F}(rs) = 0$ for all $r, s \in$, then $\phi = 0$ on \mathfrak{L} and $\mathfrak{L} \subseteq Z(\mathfrak{R})$. Moreover, if $\mathfrak{F}(\mathfrak{L}) \subseteq \mathfrak{L}$, then $\mathfrak{F} = 0$ on \mathfrak{L} .

Proof. $0 = \mathfrak{F}(rst) = \mathfrak{F}(rs)t + rs\phi(t) = rs\phi(t)$ for all $r, s, t \in \mathfrak{L}$. So, we have $\phi(t)s\phi(t) = 0$ for all $s, t \in \mathfrak{L}$. Thus, $\phi(t) = 0$ for all $t \in \mathfrak{L}$ by Lemma 6(i). So, we get $\mathfrak{L} \subseteq Z(\mathfrak{R})$ by Lemma 2.

While, $0 = \mathfrak{F}(rs) = \mathfrak{F}(r)s$ for all $r, s \in \mathfrak{L}$. So, we have $\mathfrak{F}(r)s\mathfrak{F}(r) = 0$. If $\mathfrak{F}(\mathfrak{L}) \subseteq \mathfrak{L}$, we get $\mathfrak{F}(r) = 0$ for all $r \in \mathfrak{L}$ by Lemma 6(i).

3. Derivations on Lie ideals in semiprime rings

Throughout the study, since \Re is 2-torsion free ring, \mathfrak{rs} will be written instead of $2\mathfrak{rs}$ for each $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$ in order to facilitate the equations.

Theorem 1. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\Theta : \mathfrak{R} \to \mathfrak{R}$ be an additive mapping such that $\Theta(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\Theta(\mathfrak{r}) \mathfrak{r} = 0$ (or $\mathfrak{r}\Theta(\mathfrak{r}) = 0$), for all $\mathfrak{r} \in \mathfrak{L}$, then $\Theta(\mathfrak{L}) = (0)$, and so Θ is zero map on \mathfrak{L} .

Proof. Assume that

(8)
$$\Theta(\mathfrak{r})\mathfrak{r}=0, \forall \mathfrak{r}\in\mathfrak{L}.$$

The linearization of the above relation gives

(9)
$$\Theta(\mathfrak{r})\mathfrak{s} + \Theta(\mathfrak{s})\mathfrak{r} = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Replacing \mathfrak{s} by \mathfrak{s}^2 in the above relation gives

(10)
$$\Theta(\mathfrak{r})\mathfrak{s}^{2} + \Theta(\mathfrak{s}^{2})\mathfrak{r} = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Right multiplication of (9) by \mathfrak{s} , we find

(11)
$$\Theta(\mathfrak{r})\mathfrak{s}^2 + \Theta(\mathfrak{s})\mathfrak{r}\mathfrak{s} = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Subtracting (11) from (10), we obtain

(12)
$$\Theta\left(\mathfrak{s}^{2}\right)\mathfrak{r}-\Theta\left(\mathfrak{s}\right)\mathfrak{r}\mathfrak{s}=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Taking \mathfrak{r} by $\mathfrak{r}\Theta(\mathfrak{s})$ in the last equation and using equation (8), we get

$$\Theta\left(\mathfrak{s}^{2}\right)\mathfrak{r}\Theta\left(\mathfrak{s}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Right multiplication of (12) by $\Theta(\mathfrak{s})$ and using the above relation, we see that

(13)
$$\Theta(\mathfrak{s})\mathfrak{rs}\Theta(\mathfrak{s}) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Left multiplication of the relation (13) by \mathfrak{s} gives

$$\mathfrak{s}\Theta(\mathfrak{s})\mathfrak{rs}\Theta(\mathfrak{s})=0, \forall \mathfrak{r}, \mathfrak{s}\in \mathfrak{L}.$$

By Lemma 6, we obtain

$$\mathfrak{s}\Theta(\mathfrak{s})=0, \forall \mathfrak{s}\in\mathfrak{L}.$$

Right multiplication of the relation (9) by $\Theta(\mathfrak{s})$ and using the above relation, we have

$$\Theta\left(\mathfrak{s}\right)\mathfrak{r}\Theta\left(\mathfrak{s}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

By Lemma 6, we conclude that $\Theta(\mathfrak{s}) = 0$ for all $\mathfrak{s} \in \mathfrak{L}$. Hence $\Theta(\mathfrak{L}) = (0)$. That is, Θ is zero map on \mathfrak{L} . The proof of the theorem is complete.

Corollary 1. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\phi : \mathfrak{R} \to \mathfrak{R}$ be a derivation such that $\phi(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\phi(\mathfrak{r})\mathfrak{r} = 0$ (or $\mathfrak{r}\phi(\mathfrak{r}) = 0$), for all $\mathfrak{r} \in \mathfrak{L}$, then $\phi(\mathfrak{L}) = (0)$, and so ϕ is zero map on \mathfrak{L} .

Theorem 2. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\phi : \mathfrak{R} \to \mathfrak{R}$ be a derivation and α an automorphism of \mathfrak{R} such that $\alpha(\mathfrak{L}) \subseteq \mathfrak{L}$. If the mapping $\mathfrak{r} \to \phi(\mathfrak{r}) + \alpha(\mathfrak{r})$ is commuting on \mathfrak{L} , then ϕ is commuting map on \mathfrak{L} .

Proof. By the hypothesis, we have

(14)
$$\left[\phi\left(\mathfrak{r}\right) + \alpha\left(\mathfrak{r}\right), \mathfrak{r}\right] = 0, \forall \mathfrak{r} \in \mathfrak{L}$$

The linearization of the relation, we get

(15)
$$\left[\phi\left(\mathfrak{r}\right) + \alpha\left(\mathfrak{r}\right),\mathfrak{s}\right] + \left[\phi\left(\mathfrak{s}\right) + \alpha\left(\mathfrak{s}\right),\mathfrak{r}\right] = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Putting \mathfrak{s} by \mathfrak{sr} in the last equation and using equation (14), we obtain

$$0 = [\phi(\mathfrak{r}) + \alpha(\mathfrak{r}), \mathfrak{s}]\mathfrak{r} + [\phi(\mathfrak{s}), \mathfrak{r}]\mathfrak{r} + [\mathfrak{s}, \mathfrak{r}]\phi(\mathfrak{r}) + \mathfrak{s}[\phi(\mathfrak{r}), \mathfrak{r}] + [\alpha(\mathfrak{s}), \mathfrak{r}]\alpha(\mathfrak{r}) + \alpha(\mathfrak{s})[\alpha(\mathfrak{r}), \mathfrak{r}].$$

Using (14), replacing $\mathfrak{s}[\phi(\mathfrak{r}),\mathfrak{r}]$ by $-\mathfrak{s}[\alpha(\mathfrak{r}),\mathfrak{r}]$ in this equation, we have

$$0 = [\phi(\mathfrak{r}) + \alpha(\mathfrak{r}), \mathfrak{s}] \mathfrak{r} + [\phi(\mathfrak{s}), \mathfrak{r}] \mathfrak{r} + [\mathfrak{s}, \mathfrak{r}] \phi(\mathfrak{r}) - \mathfrak{s} [\alpha(\mathfrak{r}), \mathfrak{r}] + [\alpha(\mathfrak{s}), \mathfrak{r}] \alpha(\mathfrak{r}) + \alpha(\mathfrak{s}) [\alpha(\mathfrak{r}), \mathfrak{r}].$$

Also, using (15), replacing $[\phi(\mathfrak{r}) + \alpha(\mathfrak{r}), \mathfrak{s}]\mathfrak{r} + [\phi(\mathfrak{s}), \mathfrak{r}]\mathfrak{r}$ by $-[\alpha(\mathfrak{s}), \mathfrak{r}]\mathfrak{r}$ in the last equation, we get

$$0 = -\left[\alpha\left(\mathfrak{s}\right),\mathfrak{r}\right]\mathfrak{r} - \mathfrak{s}\left[\alpha\left(\mathfrak{r}\right),\mathfrak{r}\right] + \left[\mathfrak{s},\mathfrak{r}\right]\phi\left(\mathfrak{r}\right) + \left[\alpha\left(\mathfrak{s}\right),\mathfrak{r}\right]\alpha\left(\mathfrak{r}\right) + \alpha\left(\mathfrak{s}\right)\left[\alpha\left(\mathfrak{r}\right),\mathfrak{r}\right].$$

That is,

(16)
$$[\alpha(\mathfrak{s}),\mathfrak{r}]\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{s})[\alpha(\mathfrak{r}),\mathfrak{r}] + [\mathfrak{s},\mathfrak{r}]\phi(\mathfrak{r}) = 0, \text{ for all } \mathfrak{r},\mathfrak{s} \in \mathfrak{L}.$$

where $\mathfrak{G}(\mathfrak{r})$ denotes $\alpha(\mathfrak{r}) - \mathfrak{r}$. Replacing \mathfrak{s} by \mathfrak{rs} in the last equation, we obtain

(17)
$$0 = [\alpha(\mathfrak{r}), \mathfrak{r}] \alpha(\mathfrak{s}) \mathfrak{G}(\mathfrak{r}) + \alpha(\mathfrak{r}) [\alpha(\mathfrak{s}), \mathfrak{r}] \mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r}) \alpha(\mathfrak{s}) [\alpha(\mathfrak{r}), \mathfrak{r}] + \mathfrak{r} \mathfrak{G}(\mathfrak{s}) [\alpha(\mathfrak{r}), \mathfrak{r}] + \mathfrak{r} [\mathfrak{s}, \mathfrak{r}] \phi(\mathfrak{r}).$$

Multiplying the relation (16) from the left side by \mathfrak{r} , we get

$$\mathfrak{r}\left[\alpha\left(\mathfrak{s}\right),\mathfrak{r}\right]\mathfrak{G}\left(\mathfrak{r}\right)+\mathfrak{r}\mathfrak{G}\left(\mathfrak{s}\right)\left[\alpha\left(\mathfrak{r}\right),\mathfrak{r}\right]+\mathfrak{r}\left[\mathfrak{s},\mathfrak{r}\right]\phi\left(\mathfrak{r}\right)=0,$$

and so, subtracting (16) from (17), we have

$$0 = [\alpha(\mathfrak{r}), \mathfrak{r}]\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + \alpha(\mathfrak{r})[\alpha(\mathfrak{s}), \mathfrak{r}]\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})[\alpha(\mathfrak{r}), \mathfrak{r}] + \mathfrak{r}\mathfrak{G}(\mathfrak{s})[\alpha(\mathfrak{r}), \mathfrak{r}] + \mathfrak{r}[\mathfrak{s}, \mathfrak{r}]\phi(\mathfrak{r}) - \mathfrak{r}[\alpha(\mathfrak{s}), \mathfrak{r}]\mathfrak{G}(\mathfrak{r}) - \mathfrak{r}\mathfrak{G}(\mathfrak{s})[\alpha(\mathfrak{r}), \mathfrak{r}] - \mathfrak{r}[\mathfrak{s}, \mathfrak{r}]\phi(\mathfrak{r}) = [\alpha(\mathfrak{r}), \mathfrak{r}]\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + (\alpha(\mathfrak{r}) - \mathfrak{r})[\alpha(\mathfrak{s}), \mathfrak{r}]\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})[\alpha(\mathfrak{r}), \mathfrak{r}] = [\alpha(\mathfrak{r}), \mathfrak{r}]\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})[\alpha(\mathfrak{s}), \mathfrak{r}]\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})[\mathfrak{G}(\mathfrak{r}), \mathfrak{r}]$$

Using $[\alpha(\mathfrak{r}), \mathfrak{r}] = [\mathfrak{G}(\mathfrak{r}), \mathfrak{r}]$ in the above expression, we find that

$$0 = [\mathfrak{G}(\mathfrak{r}), \mathfrak{r}] \alpha(\mathfrak{s}) \mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})[\alpha(\mathfrak{s}), \mathfrak{r}] \mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r}) \alpha(\mathfrak{s})[\mathfrak{G}(\mathfrak{r}), \mathfrak{r}].$$

This implies that

$$0 = \mathfrak{G}(\mathfrak{r})\mathfrak{r}\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) - \mathfrak{r}\mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})\mathfrak{r}\mathfrak{G}(\mathfrak{r}) - \mathfrak{G}(\mathfrak{r})\mathfrak{r}\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})\mathfrak{G}(\mathfrak{r})\mathfrak{r} - \mathfrak{G}(\mathfrak{r})\alpha(\mathfrak{s})\mathfrak{r}\mathfrak{G}(\mathfrak{r}).$$

and so,

$$\mathfrak{rG}\left(\mathfrak{r}\right)\alpha\left(\mathfrak{s}\right)\mathfrak{G}\left(\mathfrak{r}\right)+\mathfrak{G}\left(\mathfrak{r}\right)\alpha\left(\mathfrak{s}\right)\left(-\mathfrak{G}\left(\mathfrak{r}\right)\mathfrak{r}\right)=0,\,\text{for all }\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

By Lemma 7, we get

$$\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\alpha\left(\mathfrak{s}\right)\mathfrak{G}\left(\mathfrak{r}\right)=0,\,\text{for all }\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Since α is an automorphism, we get

(18)
$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\right)=0,\,\text{for all }\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Replacing $\mathfrak{s}\alpha^{-1}(\mathfrak{r})$ for \mathfrak{s} in the above relation, we obtain

$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{r}\right)\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}$$

Using α automorphism, we get

(19)
$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{r}\mathfrak{G}\left(\mathfrak{r}\right)\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}$$

Right multiplication of the relation (18) by $\alpha^{-1}(\mathfrak{r})$ gives,

$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\right)\alpha^{-1}\left(\mathfrak{r}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Since α is an automorphism, we obtain

(20)
$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\mathfrak{r}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Subtracting (19) from (20), we obtain

$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)\mathfrak{s}\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}$$

By Lemma 6, we get

$$\alpha^{-1}\left(\left[\mathfrak{G}\left(\mathfrak{r}\right),\mathfrak{r}\right]\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

We conclude that $[\mathfrak{G}(\mathfrak{r}), \mathfrak{r}] = 0$, for all $\mathfrak{r} \in \mathfrak{L}$. That is, \mathfrak{G} is commuting map on \mathfrak{L} . Using $[\mathfrak{G}(\mathfrak{r}), \mathfrak{r}] = 0$, we get

$$\left[\alpha\left(\mathfrak{r}\right),\mathfrak{r}\right]=0,\forall\mathfrak{r}\in\mathfrak{L}.$$

By the hypothesis, we get ϕ is commuting map on \mathfrak{L} . The proof of the theorem is complete.

Corollary 2. Let \mathfrak{R} be a be a prime ring with characteristic not two, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\phi : \mathfrak{R} \to \mathfrak{R}$ be a derivation and α an automorphism of \mathfrak{R} such that $\alpha(\mathfrak{L}) \subseteq \mathfrak{L}$. If the mapping $\mathfrak{r} \to \phi(\mathfrak{r}) + \alpha(\mathfrak{r})$ is commuting on \mathfrak{L} , then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Proof. Using the same methods in the proof of Theorem 2, we have ϕ is commuting map on \mathfrak{L} . By Lemma 2, we get $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Theorem 3. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\phi : \mathfrak{R} \to \mathfrak{R}$ be a derivation and α an automorphism of \mathfrak{R} such that $\alpha(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\phi(\mathfrak{r})\mathfrak{r} + \mathfrak{r}(\alpha(\mathfrak{r}) - \mathfrak{r}) = 0$ for all $\mathfrak{r} \in \mathfrak{L}$, then $\phi(\mathfrak{L}) = (0)$, and so ϕ is a zero map on \mathfrak{L} . **Proof.** We have

(21)
$$\phi(\mathfrak{r})\mathfrak{r} + \mathfrak{r}\mathfrak{G}(\mathfrak{r}) = 0, \forall \mathfrak{r} \in \mathfrak{L}$$

where $\mathfrak{G}(\mathfrak{r})$ stands for $\alpha(\mathfrak{r}) - \mathfrak{r}$. The linerazation of the last relation gives

(22)
$$\phi(\mathfrak{r})\mathfrak{s} + \phi(\mathfrak{s})\mathfrak{r} + \mathfrak{r}\mathfrak{G}(\mathfrak{s}) + \mathfrak{s}\mathfrak{G}(\mathfrak{r}) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Replacing \mathfrak{sr} for \mathfrak{s} in the last equation and using (21), we obtain

(23)
$$\phi(\mathfrak{r})\mathfrak{sr} + \phi(\mathfrak{s})\mathfrak{r}^{2} + \mathfrak{rG}(\mathfrak{s})\alpha(\mathfrak{r}) + \mathfrak{rsG}(\mathfrak{r}) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Right multiplication of the relation (22) by \mathfrak{r} gives

$$\phi\left(\mathfrak{r}\right)\mathfrak{sr}+\phi\left(\mathfrak{s}\right)\mathfrak{r}^{2}+\mathfrak{rG}\left(\mathfrak{s}\right)\mathfrak{r}+\mathfrak{sG}\left(\mathfrak{r}\right)\mathfrak{r}=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Subtracting the above relation from the relation (23), we obtain

(24)
$$\mathfrak{rG}(\mathfrak{s})\mathfrak{G}(\mathfrak{r}) + \mathfrak{rsG}(\mathfrak{r}) - \mathfrak{sG}(\mathfrak{r})\mathfrak{r} = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Taking \mathfrak{rs} for \mathfrak{s} in the above relation and using (24) we obtain

$$\mathfrak{rG}(\mathfrak{r}) \alpha(\mathfrak{s}) \mathfrak{G}(\mathfrak{r}) + \mathfrak{r}^2 \mathfrak{G}(\mathfrak{s}) \mathfrak{G}(\mathfrak{r}) + \mathfrak{r}^2 \mathfrak{sG}(\mathfrak{r}) - \mathfrak{rsG}(\mathfrak{r}) \mathfrak{r} = 0,$$

and so

$$\mathfrak{rG}\left(\mathfrak{r}\right)\alpha\left(\mathfrak{s}\right)\mathfrak{G}\left(\mathfrak{r}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Since α is an automorphism, we have

$$\alpha^{-1}\left(\mathfrak{rG}\left(\mathfrak{r}\right)\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Writing $\mathfrak{s}\alpha^{-1}(\mathfrak{r})$ for \mathfrak{s} in the last equation, we obtain

$$\alpha^{-1}\left(\mathfrak{rG}\left(\mathfrak{r}\right)\right)\mathfrak{s}\alpha^{-1}\left(\mathfrak{r}\right)\alpha^{-1}\left(\mathfrak{G}\left(\mathfrak{r}\right)\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}.$$

Using α automorphism and Lemma 6, we get

$$\alpha^{-1}\left(\mathfrak{rG}\left(\mathfrak{r}\right)\right)=0,\forall\mathfrak{r}\in\mathfrak{L}.$$

That is, $\mathfrak{rG}(\mathfrak{r}) = 0$, $\mathfrak{r} \in \mathfrak{L}$. By Theorem 1, we have $\mathfrak{G}(\mathfrak{L}) = (0)$. Hence, we get $\phi(\mathfrak{r})\mathfrak{r} = 0$ by the hypothesis, and so $\phi(\mathfrak{L}) = (0)$ by Corollary 1. The proof of the theorem is complete.

Corollary 3. Let \mathfrak{R} be a prime ring with characteristic not two, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\phi : \mathfrak{R} \to \mathfrak{R}$ be a derivation and α an automorphism of $\mathfrak{R} \alpha(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\phi(\mathfrak{r})\mathfrak{r} + \mathfrak{r}(\alpha(\mathfrak{r}) - \mathfrak{r}) = 0$ for all $\mathfrak{r} \in \mathfrak{L}$. then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Proof. By the same techniques in the proof of Theorem 3, we get $\phi(\mathfrak{L}) = (0)$. By Lemma 2, we conclude that $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

4. Generalized derivations on Lie ideals in semiprime rings

Theorem 4. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and \mathfrak{F} , \mathfrak{H} generalized derivations associated with the derivations ϕ, ξ of \mathfrak{R} respectively such that $\phi(\mathfrak{L}) \subseteq \mathfrak{L}$. If $\mathfrak{F}(\mathfrak{r}) \mathfrak{F}(\mathfrak{s}) \pm \mathfrak{H}(\mathfrak{rs}) \in Z(\mathfrak{R})$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$, then ϕ is commuting on \mathfrak{L} .

Proof. By the hypothesis, we have

(25)
$$\mathfrak{F}(\mathfrak{r})\mathfrak{F}(\mathfrak{s}) - \mathfrak{H}(\mathfrak{rs}) \in Z(\mathfrak{R})$$
, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$.

In the above relation, replacing \mathfrak{s} by \mathfrak{sw} for $\mathfrak{w} \in \mathfrak{L}$, we have

$$\mathfrak{F}\left(\mathfrak{r}
ight)\mathfrak{F}\left(\mathfrak{sw}
ight)-\mathfrak{H}\left(\mathfrak{rsw}
ight)\in Z\left(\mathfrak{R}
ight),orall\mathfrak{r},\mathfrak{s}\in\mathfrak{L},$$

which gives

$$\left(\mathfrak{F}\left(\mathfrak{r}\right)\mathfrak{F}\left(\mathfrak{s}\right)-\mathfrak{H}\left(\mathfrak{rs}\right)\right)\mathfrak{w}+\mathfrak{F}\left(\mathfrak{r}\right)\mathfrak{s}\phi\left(\mathfrak{w}\right)-\mathfrak{rs}\xi\left(\mathfrak{w}\right)\in Z\left(\mathfrak{R}\right),\forall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}.$$

Commuting with \mathfrak{w} , we have

$$\left[\left(\mathfrak{F}\left(\mathfrak{r}
ight)\mathfrak{F}\left(\mathfrak{s}
ight)-\mathfrak{H}\left(\mathfrak{rs}
ight)
ight)\mathfrak{w},\mathfrak{w}
ight]+\left[\mathfrak{F}\left(\mathfrak{r}
ight)\mathfrak{s}\phi\left(\mathfrak{w}
ight)-\mathfrak{rs}\xi\left(\mathfrak{w}
ight),\mathfrak{w}
ight]=0,orall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}.$$

Using (25), we obtain

(26)
$$[\mathfrak{F}(\mathfrak{r})\mathfrak{s}\phi(\mathfrak{w}) - \mathfrak{r}\mathfrak{s}\xi(\mathfrak{w}),\mathfrak{w}] = 0, \forall \mathfrak{r},\mathfrak{s},\mathfrak{w} \in \mathfrak{L}.$$

Now replacing \mathfrak{r} by $\mathfrak{r}\mathfrak{y}, \mathfrak{y} \in \mathfrak{L}$ in (26), we get

(27)
$$[(\mathfrak{F}(\mathfrak{r})\mathfrak{y} + \mathfrak{r}\phi(\mathfrak{y}))\mathfrak{s}\phi(\mathfrak{w}) - \mathfrak{r}\mathfrak{y}\mathfrak{s}\xi(\mathfrak{w}),\mathfrak{w}] = 0, \forall \mathfrak{r}, \mathfrak{s}, \mathfrak{w} \in \mathfrak{L}.$$

Taking \mathfrak{s} by $\mathfrak{h}\mathfrak{s}$ in equation (26), we have

(28)
$$[\mathfrak{F}(\mathfrak{r})\mathfrak{ys}\phi(\mathfrak{w}) - \mathfrak{rys}\xi(\mathfrak{w}),\mathfrak{w}] = 0, \forall \mathfrak{r},\mathfrak{s},\mathfrak{w} \in \mathfrak{L}.$$

Subtracting (28) from (27), we arrive at

(29)
$$[\mathfrak{r}\phi(\mathfrak{y})\mathfrak{s}\phi(\mathfrak{w}),\mathfrak{w}]=0,\forall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}.$$

Replacing \mathfrak{r} by $\mathfrak{tr}, t \in \mathfrak{L}$ and using (29), above relation gives

$$[\mathfrak{t},\mathfrak{w}]\mathfrak{r}\phi(\mathfrak{y})\mathfrak{s}\phi(\mathfrak{w})=0,\forall\mathfrak{s},\mathfrak{w},\mathfrak{y},\mathfrak{t}\in\mathfrak{L}.$$

Replacing \mathfrak{w} by \mathfrak{y} , above relation gives

 $[\mathfrak{t},\mathfrak{y}]\,\mathfrak{r}\phi\,(\mathfrak{y})\,\mathfrak{s}\phi\,(\mathfrak{y})=0, \forall \mathfrak{r},\mathfrak{s},\mathfrak{y},\mathfrak{t}\in\mathfrak{L}.$

Replacing \mathfrak{s} by $\mathfrak{s}[\mathfrak{t},\mathfrak{y}]\mathfrak{r}$ in the above equation, we get

$$[\mathfrak{t},\mathfrak{y}]\,\mathfrak{r}\phi\,(\mathfrak{y})\,\mathfrak{s}\,[\mathfrak{t},\mathfrak{y}]\,\mathfrak{r}\phi\,(\mathfrak{y})=0,\forall\mathfrak{r},\mathfrak{s},\mathfrak{y},\mathfrak{t}\in\mathfrak{L}.$$

Since \mathfrak{R} is a semiprime ring, we have

 $[\mathfrak{t},\mathfrak{y}]\mathfrak{r}\phi(\mathfrak{y})=0, \text{ for all }\mathfrak{r},\mathfrak{y},t\in\mathfrak{L}.$

Replacing \mathfrak{t} by $\phi(\mathfrak{y})$ in the above equation, we get

$$[\phi\left(\mathfrak{y}\right),\mathfrak{y}]\mathfrak{r}\phi\left(\mathfrak{y}\right)=0,\forall\mathfrak{r},\mathfrak{y}\in\mathfrak{L}.$$

Multiplying (30) on the right by \mathfrak{y} , we get

(31) $[\phi(\mathfrak{y}),\mathfrak{y}]\mathfrak{r}\phi(\mathfrak{y})\mathfrak{y} = 0, \forall \mathfrak{r},\mathfrak{y} \in \mathfrak{L}.$

Taking \mathfrak{r} by $\mathfrak{r}\mathfrak{y}$ in equation (30), we have

$$(32) \qquad \qquad [\phi(\mathfrak{y}),\mathfrak{y}]\mathfrak{ry}\phi(\mathfrak{y}) = 0, \forall \mathfrak{r},\mathfrak{y} \in \mathfrak{L}$$

Subtracting (31) from (32), we have

$$\left[\phi\left(\mathfrak{y}\right),\mathfrak{y}\right]\mathfrak{r}\left[\phi\left(\mathfrak{y}\right),\mathfrak{y}\right]=0,\forall\mathfrak{r},\mathfrak{y}\in\mathfrak{L}.$$

Since \mathfrak{R} is a semiprime ring, we have

$$[\phi(\mathfrak{y}),\mathfrak{y}]=0, \text{ for all } \mathfrak{y}\in\mathfrak{L}.$$

which gives ϕ is commuting map on \mathfrak{L} . In a similar manner, we can prove that the same conclusion holds for $\mathfrak{F}(\mathfrak{r}) \mathfrak{F}(\mathfrak{s}) + \mathfrak{H}(\mathfrak{rs}) \in \mathbb{Z}(\mathfrak{R})$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$. The proof of the theorem is complete.

Corollary 4. Let \mathfrak{R} be a prime ring with characteristic not two, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and $\mathfrak{F}, \mathfrak{H}$ generalized derivations associated with the derivations ϕ, ξ of \mathfrak{R} respectively. If $\mathfrak{F}(\mathfrak{r}) \mathfrak{F}(\mathfrak{s}) \pm \mathfrak{H}(\mathfrak{rs}) \in Z(\mathfrak{R})$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$, then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Proof. Using the same procedures as used in the proof of Theorem 4, we have

(33)
$$[\mathfrak{t},\mathfrak{y}]\mathfrak{r}\phi(\mathfrak{y}) = 0, \text{ for all } \mathfrak{r},\mathfrak{y},\mathfrak{t}\in\mathfrak{L}.$$

By Lemma 1, either $[\mathfrak{t}, \mathfrak{y}] = 0$ or $\phi(\mathfrak{y}) = 0$, for each $\mathfrak{y} \in \mathfrak{L}$. Now, we set $\alpha = \{\mathfrak{y} \in \mathfrak{L} \mid [\mathfrak{t}, \mathfrak{y}] = 0, \forall \mathfrak{t} \in \mathfrak{L}\}, \beta = \{\mathfrak{y} \in \mathfrak{L} \mid \phi(\mathfrak{y}) = 0\}$, then α and β are additive subgroup of \mathfrak{L} and $\mathfrak{L} = \alpha \cup \beta$. Since a group cannot be the union of its two proper subgroups, either $\alpha = \mathfrak{L}$ or $\beta = \mathfrak{L}$. If $\alpha = \mathfrak{L}$, then $\mathfrak{L} \subseteq Z(\mathfrak{R})$ by Lemma 3. On the other hand if $\beta = \mathfrak{L}$, then $\mathfrak{L} \subseteq Z$ by Lemma 2.

Theorem 5. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let \mathfrak{F} , \mathfrak{H} be generalized derivations associated with derivations ϕ , ξ of \mathfrak{R} respectively such that $\phi(\mathfrak{L}) \subseteq \mathfrak{L}$ and $\xi(\mathfrak{L}) \subseteq \mathfrak{L}$.

If $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{rs})$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$ and $\phi \mp \xi \neq 0$, then $\phi = \pm \xi$ on \mathfrak{L} and $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Moreover, if $\mathfrak{F}(\mathfrak{L}) \subseteq \mathfrak{L}$ and $\mathfrak{H}(\mathfrak{L}) \subseteq \mathfrak{L}$, then $\mathfrak{F} = \pm \mathfrak{H}$ on \mathfrak{L} .

Proof. We set $H = \mathfrak{F} \pm \mathfrak{H}$ and $h = \phi \mp \xi$. By the hypothesis, $H(\mathfrak{rs}) = 0$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$. By Lemma 8, we have h = 0 on \mathfrak{L} and $\mathfrak{L} \subseteq Z(\mathfrak{R})$. So, we have $\phi = \pm \xi$ on \mathfrak{L} .

Moreover, we assume that $\mathfrak{F}(\mathfrak{L}) \subseteq \mathfrak{L}$ and $\mathfrak{H}(\mathfrak{L}) \subseteq \mathfrak{L}$. Then $H(\mathfrak{L}) \subseteq \mathfrak{L}$ implies that H = 0 on \mathfrak{L} by Lemma 8, so we have $\mathfrak{F} = \pm \mathfrak{H}$ on \mathfrak{L} .

Corollary 5. Let \mathfrak{R} be a prime ring with characteristic not two, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and let $\mathfrak{F}, \mathfrak{H}$ be generalized derivations associated with derivations ϕ, ξ of \mathfrak{R} respectively such that $\phi(\mathfrak{L}) \subseteq \mathfrak{L}$ and $\xi(\mathfrak{L}) \subseteq \mathfrak{L}$.

If $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{rs})$ for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$ and $\phi \mp \xi \neq 0$, then $\phi = \pm \xi$ on \mathfrak{L} and $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Moreover, if $\mathfrak{F}(\mathfrak{L}) \subseteq \mathfrak{L}$ and $\mathfrak{H}(\mathfrak{L}) \subseteq \mathfrak{L}$, then $\mathfrak{F} = \pm \mathfrak{H}$ on \mathfrak{L} .

Theorem 6. Let \mathfrak{R} be a 2-torsion free semiprime ring, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and $\mathfrak{F}, \mathfrak{H}$ generalized derivations associated with the derivations ϕ, ξ of \mathfrak{R} respectively such that $\phi(\mathfrak{r}) \in \mathfrak{L}$, for all $\mathfrak{r} \in \mathfrak{L}$. If $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{sr})$, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$, then ϕ is commuting on \mathfrak{L} .

Proof. Suppose that

(34)
$$\mathfrak{F}(\mathfrak{rs}) - \mathfrak{H}(\mathfrak{sr}) = 0, \forall \mathfrak{r}, \mathfrak{s} \in \mathfrak{L}.$$

Replacing \mathfrak{s} by $\mathfrak{sw}, \mathfrak{w} \in \mathfrak{L}$ in the above equation, we get

$$\mathfrak{F}(\mathfrak{rs})\mathfrak{w}+\mathfrak{rs}\phi\left(\mathfrak{w}
ight)-\mathfrak{H}\left(\mathfrak{sw}
ight)\mathfrak{r}-\mathfrak{sw}\xi\left(\mathfrak{r}
ight)=0,orall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}$$

This implies that

$$\left(\mathfrak{F}\left(\mathfrak{rs}\right)-\mathfrak{H}\left(\mathfrak{sr}\right)\right)\mathfrak{w}+\mathfrak{H}\left(\mathfrak{sr}\right)\mathfrak{w}+\mathfrak{rs}\phi\left(\mathfrak{w}\right)-\mathfrak{H}\left(\mathfrak{sw}\right)\mathfrak{r}-\mathfrak{sw}\xi\left(\mathfrak{r}\right)=0,\forall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}.$$

Using (34), we have

$$\mathfrak{H}\left(\mathfrak{s}\right)\mathfrak{rw}+\mathfrak{s}\xi\left(\mathfrak{r}\right)\mathfrak{w}+\mathfrak{rs}\phi\left(\mathfrak{w}\right)-\mathfrak{H}\left(\mathfrak{s}\right)\mathfrak{w}\mathfrak{r}-\mathfrak{s}\xi\left(\mathfrak{w}\right)\mathfrak{r}-\mathfrak{s}\mathfrak{w}\xi\left(\mathfrak{r}\right)=0,$$

for all $\mathfrak{r}, \mathfrak{s}, \mathfrak{w} \in \mathfrak{L}$, and so

$$\mathfrak{H}\left(\mathfrak{s}\right)\left[\mathfrak{r},\mathfrak{w}\right]+\mathfrak{s}\left[\xi\left(\mathfrak{r}\right),\mathfrak{w}\right]+\mathfrak{rs}\phi\left(\mathfrak{w}\right)-\mathfrak{s}\xi\left(\mathfrak{w}\right)\mathfrak{r}=0,\forall\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}.$$

Writing \mathfrak{w} by \mathfrak{r} in the last equation, we get

$$0 = \mathfrak{H}(\mathfrak{s})[\mathfrak{r},\mathfrak{r}] + \mathfrak{s}[\xi(\mathfrak{r}),\mathfrak{r}] + \mathfrak{r}\mathfrak{s}\phi(\mathfrak{r}) - \mathfrak{s}\xi(\mathfrak{r})\mathfrak{r}$$
$$= \mathfrak{s}\xi(\mathfrak{r})\mathfrak{r} - \mathfrak{s}\mathfrak{r}\xi(\mathfrak{r}) + \mathfrak{r}\mathfrak{s}\phi(\mathfrak{r}) - \mathfrak{s}\xi(\mathfrak{r})\mathfrak{r}.$$

We have

$$\mathfrak{rs}\phi\left(\mathfrak{r}\right)-\mathfrak{sr}\xi\left(\mathfrak{r}\right)=0,\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}$$

Writing \mathfrak{s} by \mathfrak{sw} and using this equation, we have

$$\mathfrak{rsw}\phi\left(\mathfrak{r}\right)=\mathfrak{swr}\xi(\mathfrak{r})=\mathfrak{srw}\phi\left(\mathfrak{r}\right),\forall\mathfrak{r},\mathfrak{s}\in\mathfrak{L},$$

this implies that

$$[\mathfrak{r},\mathfrak{s}]\mathfrak{w}\phi(\mathfrak{r})=0,orall\mathfrak{r},\mathfrak{s}\in\mathfrak{L}$$

Writing \mathfrak{s} by $\phi(\mathfrak{r})$, we have

(35)
$$[\mathfrak{r},\phi(\mathfrak{r})]\mathfrak{w}\phi(\mathfrak{r})=0,\forall\mathfrak{r},\mathfrak{w}\in\mathfrak{L}.$$

Multiplying (35) on the right by \mathfrak{r} , we get

(36)
$$[\mathfrak{r},\phi(\mathfrak{r})]\mathfrak{w}\phi(\mathfrak{r})\mathfrak{r}=0,\forall\mathfrak{r},\mathfrak{w}\in\mathfrak{L}.$$

Taking $\boldsymbol{\mathfrak{w}}$ by $\boldsymbol{\mathfrak{wr}}$ in equation (35), we have

(37)
$$[\mathfrak{r},\phi(\mathfrak{r})]\mathfrak{wr}\phi(\mathfrak{r}) = 0, \forall \mathfrak{r},\mathfrak{w} \in \mathfrak{L}.$$

Subtracting (36) from (37), we have

$$\left[\mathfrak{r},\phi\left(\mathfrak{r}
ight)
ight]\mathfrak{w}\left[\mathfrak{r},\phi\left(\mathfrak{r}
ight)
ight]=0,orall\mathfrak{r},\mathfrak{w}\in\mathfrak{L}.$$

By Lemma 6, $[\mathfrak{r}, \phi(\mathfrak{r})] = 0$, for all $\mathfrak{r} \in \mathfrak{L}$. Hence, ϕ is commuting on \mathfrak{L} .

In a similar manner, we can prove that the same conclusion holds for $\mathfrak{F}(\mathfrak{rs}) + \mathfrak{H}(\mathfrak{sr}) = 0$, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$. The proof of the theorem is complete.

Corollary 6. Let \mathfrak{R} be a prime ring with characteristic not two, \mathfrak{L} a square closed Lie ideal of \mathfrak{R} and $\mathfrak{F}, \mathfrak{H}$ generalized derivations associated with the derivations ϕ, ξ of \mathfrak{R} respectively. If $\mathfrak{F}(\mathfrak{rs}) = \pm \mathfrak{H}(\mathfrak{sr})$, for all $\mathfrak{r}, \mathfrak{s} \in \mathfrak{L}$, then $\mathfrak{L} \subseteq Z(\mathfrak{R})$.

Proof. Using the same methods in the proof of Theorem 6, we have $[\mathfrak{r},\mathfrak{s}]\mathfrak{w}\phi(\mathfrak{r})=0$, for all $\mathfrak{r},\mathfrak{s},\mathfrak{w}\in\mathfrak{L}$. This equation is the same as the equation (33). Using the same methods in the proof of Corollary 4, we get $\mathfrak{L}\subseteq Z(\mathfrak{R})$.

Acknowledgement. The authors wishes to thank the referee for his/her valuable comments and suggestion.

References

- ASHRAF M., ALI A., ALI S., Some commutativity theorems for rings with generalized derivations, *Southeast Asian Bull. Math.*, 31(2007), 415-421.
- [2] ASHRAF M., REHMAN N., On derivations and commutativity in prime rings, *East-West J. Math.*, 3(1)(2001), 87-91.
- [3] AWTAR R., Lie structure in prime rings with derivations, Publ. Math. Debrecen, 31(1984), 209-215.
- [4] BERGEN J., HERSTEIN I.N., KERR W., Lie ideals and derivation of prime rings, J. of Algebra 71, (1981), 259-267.
- [5] BRESAR M., On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math. J.* 33, (1991), 89-93.
- [6] BRESAR M., Centralizing mappings and derivations in prime rings, J. Algebra 156, (1993), 385-394.
- [7] BRESAR M., On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47, (1993), 291-296.
- [8] DHARA B., REHMAN N., RAZA M.A., Lie ideals and action of generalized derivations in rings, *Miskolc Math Notes*, 16(2)(2015), 769-779.
- [9] DIVINSKY N., On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III. 49, (1955), 19-52.
- [10] GÖLBAŞI O., KOÇ E., Notes on commutativity of prime rings with generalized derivations, *Commun. Fac. Sci. Ank. Series A1 58*, (2009), 39-46.
- [11] MAYNE J.H., Centralizing automorphisms of prime rings, Canad. Math. Bull. 19, (1976), 113-115.
- [12] LUH J., A note on commuting automorphisms of rings, Amer. Math. Monthly 77, (1970), 61-62.
- [13] POSNER E.C., Derivations in prime rings, Proc. Amer. Math. Soc. 8, (1957), 1093-1100.
- [14] QUADRI M.A., KHAN M.S., REHMAN N., Generalized derivations and commutativity of prime rings, *Indian J. Pure Appl. Math.*, 34(2003), 1393-1396.
- [15] REHMAN N., HONGAN M., Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, *Rend. Circ. Mat. Palermo*, 60(3)(2011), 437-444.
- [16] REHMAN N., HONGAN M., AL-OMARY R.M., Lie ideals and Jordan triple derivations in rings, *Rend. Sem. Mat. Univ. Padova*, 125(2011), 147-156.
- [17] VUKMAN J., Identities with derivations and autommorphisms on semiprime rings, Internat J. Math. and Math. Sci., 7(2005), 1031-1038.

EMINE KOÇ SÖGÜTCÜ CUMHURIYET UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS SIVAS - TURKEY *e-mail:* eminekoc@cumhuriyet.edu.tr 120 Emine K. Sögütcü, Nadeem ur Rehman and Eda Dernek

NADEEM UR REHMAN DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH 202002, INDIA *e-mail:* rehman100@gmail.com

Eda Dernek Cumhuriyet University Faculty of Science Department of Mathematics Sivas - Turkey

Received on 23.09.2021 and, in revised form, on 11.04.2022.