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1. Introduction

Throughout this study, we denote the space of all complex sequences by
w and £y, c and ¢y be the linear spaces of bounded, convergent and null
sequences z = (z) with complex terms, respectively normed by |z|,, =
sup |zx| , where k € N.
k

In 1981, the forward difference sequence spaces A(Z) were introduced by
Kizmaz [16]. He showed that Z C A(Z), where Z is any /s, c or cg. For
instance, if we take (zx) = (k), (k = 1,2,3,...), then the sequence (zj) is
not convergent but it is A—convergent. He also studied their topological
properties, a—, f—, y—duals of these spaces. Later, in 1995, Et and Colak
[10] defined the forward generalized difference sequence spaces A™ (Z).

The notion of backward difference sequence spaces was generalized by
Malkowsky and Parashar [22]. Let m be a non-negative integer. Then,

A™(Z)={z=(21) : (A"z) € Z}
A% = (z), A"z = (Am712k+1 — Amflzk)

and so
m

Az = ;{)(-1)%’ E

The sequence spaces A" (Z) are Banach spaces normed by

m
lzlla =D leil + 1A 2k ] o

i=1



6 C. A. BEKTAS, A. KARAKAS AND Y. ALTIN

Out of these, using the generalized difference operator A", Toan [13]
introduced the concept of p—convex sequences as the following;:

Let K be the set of all real sequences and p € R\ {0} . Then the linear
operator A7 : K — K, m € N is defined such that

(Apzi) = (zks1 — p2i) s (AT 2) = Ap(ATz) = (AT 241 — DAY 2)
and
= m
Aps = () = 30 (1) s
v=0
Hence we define the sequence spaces A" (Z) = {z = (z) : (A)'z) € Z} for
Z = ls, C OT Cy.

Furthermore a sequence (zj) from K is said to be p—convex of order
m € N if and only if A"z > 0, for all & € N. Later on, Karakas et al.
[15] defined and studied some basic topological and algebraic properties of
the sequence spaces A7 (Z) for Z = lw,c and ¢y where p,m € N. We
study on the sets of sequences, which are Aj'—bounded, AJ'—convergent
and AJ'—zero. The sequence space A™ (Z) is different from the sequence
space AP (Z) and A™ (Z) N AJ(Z) # 0 (for Z = L, c and cp). Recently
the difference sequence spaces have been studied by many researchers Altin
[2], Braha [3], Et and Nuray [11], Et, et al. [12], Tripathy [23].

l1,cs,bv,byy and bs are defined by Kamthan and Gupta [14] as the fol-
lowing

k=1
o

z= (k) ) |zken — 2] < OO},
k=1

z = (2z) : z € bv such that lim z; = O} ,
k—00

{

Zn:Zk < OO} .
k=1

The idea of dual sequence spaces was introduced by Koéthe and Toeplitz
[18], whose main results concerned a—duals. An account of duals of sequence
spaces is found in K&the [17]. One can find about different types of duals
of sequence spaces in Cooke [7], Colak and Et [8] Kamthan and Gupta [14],
Maddox [20], and many others.
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Let Z be a sequence space and define

= {b—(bk):Z|bkzk| < o0, for allzeZ},

k=1

78 = {b = (bg) : Zbkzk is convergent for all z € Z} ,
k=1

Z b2k

" k=1

AR {b = (bg) : sup

< oo for all z € Z} ,see [14].

Then Z¢, Z% and Z7 are called a—, B— and y— duals of Z, respectively.
It is clear that Z C ZP C Z7 for Z = {4, ¢ or .

If ZCY,then Y7 C Z", for n = a, 8 or v. We shall write Z" = (Z")"
for n =a, S or 7.

Ahmad and Mursaleen [1], Bagarir [4],Bektag et al. [5], Chandra and Tri-
pathy [6], Et [9], Lascarides [19], Maddox [21] and others have studied results
involving a—and S—duals of different sequence spaces and their properties.

2. Main results
In this section, we give a—, 8— and y— duals of AT(Z), for Z = {, c or
CQ.

Theorem 1. Let Z be log,c or ¢ and m € N, p € R\ {0}. Then
i) [AT(2)]™ =l

Proof. i) Suppose that b € ¢1. Then
(1) Z |bi| < 0.
k=1

Let z € A7'(Z). Then there is a positive integer M such that ‘A;”zk| <
M, (k=1,2,3,...). We also write

2p = ( m mAmsz m—i—v —m—+v— lAm vZk—&-l-

Then

[e.o] oo

Z’bkzk‘ :Z|bk‘ (_1)m mAmzk+Z m+v —m+v— lAm vzk—i-l

k=1 k=1

<M |p7m‘ Z |bk‘ + MZ ’bk| Z(_l)m+vp7m+v71
k=1 k=1

v=1

< 0.
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Thus (1 C [A(Z)]"

Conversely suppose that b € [A (co)]a and b ¢ /.

Then there
exists m € N such that

Define z € A} (co) by

Then we have

0o m 00
Z ]bkzk] = Z |bkzk| + Z |bkzk]
k=1 k=1 k=m+1

m

=Y Il =
k=1

This contradicts to b € [AT (co)]”

» . Hence b € #;. This complete the
proof of 7).
i) Since [AT (Z)]" = {1, we have [AT (Z)]"" = {5 = lw. u

Theorem 2. Let Z be log,c or ¢cg and m € N and p € R\ {0}. Then
i) [Am(2)])7 = es,

ii) [Am(2)]% = bo,

Proof. We will proof for Z = £,. It can be shown for Z = c or ¢y.

i) Let b € cs and z € A} (f). Then the series Z by, is convergent and

=1
since z € A" () , there exists a positive integer M such that ’Amzk} < M.
Then we may write

Y bz = b [(Z1)" Az (1) AR
k=1 k=1

v=1

Zk+1

Hence ) byzy is convergent for all z € A7 ({), so b € [A (éoo)]ﬁ.
k=1

Now let b € [AT (foo)]B \cs. Then by is divergent, that is > by = oc.
k=1

- k=1
We define the sequence z = (z;) by zx = 1 for all £ € N.
Then z € AJ' (foo) and we may write

Z bkzk = Zbk = 0
k=1 k=1
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This contradicts to b € [A;” (EOO)J’B . Hence b € cs.
ii) Since [A7? (Z)]ﬁ = cs, we have [AT (Z)]Bﬁ = cs? = bo. [ |

Theorem 3. Let Z be loo,c or ¢ , m € N and p € R\ {0}. Then:
i) [A7(2)]7 = bs,
i) [AT(2)]" = bu.

Proof. i) and ii) can be proved by the same way as Theorem 2. |

3. Matrix transformations

Given any infinite matrix B = (bnk), x—; of complex numbers and any
sequence z = (zi), we write

Bn(2) =Y bupzp, (n=1,2,...)
k=1

o0

and Bx = (B, (2)),~, , provided the series ) b1z} are convergent for each
k=1

n € N.

Theorem 4. Let G = ls,c and H = ly,c. Then B = (by) €
(AT(G), H) if and only if <% \bnko € H.

Proof. Let G and H be /.

Necessity. Let B € (Agl(ﬁoo),ﬂoo) . Then By, (2) = >_ bpkzk is convergent

k=1
for each n € N and (B,,(2)) € £ for all z € AT (loo). If we take 2 = (z;) by
2k = sgnbpi we have z € A" ({) and

sup | By, (z)| = sup
n n

> bnkzk
k
= supz |bni| < o0.
"k

Sufficiency. Let z € A7 ({o) and sup ) |bpg| < 0o. Then we obtain that
nok

sup
n

> bukzk
ks

Hence B € (A7 (ls), loo) -
The proof can be given easily for the other cases. |

< supz |bnk| |Zk‘ < KSUPZ |bnk’ < 00.
"ok "ok
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Theorem 5. Let G = loo,c and H = log,c or ¢g. Then B = (byi) €
(G, Am( ) if and only if

i) Z |buk| < 0o for each n,

i7) C € (G,H),
where C' = (cpr) = (Azl_lbn_l,_l’k — pA;”_lbnk) )

Proof. Let G and H be ¢
Necessity. Let B € (ﬁoo, A;”(Eoo)) . Then B, (z) = )_ burzk is convergent
k

for z € oo and (By(2)) € A ({xo). Since Bp(z) converges, we have

= ankzkz = Z |bnk] -
k k
If we choose zp = sgnbyy, then we obtain that sup ) |b,k| < oo for each n.

n kg
Thus 4) holds.
Since (Bn(2)) € AJ'(lx) for z € Lo, we have

(o)

<Z AT bnkzk>

< pi nJrlk:_pA b )Zk>€£oo

A
| |

If we take C' = (cp) = Ap i1k — pAY” 1p k) from (1), we have

z)) = (Z cnkzk>
k

= (Z(A;n_lbn+1,k - pA;n_lbnk)Zk>

k

and (C,(2)) € loo- Thus ii) holds.
Sufficiency. Suppose that i) and ii) hold. Let z € £ . Then from i), we
obtain

nk<k

2)| =

< sip\zk\ Z |bk| < oo.
&
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Also from i), we get

(A;” <Z bnkzk>> = (Z(Agblbnﬂ,k —pAglbnk)zk) € Lo
k

k
The proof can be shown for the other cases. |
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