Nr 67 2024 DOI: 10.21008/j.0044-4413.2024.0001

C¸ . A. Bektas¸, A. Karakas¸ and Y. Altin

THE KÖTHE-TOEPLITZ DUALS OF SOME GENERALIZED p−CONVEX SEQUENCE SPACES

ABSTRACT. In this paper, we define α -, β - and γ - duals of the sequence spaces $\Delta_p^m(Z)$ for $Z = \ell_\infty$, c and c_0 . We study on some matrix transformations of these sequence spaces.

KEY WORDS: sequence spaces, dual space, matrix transformations.

AMS Mathematics Subject Classification: 40C05, 46A45.

1. Introduction

Throughout this study, we denote the space of all complex sequences by w and ℓ_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $z = (z_k)$ with complex terms, respectively normed by $||z||_{\infty} =$ $\sup |z_k|$, where $k \in \mathbb{N}$. k

In 1981, the forward difference sequence spaces $\Delta(Z)$ were introduced by Kızmaz [16]. He showed that $Z \subset \Delta(Z)$, where Z is any ℓ_{∞} , c or c_0 . For instance, if we take $(z_k) = (k)$, $(k = 1, 2, 3, ...)$, then the sequence (z_k) is not convergent but it is ∆−convergent. He also studied their topological properties, α -, β -, γ -duals of these spaces. Later, in 1995, Et and Colak [10] defined the forward generalized difference sequence spaces $\Delta^m(Z)$.

The notion of backward difference sequence spaces was generalized by Malkowsky and Parashar $[22]$. Let m be a non-negative integer. Then,

$$
\Delta^{m}(Z) = \{ z = (z_k) : (\Delta^{m} z_k) \in Z \}
$$

$$
\Delta^{0} z = (z_k), \Delta^{m} z = (\Delta^{m-1} z_{k+1} - \Delta^{m-1} z_k)
$$

and so

$$
\Delta^m z_k = \sum_{i=0}^m \left(-1\right)^i \binom{m}{i} z_{k-i}.
$$

The sequence spaces $\Delta^m(Z)$ are Banach spaces normed by

$$
||z||_{\Delta} = \sum_{i=1}^{m} |z_i| + ||\Delta^m z_k||_{\infty}.
$$

Out of these, using the generalized difference operator Δ^m , Ioan [13] introduced the concept of p−convex sequences as the following:

Let K be the set of all real sequences and $p \in \mathbb{R} \setminus \{0\}$. Then the linear operator $\Delta_p^m : K \to K$, $m \in \mathbb{N}$ is defined such that

$$
(\Delta_p z_k) = (z_{k+1} - pz_k), \ \ (\Delta_p^{m+1} z_k) = \Delta_p(\Delta_p^m z_k) = (\Delta_p^m z_{k+1} - p\Delta_p^m z_k)
$$

and

$$
\Delta_p^m z = \left(\Delta_p^m z_k\right) = \sum_{v=0}^m (-1)^{m-v} \binom{m}{v} p^{m-v} z_{k+v}.
$$

Hence we define the sequence spaces $\Delta_p^m(Z) = \{z = (z_k) : (\Delta_p^m z_k) \in Z\}$ for $Z = \ell_{\infty}, c \text{ or } c_0.$

Furthermore a sequence (z_k) from K is said to be p−convex of order $m \in \mathbb{N}$ if and only if $\Delta_p^m z_k \geq 0$, for all $k \in \mathbb{N}$. Later on, Karakaş et al. [15] defined and studied some basic topological and algebraic properties of the sequence spaces $\Delta_p^m(Z)$ for $Z = \ell_{\infty}, c$ and c_0 where $p, m \in \mathbb{N}$. We study on the sets of sequences, which are Δ_p^m -bounded, Δ_p^m -convergent and Δ_p^m -zero. The sequence space $\Delta^m(Z)$ is different from the sequence space $\Delta_p^m(Z)$ and $\Delta^m(Z) \cap \Delta_p^m(Z) \neq \emptyset$ (for $Z = \ell_\infty, c$ and c_0). Recently the difference sequence spaces have been studied by many researchers Altin [2], Braha [3], Et and Nuray [11], Et, et al. [12], Tripathy [23].

 l_1, cs, bv, bv_0 and bs are defined by Kamthan and Gupta [14] as the following

$$
\ell_1 = \left\{ z = (z_k) : \sum_{k=1}^{\infty} |z_k| < \infty \right\},
$$
\n
$$
cs = \left\{ z = (z_k) : \sum_{k=1}^{\infty} z_k \text{ is convergent} \right\},
$$
\n
$$
bv = \left\{ z = (z_k) : \sum_{k=1}^{\infty} |z_{k+1} - z_k| < \infty \right\},
$$
\n
$$
bv_0 = \left\{ z = (z_k) : z \in bv \text{ such that } \lim_{k \to \infty} z_k = 0 \right\},
$$
\n
$$
bs = \left\{ z = (z_k) : \sup_n \left| \sum_{k=1}^n z_k \right| < \infty \right\}.
$$

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [18], whose main results concerned α –duals. An account of duals of sequence spaces is found in Köthe [17]. One can find about different types of duals of sequence spaces in Cooke $[7]$, Colak and Et $[8]$ Kamthan and Gupta $[14]$, Maddox [20], and many others.

Let Z be a sequence space and define

$$
Z^{\alpha} = \left\{ b = (b_k) : \sum_{k=1}^{\infty} |b_k z_k| < \infty, \text{ for all } z \in Z \right\},
$$

$$
Z^{\beta} = \left\{ b = (b_k) : \sum_{k=1}^{\infty} b_k z_k \text{ is convergent for all } z \in Z \right\},
$$

$$
Z^{\gamma} = \left\{ b = (b_k) : \sup_{n} \left| \sum_{k=1}^{n} b_k z_k \right| < \infty \text{ for all } z \in Z \right\}, \text{see [14].}
$$

Then Z^{α}, Z^{β} and Z^{γ} are called α -, β - and γ - duals of Z, respectively. It is clear that $Z^{\alpha} \subset Z^{\beta} \subset Z^{\gamma}$ for $Z = \ell_{\infty}, c$ or c_0 .

If $Z \subset Y$, then $Y^{\eta} \subset Z^{\eta}$, for $\eta = \alpha, \beta$ or γ . We shall write $Z^{\eta\eta} = (Z^{\eta})^{\eta}$ for $\eta = \alpha, \beta$ or γ .

Ahmad and Mursaleen [1], Başarır [4], Bektaş et al. [5], Chandra and Tripathy [6], Et [9], Lascarides [19], Maddox [21] and others have studied results involving α –and β –duals of different sequence spaces and their properties.

2. Main results

In this section, we give α -, β - and γ - duals of $\Delta_p^m(Z)$, for $Z = \ell_\infty$, c or c_0 .

Theorem 1. Let Z be ℓ_{∞} , c or c_0 and $m \in \mathbb{N}$, $p \in \mathbb{R} \setminus \{0\}$. Then i) $\left[\Delta_p^m(Z)\right]^{\alpha} = \ell_1,$ $ii)$ $\left[\Delta_p^m(Z)\right]^{\alpha\alpha} = \ell_{\infty}.$

Proof. *i*) Suppose that $b \in \ell_1$. Then

$$
(1) \qquad \qquad \sum_{k=1}^{\infty} |b_k| < \infty.
$$

Let $z \in \Delta_p^m(Z)$. Then there is a positive integer M such that $\left|\Delta_p^m z_k\right| \leq$ $M, (k = 1, 2, 3, ...)$. We also write

$$
z_k = (-1)^m p^{-m} \Delta_p^m z_k \sum_{v=1}^m (-1)^{m+v} p^{-m+v-1} \Delta_p^{m-v} z_{k+1}.
$$

Then

$$
\sum_{k=1}^{\infty} |b_k z_k| = \sum_{k=1}^{\infty} |b_k| \left| (-1)^m p^{-m} \Delta_p^m z_k + \sum_{v=1}^m (-1)^{m+v} p^{-m+v-1} \Delta_p^{m-v} z_{k+1} \right|
$$

$$
\leq M \left| p^{-m} \right| \sum_{k=1}^{\infty} |b_k| + M \sum_{k=1}^{\infty} |b_k| \left| \sum_{v=1}^m (-1)^{m+v} p^{-m+v-1} \right| < \infty.
$$

Thus $\ell_1 \subset \left[\Delta_p^m(Z)\right]^\alpha$.

Conversely suppose that $b \in \left[\Delta_p^m(c_0)\right]^{\alpha}$ and $b \notin \ell_1$. Then there exists $m \in \mathbb{N}$ such that

$$
\sum_{k=1}^{m} |b_k| = \infty.
$$

Define $z \in \Delta_p^m(c_0)$ by

$$
z_k = \begin{cases} 0, & k > m \\ 1, & k \le m \end{cases}
$$

.

Then we have

$$
\sum_{k=1}^{\infty} |b_k z_k| = \sum_{k=1}^{m} |b_k z_k| + \sum_{k=m+1}^{\infty} |b_k z_k|
$$

=
$$
\sum_{k=1}^{m} |b_k| = \infty.
$$

This contradicts to $b \in \left[\Delta_p^m(c_0)\right]^{\alpha}$. Hence $b \in \ell_1$. This complete the proof of i).

ii) Since $\left[\Delta_p^m(Z)\right]^\alpha = \ell_1$, we have $\left[\Delta_p^m(Z)\right]^\alpha = \ell_1^\alpha = \ell_\infty$.

Theorem 2. Let Z be ℓ_{∞} , c or c_0 and $m \in \mathbb{N}$ and $p \in \mathbb{R} \setminus \{0\}$. Then i) $\left[\Delta_p^m(Z)\right]^{\beta} = cs,$ ii) $\left[\Delta_p^m(Z)\right]^{\beta\beta} = bv.$

Proof. We will proof for $Z = \ell_{\infty}$. It can be shown for $Z = c$ or c_0 . *i*) Let $b \in cs$ and $z \in \Delta_p^m(\ell_\infty)$. Then the series $\sum_{n=1}^\infty$

 $_{k=1}$ b_k is convergent and since $z \in \Delta_p^m (\ell_\infty)$, there exists a positive integer M such that $\left|\Delta_p^m z_k\right| \leq M$. Then we may write

$$
\sum_{k=1}^{\infty} b_k z_k = \sum_{k=1}^{\infty} b_k \left[(-1)^m p^{-m} \Delta_p^m z_k + \sum_{v=1}^m (-1)^{m+v} p^{-m+v-1} \Delta_p^{m-v} z_{k+1} \right].
$$

Hence $\sum_{n=1}^{\infty}$ $_{k=1}$ $b_k z_k$ is convergent for all $z \in \Delta_p^m (\ell_\infty)$, so $b \in \left[\Delta_p^m (\ell_\infty)\right]^{\beta}$. Now let $b \in \left[\Delta_p^m(\ell_\infty)\right]^{\beta} \setminus cs$. Then $\sum_{n=1}^{\infty}$ $k=1$ b_k is divergent, that is $\sum_{n=1}^{\infty}$ $k=1$ $b_k = \infty$. We define the sequence $z = (z_k)$ by $z_k = 1$ for all $k \in \mathbb{N}$.

Then $z \in \Delta_p^m$ (ℓ_{∞}) and we may write

$$
\sum_{k=1}^{\infty} b_k z_k = \sum_{k=1}^{\infty} b_k = \infty.
$$

This contradicts to $b \in \left[\Delta_p^m(\ell_\infty)\right]^{\beta}$. Hence $b \in cs$. ii) Since $\left[\Delta_p^m(Z)\right]^\beta = cs$, we have $\left[\Delta_p^m(Z)\right]^{\beta\beta} = cs^\beta = bv$.

Theorem 3. Let Z be ℓ_{∞} , c or c_0 , $m \in \mathbb{N}$ and $p \in \mathbb{R} \setminus \{0\}$. Then: i) $\left[\Delta_p^m(Z)\right]^\gamma = bs,$ $ii)$ $\left[\Delta_p^m(Z)\right]^{\gamma\gamma} = bv.$

Proof. i) and ii) can be proved by the same way as Theorem 2.

3. Matrix transformations

Given any infinite matrix $B = (b_{nk})_{n,k=1}^{\infty}$ of complex numbers and any sequence $z = (z_k)$, we write

$$
B_n(z) = \sum_{k=1}^{\infty} b_{nk} z_k, (n = 1, 2, ...)
$$

and $Bx = (B_n(z))_{n=1}^{\infty}$, provided the series $\sum_{k=1}^{\infty}$ $b_{nk}z_k$ are convergent for each $n \in \mathbb{N}$.

Theorem 4. Let $G = l_{\infty}, c$ and $H = l_{\infty}, c$. Then $B = (b_{nk}) \in$ $(\Delta_p^m(G), H)$ if and only if $\left(\sum\right)$ k $|b_{nk}|\bigg) \in H.$

Proof. Let G and H be ℓ_{∞} .

Necessity. Let $B \in (\Delta_p^m(\ell_\infty), \ell_\infty)$. Then $B_n(z) = \sum_{n=1}^\infty$ $_{k=1}$ $b_{nk}z_k$ is convergent for each $n \in \mathbb{N}$ and $(B_n(z)) \in \ell_\infty$ for all $z \in \Delta_p^m(\ell_\infty)$. If we take $z = (z_k)$ by $z_k = sgnb_{nk}$ we have $z \in \Delta_p^m(\ell_\infty)$ and

$$
\sup_{n} |B_{n}(z)| = \sup_{n} \left| \sum_{k} b_{nk} z_{k} \right|
$$

=
$$
\sup_{n} \sum_{k} |b_{nk}| < \infty.
$$

Sufficiency. Let $z \in \Delta_p^m(\ell_\infty)$ and sup \sum k $|b_{nk}| < \infty$. Then we obtain that

$$
\sup_{n} \left| \sum_{k} b_{nk} z_{k} \right| \leq \sup_{n} \sum_{k} |b_{nk}| \left| z_{k} \right| \leq K \sup_{n} \sum_{k} |b_{nk}| < \infty.
$$

Hence $B \in (\Delta_p^m(\ell_\infty), \ell_\infty)$.

The proof can be given easily for the other cases.

Theorem 5. Let $G = \ell_{\infty}, c$ and $H = \ell_{\infty}, c$ or c_0 . Then $B = (b_{nk}) \in$ $(G, \Delta_p^m(H))$ if and only if

i)
$$
\sum_{k=1}^{\infty} |b_{nk}| < \infty \text{ for each } n,
$$

\n*ii*)
$$
C \in (G, H),
$$

\n*where*
$$
C = (c_{nk}) = (\Delta_p^{m-1}b_{n+1,k} - p\Delta_p^{m-1}b_{nk}).
$$

Proof. Let G and H be ℓ_{∞} .

Necessity. Let $B \in (\ell_{\infty}, \Delta_p^m(\ell_{\infty}))$. Then $B_n(z) = \sum$ k $b_{nk}z_k$ is convergent for $z \in \ell_{\infty}$ and $(B_n(z)) \in \Delta_p^m(\ell_{\infty})$. Since $B_n(z)$ converges, we have

$$
B_n(z) = \left| \sum_k b_{nk} z_k \right| = \sum_k |b_{nk}|.
$$

If we choose $z_k = sgnb_{nk}$, then we obtain that sup \sum k $|b_{nk}| < \infty$ for each *n*. Thus i) holds.

Since $(B_n(z)) \in \Delta_p^m(\ell_\infty)$ for $z \in \ell_\infty$, we have

$$
\begin{aligned} \left(\Delta_p^m(B_n(z))\right) &= \left(\Delta_p^m\left(\sum_k b_{nk} z_k\right)\right) \\ &= \left(\sum_k \Delta_p^m b_{nk} z_k\right) \\ &= \left(\sum_k (\Delta_p^{m-1} b_{n+1,k} - p \Delta_p^{m-1} b_{nk}) z_k\right) \in \ell_\infty. \end{aligned}
$$

If we take $C = (c_{nk}) = (\Delta_p^{m-1} b_{n+1,k} - p \Delta_p^{m-1} b_{nk})$ from (1), we have

$$
(C_n(z)) = \left(\sum_k c_{nk} z_k\right)
$$

$$
= \left(\sum_k (\Delta_p^{m-1} b_{n+1,k} - p \Delta_p^{m-1} b_{nk}) z_k\right)
$$

and $(C_n(z)) \in \ell_\infty$. Thus *ii*) holds.

Sufficiency. Suppose that i) and ii) hold. Let $z \in \ell_{\infty}$. Then from i), we obtain

$$
|B_n(z)| = \left| \sum_k b_{nk} z_k \right| \le \sup_k |z_k| \sum_k |b_{nk}| < \infty.
$$

Also from ii , we get

$$
\left(\Delta_p^m\left(\sum_k b_{nk}z_k\right)\right)=\left(\sum_k(\Delta_p^{m-1}b_{n+1,k}-p\Delta_p^{m-1}b_{nk})z_k\right)\in\ell_\infty.
$$

The proof can be shown for the other cases. ■

References

- [1] AHMAD Z.U., MURSALEEN M., Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) $(N.S.)$, 42(56) (1987), 57-61.
- [2] Altin Y., Properties of some sets of sequences defined by a modulus function, Acta Math. Sci., Ser. B Engl. Ed. 29(2)(2009), 427-434.
- [3] BRAHA N.L., On asymptotically Δ^m -lacunary statistical equivalent sequences, Appl. Math. Comput., 219(1)(2012), 280-288.
- [4] BASARIR, M., On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., 26(10)(1995), 1003-1010.
- [5] BEKTAS, C. A.; ET, M.; COLAK, R., Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292(2)(2004), 423-432.
- [6] CHANDRA P., TRIPATHY B.C., On generalized Köthe-Toeplitz duals of some sequence spaces, Indian J. Pure Appl. Math., 33(8)(2002), 1301-1306.
- [7] Cooke R.G., Infinite matrices and sequence spaces, Dover Publications, Inc., New York, 1965.
- [8] COLAK R, ET M., On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3)(1997), 483-492.
- [9] ET M., On some difference sequence spaces, \overline{Doqa} Mat., 17(1)(1993), 18-24.
- [10] ET M., ÇOLAK R., On some generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.
- [11] ET M., NURAY F., Δ^m –statistical convergence, Indian J. Pure Appl. Math., 32(6)(2001), 961-969.
- [12] ET M., ALTINOK H., ALTIN Y., On some generalized sequence spaces, $Appl$. Math. Comput., 154(1)(2004), 167-173.
- [13] Ioan T., On some p−convex sequences, Acta Univ. Apulensis, Math. Inform., 11(2006), 249-257.
- [14] KAMTHAN P.K., GUPTA MANJUL, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65. Marcel Dekker, Inc., New York, 1981.
- [15] KARAKAŞ A., ALTIN Y., ET M., Δ_p^m -statistical convergence of order α , $Filomat, 32(16)(2018), 5565-5572.$
- [16] KIZMAZ H., On certain sequence spaces, *Canad. Math. Bull.*, 24(2)(1981), 169-176.
- [17] KÖTHE G., *Topological vector spaces*, I. Translated from the German by D. J. H. Garling Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag New York Inc., New York, 1969.
- [18] KÖTHE G., TOEPLITZ O., Lineare räume mit unendlich vielen koordinaten und ringe unendlicher matrizen (German), J. Reine Angew. Math., 171(1934), 193-226.
- [19] LASCARIDES C.G., A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, *Pacific J. Math.*, $38(1971)$, $487-500$.
- [20] MADDOX I.J., *Infinite matrices of operators*, Lecture Notes in Mathematics, 786. Springer, Berlin, 1980.
- [21] MADDOX I.J., Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Cambridge Philos. Soc., 65(1969), 431-435.
- [22] Malkowsky E., Parashar S.D., Matrix transformations in spaces of bounded and convergent difference sequences of order m , Analysis, 17(1) (1997), 87-97.
- [23] Tripathy B.C., On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math., 35(5)(2004), 655-663.

ÇIĞDEM A. BEKTAŞ Department of Mathematics FIRAT UNIVERSITY Elazig - Turkey e-mail: cbektas@firat.edu.tr

Abdulkadir Karakas¸ Department of Mathematics SIIRT UNIVERSITY Siirt -TURKEY e-mail: kadirkarakas21@hotmail.com

YAVUZ ALTIN Department of Mathematics FIRAT UNIVERSITY Elazig - Turkey e-mail: yaltin23@yahoo.com

Received on 10.06.2022 and, in revised form, on 21.09.2023.