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Abstract. This work is concerned with the following nonlinear
second order delay differential equations

x′′(t)+p(t)x′(t)+q(t)x(t) = f(t, x(t), x(t−τ(t)), x′(t−τ(t))), t ∈ R,

which includes many key second order delay differential equa-
tions that arise in nonlinear analysis and its applications. We use
Perov’s fixed point theorem to prove the existence and uniqueness
of periodic solutions for second order delay differential equations.
Our results are obtained under general assumptions.
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1. Introduction

The nonlinear second order delay differential equations arise in the mod-
eling of many phenomena in physics, population dynamics and industrial
robotics (see, for example [8, 9]). The second order delay differential equa-
tions have been considered by many authors (see [2, 3, 10, 12] and the refer-
ences therein). For example, Y. Liu and W. Ge ([10]) studied the following
second order nonlinear Duffing equation with delay and variable coefficients:

x′′ + p(t)x′(t) + q(t)x(t) = λh(t)f(t, x(t− τ(t))) + r(t), t ∈ R.

Moreover, Wang et al.[12] have studied the second order nonlinear delay
differential equation with periodic coefficients

x′′ + p(t)x′(t) + q(t)x(t) = r(t)x′(t− τ(t)) + f(t, x(t), x(t− τ(t))), t ∈ R,

by using Krasnoselskii’s fixed point theorem.
A. Ardjouni and A. Djoudi [3] have studied the existence of periodic solutions
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for the following second-order nonlinear neutral differential equation with
variable delay

d

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

d

dt
g(t, x(t− τ(t)))

+ f(t, x(t), x(t− τ(t))), t ∈ R,

by using the hybrid fixed point theorem of Krasnoselskii.
In the current paper, we consider the following more general form of non-
linear second delay differential equations

(1) x′′(t) + p(t)x′(t) + q(t)x(t) = f(t, x(t), x(t− τ(t)), x′(t− τ(t))), t ∈ R.

In all the mentioned paper, the derivative x′ does not appear in the nonlinear
functions. Our purpose here is to use Perov’s fixed point in a suitable
Banach space to show the existence and uniqueness of a periodic solution
for Equation (1), under fairly simple conditions and x′(t− τ(t)) appears in
the nonlinear functions.
Perov’s fixed point theorem is a generalization of Banach’s theorem and it
has been used by many authors (see, for example [1, 5, 6, 7]).
The rest of the paper is organized as follows: In Section 2, we give some
preliminary results in generalized metric spaces. In Section 3, we give our
main result. In the last section, we illustrate our main result by an example.

2. Some preliminaries results in generalized metric spaces

In this section, we recall the following notations and results in generalized
metric spaces.

Definition 1 ([11]). Let X be a nonempty set and d : X ×X −→ Rn be
a mapping such that for all x, y, z ∈ X, one has :
1) d(x, y) ≥ 0Rn and d(x, y) = 0Rn ⇐⇒ x = y,
2) d(x, y) = d(y, x),
3) d(x, y) ≤ d(x, z) + d(z, y),
where for x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) from Rn, we have x ≤
y ⇐⇒ xi ≤ yi, for any i = 1, n.
Then d is called a generalized metric and (X, d) is a generalized metric space.

Definition 2 ([11]). If (E, d) is a complete generalized metric space and
T : E → E which satisfies the inequality

d(Tx, Ty) ≤ Ad(x, y) for all x, y ∈ E,

where A is a matrix convergent to zero (the norms of it’s eigenvalues are
in the interval [0, 1)). We say that T is a Picard operator or generalized
contraction.
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We recall the following Perov’s fixed point theorem.

Theorem 1 ([11]). Let (E, d) be a complete generalized metric space. If
T : E → E is a map for which there exists a matrix A ∈Mn(R) such that

d(Tx, Ty) ≤ Ad(x, y), ∀x, y ∈ E

and the norms of the eigenvalues of A are in the interval [0, 1), then T has
a unique fixed point x∗ ∈ E and the sequence of successive approximations
xm = Tm(x0) converges to x∗ for any x0 ∈ E. Moreover, the following
estimation holds

d(xm, x
∗) ≤ Am(In −A)−1d(x0, x1), ∀m ∈ N∗.

We consider the following functional spaces

P (T ) = {x ∈ C(R) : x(t+ T ) = x(t), ∀t ∈ R}
P 1(T ) =

{
x ∈ C1(R) : x(t+ T ) = x(t), ∀t ∈ R

}
K+(T ) =

{
x ∈ P 1(T ) : x(t) ≥ 0, ∀t ∈ R

}
and denote by E the product space E = K+(T )×P (T ) which is a generalized
metric space with the generalized metric dC : E × E → R2, defined by

dC((x1, y1), (x2, y2)) =
(
∥x1 − x2∥+

∥∥x′1 − x′2
∥∥ , ∥y1 − y2∥

)
where ∥u∥ = max {|u(t)| : t ∈ [0, T ]} for any u ∈ P (T ).

Lemma 1 ([5]). (E, dC) is a complete generalized metric space.

Equation (1) will be studied under the following assumptions:
(i) f ∈ C(R× (R+)2 × R,R) and there exists T > 0 such that

f(t+ T, x, y, z) = f(t, x, y, z), ∀(t, x, y, z) ∈ R× (R+)2 × R.

(ii) There exist α, β, γ ≥ 0 such that

|f(t, u1, v1, w1)− f(t, u2, v2, w2)| ≤ α |u1 − u2|+β |v1 − v2|+γ |w1 − w2| ,

∀t ∈ R, ∀(u1, u2, v1, v2) ∈ (R+)4, ∀(w1, w2) ∈ R2.
(iii) p, q : R −→ R+, τ : R −→ R are all continuous T−periodic functions,∫ T

0 p(s) > 0,
∫ T
0 q(s) > 0, and τ ′(t) ̸= 1, for all t ∈ [0, T ].

3. Auxiliary lemmas

Before stating the main result in the next section, we need the following
lemmas,
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Lemma 2 ([10]). Suppose that (iii) holds and

R1

(
exp

(
T∫
0

p(u)du

)
− 1

)
Q1T

≥ 1,

where

R1 = max
t∈[0,T ]

∣∣∣∣∣∣∣∣∣∣
t+T∫
t

exp

(
s∫
t

p(u)du

)
exp

(
T∫
0

p(u)du

)
− 1

q(s)ds

∣∣∣∣∣∣∣∣∣∣
,

Q1 =

1 + exp

 T∫
0

p(u)du

2

R2
1.

Then there are continuous T−periodic functions a and b such that b(t) > 0,
T∫
0

a(u)du > 0 and

a(t) + b(t) = p(t), b′(t) + a(t)b(t) = q(t), t ∈ R.

Lemma 3 ([12]). Suppose the conditions of Lemma 2 hold and ψ ∈ P (T ).
Then the equation

x′′ + p(x)x′(t) + q(x)x(t) = ψ(t)

has a T−periodic solution. Moreover, the periodic solution can be expressed
by

x(t) =

t+T∫
t

G(t, s)ψ(s)ds

where

G(t, s) =

s∫
t

exp

(
u∫
t

b(v)dv +
s∫
u
a(v)dv

)
du+

t+T∫
s
exp

(
u∫
t

b(v)dv +
s+T∫
u
a(v)dv

)
du(

exp

(
T∫
0

a(u)du

)
− 1

)(
exp

(
T∫
0

b(u)du

)
− 1

) .
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Corollary 1 ([12]). The Green’s function G(t, s) satisfies the following
properties:

G(t, t+ T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂G(t, s)

∂t
= −b(t)G(t, s) + F (t, s),

where F (t, s) =

exp

(
s∫
t

a(v)dv

)
exp

(
T∫
0

b(v)dv

)
− 1

.

Lemma 4 ([12]). Let A =
T∫
0

p(u)du,B = T 2 exp

(
1

T

T∫
0

ln(q(u))du

)
. If

A2 ≥ 4B, then we have

min


T∫
0

a(u)du,

T∫
0

b(u)du

 ≥ 1

2

(
A−

√
A2 − 4B

)
:= l

max


T∫
0

a(u)du,

T∫
0

b(u)du

 ≤ 1

2

(
A+

√
A2 − 4B

)
:= L

Corollary 2 ([12] ). The function G(t, s) satisfies

m =:
T

(eL − 1)2
≤ G(t, s) ≤

T exp

(
T∫
0

p(u)du

)
(el − 1)2

:=M.

4. Main result

It is easy to check, under the above assumptions, that x is a solution of
(1) in K+ (see, [4]) if and only if x is the solution of the following integral
equation

(2) x(t) =

t+T∫
t

G(t, s)[f(s, x(s), x(s− τ(s)), x′(s− τ(s)))]ds.

Under the hypotheses (i), (ii), (iii) and the previous lemmas and corollaries,
we will make use of Perov’s fixed point theorem to prove the following main
result.
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Theorem 2. If the hypotheses (i), (ii) and (iii) hold, and if

(3) T (γθ + (α+ β)(M + θ)) < 1,

such that θ = ∥b∥M + exp(L)
l−1 , then, the second order delay differential equa-

tion (2) has a unique positive periodic solution in K+(T ).

Proof. If we differentiate the equation (2) with respect to t and denoting
x′(t) = y(t), we obtain, by using Corollary 1, for all t ∈ R,

y(t) =

t+T∫
t

∂G(t, s)

∂t
[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds,

which leads to,
x(t) =

t+T∫
t

G(t, s)[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds,

y(t) =
t+T∫
t

∂G(t,s)
∂t [f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds.

Let A : E → C(R)× C(R) be the map defined by the following expression

A(x, y)(t) =

 A1(x, y)(t)

A2(x, y)(t)

 ,

where,

A1(x, y)(t) =

t+T∫
t

G(t, s)[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds,

and,

(4) A2(x, y)(t) =

t+T∫
t

∂G(t, s)

∂t
[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds.

The rest of the proof is divided into the following claims.
Claim 1 : The operator A transform E into itself.

It is clear, from Conditions (i) and Corollary 1, that A1(E) ⊂ C1(R).
Moreover, from Conditions (i), (iii) and Corollary 1, it follows that ∀t ∈
R,∀(x, y) ∈E, A1(x, y)(t) ≥ 0 and

A1(x, y)(t+ T ) =

t+2T∫
t+T

G(t+ T, s)[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds
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=

t+T∫
t

G(t+ T, s+ T )

× [f(s+ T, x(s+ T ), x(s+ T − τ(s+ T )), y(s+ T − τ(s+ T )))]ds

= A1(x, y)(t).

Hence, A1(E) ⊂ K+(T ). Similarly, we have,

A2(x, y)(t+ T ) =

t+2T∫
t+T

∂G(t+ T, s)

∂t
[f(s, x(s), x(s− τ(s)), y(s− τ(s)))]ds

=

t+T∫
t

∂G(t+ T, s+ T )

∂t

× [f(s+ T, x(s+ T ), x(s+ T − τ(s+ T )), y(s+ T − τ(s+ T )))]ds

= A2(x, y)(t), ∀t ∈ R, ∀(x, y) ∈E.

We deduce that, A(E) ⊂ E.
Claim 2 : The operator A is a generalized contraction.

From Condition (ii), we have

|A1(x1, y1)(t)−A1(x2, y2)(t)|+
∣∣A′

1(x1, y1)(t)−A′
1(x2, y2)(t)

∣∣
≤

t+T∫
t

G(t, s) [α |x1(s)− x2(s)|+ β |x1(s)− x2(s)|+ γ |y1(s)− y2(s)|] ds

+

t+T∫
t

∂G(t, s)

∂t
[α |x1(s)− x2(s)|+ β |x1(s)− x2(s)|+ γ |y1(s)− y2(s)|] ds

≤ TM(α+ β)∥x1 − x2∥+ TMγ∥y1 − y2∥+
(
∥b∥M +

exp(L)

l − 1

)
× T [(α+ β)∥x1 − x2∥+ γ

(
∥b∥M +

exp(L)

l − 1

)
(∥y1 − y2∥)]

≤ T (α+ β)

(
M + ∥b∥M +

exp(L)

l − 1

)(
∥x1 − x2∥+ ∥x′1 − x′2∥

)
+ Tγ

(
M + ∥b∥M +

exp(L)

l − 1

)
∥y1 − y2∥
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Similarly, we have

|A2(x1, y1)(t)−A2(x2, y2)(t)|

≤
t+T∫
t

∂G(t, s)

∂t
[α |x1(s)− x2(s)|+ β |x1(s)− x2(s)|+ γ |y1(s)− y2(s)|] ds

≤ T

∥b∥M +
exp(L)

l − 1︸ ︷︷ ︸
=θ

 [(α+ β)∥x1 − x2∥+ γ∥y1 − y2∥]

≤ T (α+ β)θ
(
∥x1 − x2∥+ ∥x′1 − x′2∥

)
+ Tγθ∥y1 − y2∥]

We deduce that,

dC (A (x1, y1) , A (x2, y2)) ≤ K

(
∥x1 − x2∥+ ∥x′1 − x′2∥

∥y1 − y2∥

)
,

where the matrix K is given by,

K =

 T (α+ β)(M + θ) Tγ(M + θ)

T (α+ β)θ Tγθ

 .

The eigenvalues of this matrix are:{
λ1 = T [γθ + (α+ β)(M + θ)]
λ2 = 0

Since the norms of the eigenvalues are in the interval [0, 1), then, by Perov’s
fixed point theorem, the operator T has a unique solution x∗ = (x∗, y∗) ∈
K+(ω)× P (ω), which implies that x∗ ∈ C1(R), and for all t ∈ R

(x∗)
′(t) =

t+T∫
t

∂G(t, s)

∂t
[f(s, x∗(s), x∗(s− τ(s)), y∗(s− τ(s)))]ds

Hence, by using (4), for all t ∈ R

((x∗)
′ − y∗)(t) = 0.

We deduce, that (x∗)
′ = y∗ and x∗ is the unique solution of (2). ■

The following proposition gives an estimation of the error between the exact
solution and the approximate solution of (2).



Existence and uniqueness of positive . . . 21

Proposition 1. Under the assumptions of Theorem 2, the solution of
the equation (2), which is obtained by the successive approximations method
starting from any x0 = (x0, y0) ∈ E, verifies the following estimation:

dC(x
m, x∗) ≤

(
e1 e2
e3 e4

)
× dC(x

1, x0),

where 
e1 =

(M+γ)λm−1
1 T (α+β)
λ1−1

e2 =
γλm−1

1 T (α+β)
1−λ1

e3 =
(γ+M)λm−1

1 Tθ[2T (M+γ)(α+β)−1]
λ1−1

e4 =
λm−1
1 Tθγ[T (1+M+γ)(α+β)−1]

λ1−1

(5)

Proof. From Theorem 1, by the conditions of Theorem 2, one has that

dC(x
m, x∗) ≤ Am(I −A)−1dC(x

1, x0), ∀m ∈ N∗.

We have,

Am =

(
(M + γ)λm−1

1 T (α+ β) (M + γ)λm−1
1 Tθ

γλm−1
1 T (α+ β) λm−1

1 Tθγ

)
,

And we find

Am = λm−1
1 T

(
(M + γ)(α+ β) (M + γ)θ

γ(α+ β) θγ

)
,

And we have

(I −A)−1 =
1

λ1 − 1

(
−1 + Tθγ −Tθ(M + γ)

−T (α+ β)γ −1 + T (α+ β)(M + γ)

)
,

Which implies that,

Am(I −A)−1 =

(
e1 e2
e3 e4

)
,

where ei, i = 1, ..., 4 are given by (5). ■

To illustrate this result, we have the following example.

Example 1. Consider the following second-order delay differential equa-
tion:

(6) x′′(t) + p(t)x′(t) + q(t)x(t) =
1

λ
x(t) +

1

λ
x(t− τ(t)) +

10

λ
x′(t− τ(t)),
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t ∈ R, λ ≥ 103, where p(t) = 1
2 , q(t) =

1
16 , τ(t) = 1 + sin(6t).

Hence, by using the notations of Theorem 2, we have T = π
3 ,

α = β = 1
λ , γ = 10

λ , where λ = 103 is a positive number. We may see that

the conditions of Lemma 2 hold, and a(t) = b(t) = 1
4 , F (t, s) =

exp( 1
4
(s−t))

exp( 1
4
T)−1

,

G(t, s) =
(s− t) exp

(
1
4(s− t)

)
+ (t+ π

3 − s) exp
(
1
4(s+

π
3 − t)

)(
exp( π

12)
)2 .

By using the notations of Lemma 4, we have A = π
6 , B = π2

144 .

Which implies that l = L = π
12 , M =

π exp(π
6 )

(exp( π
12)−1)

2 and ∥F∥∞ =
exp( π

12)
exp( π

12)−1
.

We find θ = 19.149,M = 59.25 and by using the previous values of T,M,α, β, γ
therefore, the inequality in Theorem 2 takes the form

T (γθ + (α+ β)(M + θ)) < 1.

Then by Theorem 2, we conclude that the second-order delay differential
equation (6) has a periodic solution .
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