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Abstract. In the present paper we study Riemannian curva-
ture tensor, projective, Wely conformal and con-harmonic cur-
vature tensors on Kenmotsu manifolds along with a type of
semi-symmetric non-metric connection. Also, we deduce some
results for cyclic and η-parallel Ricci tensors. In the end, we give
an example to validate some of the obtained results.
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1. Introduction

In 1958, W.M. Boothby and H.C. Wang [3], studied the topological prop-
erties of an odd-dimensional differentiable manifold. Sasaki [14], did tremen-
dous work in the field of contact geometry. To characterize the properties of
an odd-dimensional differentiable manifold equipped with contact structures
he used the tensor calculus. Such manifolds were known as the contact man-
ifolds. The several classes of contact manifolds had been characterized by
many researchers who studied their properties with different connections. In
this series, Kenmotsu [10], introduced the concept of the Kenmotsu manifold
by considering a class of contact metric manifolds satisfying certain tenso-
rial relations. Also, he proved that a semi-symmetric Kenmotsu manifold
(C(L,M).C) = 0, where L,M ∈ χ(M), is a manifold of constant curvature
−1, where C refers to the Riemannian curvature tensor. If ∇C = 0, then
the manifold M is called locally symmetric. The Kenmotsu manifolds have
been studied by many researchers, for instance, we refer to [2, 4, 8, 13, 16]
and the references therein.
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After the study of the Riemannian Curvature tensor, the projective curva-
ture tensor, con-circular curvature tensor, Weyl conformal curvature tensor,
con-harmonic curvature tensor, and many others are extensively studied by
the geometers.

A. Hayden introduced a metric connection on a Riemannian manifold, in
[9]. A linear connection ∇ is said to be a metric on a manifold M if ∇g = 0;
otherwise, it is non-metric. In 1970, a semi-symmetric metric connection on
the Riemannian manifold was introduced by Yano[18]. Agashe and Chafle
[1], Sengupta [15], Chaubey [5, 6], and many others [11, 12, 17] studied
various and important properties of semi-symmetric metric and non-metric
connections on several differentiable manifolds and also defined some new
type of connections on Riemannian manifold.
Chaubey [7] studied a new type of semi-symmetric non-metric connection in
2019. He observed that under certain conditions Riemannian manifold will
be projectively invariant with respect to this connection.

Motivated by the above studies, we have studied some curvature prop-
erties of semi-symmetric non-metric connection defined on the Kenmotsu
manifolds.

2. Preliminaries

An odd-dimensional differentiable manifold with the almost contact Rie-
mannian structure (ϕ, ξ, η, g) is an almost contact metric manifold if,

(1) ϕ2L = −L+ η(L)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

(2) g(L,M) = g(ϕL, ϕM) + η(L)η(M),

(3) g(L, ϕM) = −g(ϕL,M), g(L, ξ) = η(L),

for all L,M ∈ M , where ϕ is a (1, 1)− tensor field, ξ is a vector field and
η is a 1-form. An almost contact metric manifold is said to be a Kenmotsu
manifold if,

(4) (∇Lϕ)M = −g(L, ϕM)ξ − η(M)ϕL,

(5) (∇Lη)M = g(L,M)− η(L)η(M),

(6) ∇Lξ = X − η(M)ξ,

where ∇ is the Levi-Civita connection of Riemannian metric g. An odd-di-
mensional say (n = 2m+1), Kenmotsu manifold is normal but not Sasakian.
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Also, every Kenmotsu manifold is non-compact and divξ = n−1. Moreover,
the Riemannian curvature tensor C, Ricci tensor S , and Ricci operator Q
are given by,

(7) C(L,M)ξ = η(L)M − η(M)L,

(8) C(ξ, L)M = η(M)L− g(L,M)ξ,

(9) C(ξ, L)ξ = L− η(L)ξ,

(10) S(L, ξ) = −(n− 1)η(L),

(11) Qξ = −(n− 1)ξ.

Any Riemannian manifold M is a generalized Ricci-recurrent manifold if its
Ricci tensor satisfies the condition similar to,

(12) (∇LS)(M,N) = α(L)S(M,N) + β(L)g(M,N),

for some 1-forms α and β. In particular, if β = 0 and α ̸= 0, then M is
Ricci-recurrent.
Also, M has a cyclic Ricci tensor, if

(13)
∑
cyclic

(∇LS)(M,N) = 0,

and, M has η-parallel Ricci tensor if,

(14) (∇LS)(ϕM,ϕN) = 0,

∀L,M,N ∈ χ(M).

The Projective curvature tensor P(L,M)N for an n-dimensional Rieman-
nian manifold concerning the Levi-Civita connection ∇ is given by,

(15) P(L,M)N = C(L,M)N − 1

n− 1
{S(M,N)L− S(L,N)M}.

The con-harmonic curvature tensor N(L,M)N for an n-dimensional Rie-
mannian manifold concerning the Levi-Civita connection ∇ is given by,

N(L,M)N = C(L,M)N − 1

n− 2
{S(M,N)L− S(L,N)M(16)

+ g(M,N)QL− g(L,N)QM}.
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The Weyl conformal curvature tensor K(L,M)N for an n-dimensional Rie-
mannian manifold concerning the Levi-Civita connection ∇ is given by,

K(L,M)N = C(L,M)N − 1

n− 2

{
S(M,N)L− S(L,N)M(17)

+ g(M,N)QL− g(L,N)QM
}

+
s

(n− 1)(n− 2)

{
g(M,N)L− g(L,N)M

}
,

where C is the curvature tensor, S is the Ricci curvature tensor, Q is the
Ricci operator and s is scalar curvature for an n-dimensional Riemannian
manifold for all L,M,N ∈ χ(M).

3. A type of semi-symmetric non-metric connection

In 2019, S.K Chaubey and A. Yildiz introduced a new type of semi-sym-
metric non-metric connection in [7]. The linear connection ∇̃ on a Rieman-
nian manifold (M, g) is given by,

(18) ∇̃LM = ∇LM +
1

2
{η(M)L− η(L)M}

is a semi-symmetric non-metric connection, where ∇ is the Levi-Civita con-
nection of Riemannian metric g. The torsion tensor T̃ on M concerning ∇̃
satisfies the equation,

(19) T̃ (L,M) = η(M)L− η(L)M,

where η is 1-form associated with the vector field ξ and satisfies

(20) η(L) = g(L, ξ)

and the metric g holds the relation

(21) (∇̃Lg)(M,N) =
1

2
{2η(L)g(M,N)− η(M)g(L,N)− η(N)g(L,M)}.

The curvature tensor C̃ corresponding to ∇̃ on an n-dimensional Riemannian
manifold is given by[7],

C̃(L,M,N) = C(L,M,N) +
1

2

{
Θ(L,N)M −Θ(M,N)L(22)

− (Θ(L,M)−Θ(M,L))N
}
,

where Θ(L,M) = g(BL,M) = (∇Lη)M − 1
2η(L)η(M) and BL = ∇Lξ −

1
2η(L)ξ. The Ricci curvature S̃ is given by

(23) S̃(M,N) = S(M,N)− (n− 1)

2
Θ(M,N).
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The Ricci operator Q̃ is defined as,

(24) Q̃(M) = QM − (n− 1)

2
BM.

And the scalar curvature s̃ is defined as,

(25) s̃ = s− (n− 1)

2
trace(B).

4. Kenmotsu Manifolds admitting ∇̂

Let (M, g) be a Kenmotsu manifold of dimension n = 2m+ 1, admitting
the connection ∇̂, then from equations (18) and (6) we get,

(26) ∇̂LM = ∇LM +
1

2
{η(M)L− η(L)M}.

Also,

(27) ∇̂Lξ =
3

2
(L− η(L)ξ).

Let C and Ĉ be the curvature tensors of Levi-Civita connection ∇ and
semi-symmetric non-metric connection ∇̂ respectively, then

(28) C(L,M)N = ∇L∇MN −∇N∇LM −∇[L,M ]N,

(29) Ĉ(L,M)N = ∇̂L∇̂MN − ∇̂M∇̂LN − ∇̂[L,M ]N.

Then, by using the equations (5), (6), (28) and (29), the curvature tensor of
(M, g) concerning the semi-symmetric non-metric connection ∇̂ is given by,

Ĉ(L,M)N = C(L,M)N +
3

4
(η(M)L− η(L)M)η(N)(30)

+
1

2
(g(L,N)M − g(M,N)L).

Taking the inner product of (30) with W , we have,

Ĉ(L,M,N,W ) = C(L,M,N,W ) +
3

4
(η(M)g(L,W )(31)

− η(L)g(M,W ))η(N) +
1

2
(g(L,N)g(M,W )

− g(M,N)g(L,W )),

where Ĉ(L,M,N,W ) = g(Ĉ(L,M)N,W ).
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Proposition 1. From equation (30) and (31) we can deduce the following
curvature identities,
(i) Ĉ(L,M)ξ = 3

4(η(L)M − η(M)L).

(ii) Ĉ(ξ,M)ξ = 1
4(M − η(M)ξ).

(iii) Ĉ(ξ,M)N = 3
2(η(N)M − g(M,N)ξ) + 3

4(η(M)ξ −M)η(N).

(iv) Ĉ(L,M,N,W ) + Ĉ(L,M,N,W ) = 0.
(v) Ĉ(L,M,N,W ) + Ĉ(L,M,W,N) = 0.

Let {ei} be the orthonormal basis of tangent space at each point of the
manifold (M, g) then contracting the equation (30) by L we get,

(32) Ŝ(M,N) = S(M,N)− (n− 1)

2
g(M,N) +

3(n− 1)

4
η(M)η(N).

The Ricci operator Q is defined by,

S(L,M) = g(QL,M)

Hence, the Ricci operator Q̂ for the Kenmotsu manifold (M, g) concerning
the semi-symmetric non-metric connection ∇̂ is given by,

(33) Ŝ(L,M) = g(Q̂L,M).

Now, from equations (32) and (33), we get

(34) Q̂M = QM − (n− 1)

2
M +

3(n− 1)

4
η(M)ξ.

Also, the constant curvature ŝ is given by,

(35) ŝ = s− (2n− 3)(n− 1)

4
.

Proposition 2. From equation (33) and (34), we can deduce the follow-
ing,
(i) Ŝ(M, ξ) = −3(n−1)

4 η(M),

(ii) Ŝ(M,N) is symmetric,

(iii) Q̂ξ = 3(n−1)
4 ξ.

Theorem 1. Let (M, g) be a locally symmetric Kenmotsu manifold along
with ∇̂. Then M is an η-Einstein manifold concerning ∇̂. Also, the scalar
curvature for ∇ on M is (1− n).

Proof. Let (M, g) be a locally symmetric Kenmotsu manifold admitting
∇̂, then

(36) (∇̂LĈ)(M,N)W = 0.
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Now, contracting the equation (36) concerning to M , we get

(37) (∇̂LŜ)(N,W ) = ∇̂LŜ(N,W )− Ŝ(∇̂LN,W )− Ŝ(N, ∇̂LW ) = 0.

Taking W = ξ in equation (37), we get

(38) (∇̂LŜ)(N, ξ) = ∇̂LŜ(N, ξ)− Ŝ(∇̂LN, ξ)− Ŝ(N, ∇̂Lξ) = 0.

Using equations (32), (37), and (38) we have

(39) Ŝ(N,L) = −1

4
(n− 1)η(L)η(N)− 1

2
(n− 1)g(L,N).

Hence, (M, g) is an η-Einstein manifold concerning ∇̂. Further, put the
value from equation (32) we get,

(40) S(N,L) = −(n− 1)η(L)η(N).

Now, contract the equation (40) over L and N , and we get

s = −(n− 1).

Hence, the theorem. ■

Theorem 2. Let (M, g) be a connected Kenmotsu manifold with an
η-parallel Ricci tensor concerning ∇̂. Then (M, g) has constant scalar cur-
vature concerning ∇̂ if and only if the scalar curvature for (M, g) concerning
∇ is 3(1− n).

Proof. Let (M, g) be a connected Kenmotsu manifold with an η-parallel
Ricci tensor concerning ∇̂, then we have

(41) (∇̂LŜ)(ϕM,ϕN) = 0,

∀L,M,N ∈ χ(M). Using the equations (32), and (41) we get,

(∇̂LŜ)(M,N) = −S(L,N)η(M)− S(L,M)η(N)(42)

+
1

2
η(L)S(M,N)− (n− 1)

2
η(L)g(M,N).

Put M = N = ei and sum up for i = 1, 2, ..., n, in the equation (42), we
obtain

(43) d̂(ŝ(L)) = η(L){3(n− 1) + s

2
}.

So, if s = 3(1− n), then d̂(ŝ(X)) = 0. On integrating the equation (43) we
get ŝ = constant. Hence, the theorem. ■
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Theorem 3. Let (M, g) be an n-dimensional generalized Ricci-recurrent
Kenmotsu manifold concerning ∇̂, then β = 3

2(n− 1)α.

Proof. Let (M, g) be an n-dimensional generalized Ricci-recurrent Ken-
motsu manifold concerning ∇̂, then we have

(44) (∇̂LŜ)(M,N) = α(L)Ŝ(M,N) + β(L)g(M,N).

As we know,

(45) (∇̂LŜ)(M,N) = ∇̂LŜ(M,N)− Ŝ(∇̂LM,N)− Ŝ(M, ∇̂LN).

Now, using the equations (44) and (45), and put M = N = ξ, we get,

(46) β(L) =
3

2
(n− 1)α(L),

which is equivalent to, β = 3
2(n− 1)α. Hence proved. ■

Corollary 1. Let (M, g) be an n-dimensional generalized Ricci-recurrent
Kenmotsu manifold concerning ∇̂ and if (M, g) has cyclic Ricci tensor then,
α(ξ){Ŝ + 3

2(n− 1)g} = 0.

Proof. If (M, g) has a cyclic Ricci tensor, then we have

(47)
∑
cyclic

(∇̂LŜ)(M,N) = 0.

As, (M, g) is a generalized Ricci-recurrent Kenmotsu manifold, so equation
(47) reduces to,

(48)
∑
cyclic

α(L)Ŝ(M,N) + β(L)g(M,N) = 0.

Now, put L = ξ in the equation (48) we get the required result,

(49) α(ξ){Ŝ +
3

2
(n− 1)g} = 0.

■

Corollary 2. Let (M, g) be an n-dimensional generalized Ricci-recurrent
Kenmotsu manifold concerning ∇̂ and if (M, g) has cyclic Ricci tensor then,

α(ξ){S + (n− 1)g + 3(n−1)
2 η ⊗ η} = 0.
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Proof. Put the value from the equation (32) in the equation (49), and
we get

α(ξ){S + (n− 1)g +
3(n− 1)

2
η ⊗ η} = 0.

Hence, proved. ■

5. Some other curvature tensors on Kenmotsu
manifolds admitting ∇̂

In this section, we obtain some results for the projective curvature ten-
sor, con-circular curvature tensor, Weyl conformal curvature tensor, and
con-harmonic curvature tensor on an n-dimensional Kenmotsu manifold ad-
mitting ∇̂.

Theorem 4. The projective curvature tensor for an n-dimensional Ken-
motsu manifold (M, g) concerning ∇̂ and ∇ coincides for ∀n > 1.

Proof. The projective curvature tensor P̂(L,M)N for Kenmotsu mani-
fold (M, g) concerning ∇̂ is given by,

(50) P̂(L,M)N = Ĉ(L,M)N − 1

n− 1
{Ŝ(M,N)L− Ŝ(L,N)M}.

Now, put the values from equation (15),(30) in equation (50), we get

P̂(L,M)N = P(L,M)N

Hence, the theorem. ■

Corollary 3. An n-dimensional Kenmotsu manifold (M, g) concerning
∇̂ is ξ-projectively flat if and only if it is ξ-projectively flat concerning ∇.

Proof. A manifold is said to be ξ-projectively flat concerning ∇, if
P(L,M)ξ = 0. Now, put N = ξ, in equation (50), we get

P̂(L,M)ξ = 0

Hence, proved. ■

Theorem 5. The Weyl conformal curvature tensor for an n-dimensional
Kenmotsu manifold ((M, g) concerning ∇̂ and ∇ is coincided for ∀n > 1.
Moreover, K̂ will be ξ-conformally flat if and only if the conformal curvature
tensor concerning ∇ is ξ-conformally flat.
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Proof. The Weyl conformal curvature tensor K̂(L,M)N for Kenmotsu
manifold (M, g) concerning ∇̂ is given by,

K̂(L,M)N = Ĉ(L,M)N − 1

2

{
Ŝ(M,N)L− Ŝ(L,N)M(51)

+ g(M,N)Q̂L− g(L,N)Q̂M
}

+
ŝ

(n− 1)(n− 2)

{
g(M,N)L− g(L,N)M

}
.

Now, put the values from the equations (17), (30) in the equation (51), we
get

K̂(L,M)N = K(L,M)N.

A manifold is said to be ξ-conformally flat concerning to ∇, if K(L,M)ξ = 0.
Now, put N = ξ, in equation (51), we get

K̂(L,M)ξ = 0.

Hence, the theorem. ■

6. Example

In this section, we reconstruct an example of a 5-dimensional Kenmotsu
manifold concerning the connection ∇̂.

Example 1. Let us consider a 5-dimensional manifoldM = {(l,m, n, o, p) ∈
R5} where (l,m, n, o, p) are the standard coordinates of R5. We choose the
linearly independent vector fields, at each point of M.

r1 =
∂

∂l
, r2 = r−l ∂

∂m
, r3 = r−l ∂

∂n
, r4 = r−l ∂

∂o
, r5 = r−l ∂

∂p

also, l ̸= 0.
Let g be the Riemannian metric defined by,

g(ri, rj) =

{
1 if i = j
0 if i ̸= j

; i, j = 1, 2, 3, 4, 5.

Let η be the 1-form defined by,

η(A) = g(A, r1)

for any A ∈ χ(M). Using the linearity of ϕ and g, we have

ϕ2A = −A+ η(A)r1 and η(r1) = 1.
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Also,

g(ϕA, ϕB) = g(A,B)− η(A)η(B).

For any A,B ∈ χ(M). Thus r1 = ξ, the structure (ϕ, ξ, η, g) defines an
almost Kenmotsu manifold. For Levi-Civita connection ∇, we have

[r1, r2] = −r2, [r1, r3] = −r3, [r1, r4] = −r4, [r1, r5] = −r5,

[r2, r3] = [r2, r4] = [r2, r5] = [r3, r4] = [r3, r5] = [r4, r5] = 0

The Riemannian connection ∇ of the metric g is given by Koszul’s formula
which is given by,

2g(∇AB,C) = Ag(B,C) +Bg(C,A)− Cg(A,B)− g(A, [B,C])

− g(B, [A,C]) + g(C, [A,B])

Taking r1 = ξ and using Koszul’s formula, we get

(52)

∇r1r1 = 0 ∇r1r2 = 0 ∇r1r3 = 0 ∇r1r4 = 0 ∇r1r5 = 0
∇r2r1 = r2 ∇r2r2 = −r1 ∇r2r3 = 0 ∇r2r4 = 0 ∇r2r5 = 0,
∇r3r1 = r3 ∇r3r2 = 0 ∇r3r3 = −r1 ∇r3r4 = 0 ∇r3r5 = 0
∇r4r1 = r4 ∇r4r2 = 0 ∇r4r3 = 0 ∇r4r4 = −r1 ∇r4r5 = 0,
∇r5r1 = r5 ∇r5r2 = 0 ∇r5r3 = 0 ∇r5r4 = 0 ∇r5r5 = −r1.

From the above values, it is clear that (ϕ, ξ, η, g) is a 5-dimensional Ken-
motsu manifold.

Using the results from equation (52), we can obtain the for ∇̂,

∇̂r1r1 = 0 ∇̂r1r2 = − r2
2 ∇̂r1r3 = − r3

2 ∇̂r1r4 = − r4
2 ∇̂r1r5 = − r5

2

∇̂r2r1 =
3
2r2 ∇̂r2r2 = −r1 ∇̂r2r3 = 0 ∇̂r2r4 = 0 ∇̂r2r5 = 0,

∇̂r3r1 =
3
2r3 ∇̂r3r2 = 0 ∇̂r3r3 = −r1 ∇̂r3r4 = 0 ∇̂r3r5 = 0

∇̂r4r1 =
3
2r4 ∇̂r4r2 = 0 ∇̂r4r3 = 0 ∇̂r4r4 = −r1 ∇̂r4r5 = 0,

∇̂r5r1 =
3
2r5 ∇̂r5r2 = 0 ∇̂r5r3 = 0 ∇̂r5r4 = 0 ∇̂r5r5 = −r1.

Using the results from equation (52), we can obtain the components of
the Riemannian curvature tensors concerning ∇ as follows:

C(r1, r2)r1 = r2, C(r1, r2)r2 = −r1, C(r1, r3)r1 = r3, C(r1, r3)r3 = −r1,
C(r1, r4)r1 = r4, C(r1, r4)r4 = −r1, C(r1, r5)r1 = r5, C(r1, r5)r5 = −r1,
C(r2, r3)r2 = r3, C(r2, r3)r3 = −r2, C(r2, r4)r2 = r4, C(r2, r4)r4 = −r2,
C(r2, r5)r2 = r5, C(r2, r5)r5 = −r2, C(r3, r4)r3 = r4, C(r3, r4)r4 = −r3,
C(r3, r5)r3 = r5, C(r3, r5)r5 = −r3, C(r4, r5)r4 = r5, C(r4, r5)r5 = −r4.
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Hence, the non-vanishing Riemannian curvature tensors concerning ∇̂ as
follows:

Ĉ(r1, r2)r1 =
3
4r2, Ĉ(r1, r2)r2 = −3

2r1, Ĉ(r1, r3)r1 =
3
4r3, Ĉ(r1, r3)r3 = −3

2r1,

Ĉ(r1, r4)r1 =
3
4r4, Ĉ(r1, r4)r4 = −3

2r1, Ĉ(r1, r5)r1 =
3
4r5, Ĉ(r1, r5)r5 = −3

2r1,

Ĉ(r2, r3)r2 =
3
2r3, Ĉ(r2, r3)r3 = −3

2r2, Ĉ(r2, r4)r2 =
3
2r4, Ĉ(r2, r4)r4 = −3

2r2,

Ĉ(r2, r5)r2 =
3
2r5, Ĉ(r2, r5)r5 = −3

2r2, Ĉ(r3, r4)r3 =
3
2r4, Ĉ(r3, r4)r4 = −3

2r3,

Ĉ(r3, r5)r3 =
3
2r5, Ĉ(r3, r5)r5 = −3

2r3, Ĉ(r4, r5)r4 =
3
2r5, Ĉ(r4, r5)r5 = −3

2r4.

So, the Ricci tensor with respect to ∇ will be,

S(r1, r1) = S(r2, r2) = S(r3, r3) = S(r4, r4) = S(r5, r5) = −4.

So, the scalar curvature s with respect to ∇, of the manifold will be,

s = −20.

Hence, the Ricci curvature for ∇̂ as follows:

Ŝ(r1, r1) = −3, Ŝ(r2, r2) = Ŝ(r3, r3) = Ŝ(r4, r4) = Ŝ(r5, r5) = −6.

And hence, the scalar curvature of ∇̂ is

ŝ = −27.

From this example, the equations (30), (32), (34) and (35) are verified.

References

[1] Agashe N.S., Chafle M.R., A semi-symmetric non-metric connection on
a Riemannian manifold, Indian J. pure appl. Math., 23(1992), 399-409.

[2] Basari A., Murathan C., On generalized phi-recurrent Kenmotsu mani-
folds, Fen Derg., 3(1)(2008), 91-97.

[3] Boothby W.M., Wang H.C., On contact manifolds, Ann. of Math.,
68(2)(1958), 721-734.

[4] Calin C., Kenmotsu manifolds with η-parallel Ricci tensor, Bull. Soc. Math.
Banja Luka, 10(2003), 10-15.

[5] Chaubey S.K., Ojha R.H., On a semi-symmetric non-metric and quarter
symmetric metric connexions, Tensor N.S., 70(2)(2008), 202-203.

[6] Chaubey S.K., Ojha R.H., On a semi-symmetric non-metric connection,
Filomat., 26(2)(2012), 269-275.

[7] Chaubey S.K., Yildiz A., Riemannian manifolds admitting a new type
of semisymmetric nonmetric connection, Turkish Journal of Mathematics,
43(4)(2019), 1887-1904.

[8] De U.C., Pathak G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure
Appl. Math., 35(2)(2004), 159-165.



Study of curvature properties of . . . 93

[9] Hayden A., Sub-Spaces of a Space with Torsion, Proceedings of London Math-
ematical Society, 2(1)(1932), 27-50.

[10] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku
Math. J., 2(2)(1972), 93-103.

[11] Kobayashi S., Nomizu K., Foundation of differential geometry, Vol. I and
II., Interscience Publisher, London, (1969).

[12] Kumar S., Kandpal D., Upreti J., On an HSU-unified Structure Manifold
with a Recurrent Metric Connection, Journal of Computer and Mathematical
Sciences, 8(8)(2017), 366-372.

[13] Matsumoto K., Mihai I., Shahid M.H., Certain submanifolds of a
Kenmotsu manifold, Monogr. Geom. Topology, Int. Press, Cambridge, MA,
25(1998), 183-193.

[14] Sasaki S., On differentiable manifolds with certain structures which are
closely related to almost contact structure, I, Tohoku Math. J., 2(12)(1960),
459-476.

[15] Sengupta J., De U.C., Binh T., On a type of semi-symmetric non-metric
connection on a Riemannian manifold, Indian Journal of Pure and Applied
Mathematics, 31(12)(2000), 1659-1670.

[16] Sular S., Ozgur C., De U.C., Quarter-symmetric metric connection in a
Kenmotsu manifold, SUT Journal of Mathematics, 44(2)(2008), 297-306.

[17] Sundriyal S., Upreti J., On a Type of Semi-Symmetric Non-Metric Con-
nection in HSU-Unified Structure Manifold, International Electronic Journal
of Geometry, 14(2)(2021), 383-390.

[18] Yano K., On semi-symmetric metric connections, Revue Roumaine de Math-
ematiques Pures et Appliquees, 15(1970), 1579-1586.

Shivani Sundriyal
Department of Mathematics

S.S.J campus, Almora, Kumaun University
Nainital

e-mail: shivani.sundriyal5@gmail.com

Jaya Upreti
Department of Mathematics
S.S.J University, Almora

e-mail: prof.upreti@gmail.com

Received on 22.09.2023 and, in revised form, on 24.10.2023.


