Nr 29 1999

MARIA GÓRZEŃSKA, MARIA LEŚNIEWICZ, CZESŁAW PRĘTKI

APPROXIMATION OF FUNCTIONS OF SEVERAL VARIABLES IN EXPONENTIAL WEIGHTED SPACES

ABSTRACT: In this note we define some operators $L_{\widetilde{n}}$ and $U_{\widetilde{n}}$ of the Szasz-Mirakjan type in exponential weighted spaces of functions of several variables. In Sec. 2 we give some basic properties of these operators. The main theorems are given in Sec. 3.

The similar results for functions belonging to polynomial weighted spaces are given in [3]. Some properties of these operators for functions of one variable with exponential weighted spaces are given in [4].

KEY WORDS: linear positive operator, approximation theorem, function of several variables.

1. NOTATION

1.1. Let $N^1 \equiv N := \{1,2,...\}$, $N_0^1 \equiv N_0 := N \cup \{0\}$, $R^1 = R := (-\infty,+\infty)$, $R_+^1 \equiv R_+ := (0,+\infty)$, $R_0^1 \equiv R_0 := R_+ \cup \{0\}$ and, for every fixed $m \in N$, let $N^m := \{\widetilde{n} = (n_1,...,n_m) : n_k \in N \text{ for } 1 \le k \le m\}$. Analogously are defined N_0^m , R_+^m and R_0^m . For $\widetilde{x}, \widetilde{y} \in R_0^m$, $\widetilde{x} = (x_1,...,x_m)$, $\widetilde{y} = (y_1,...,y_m)$, and $\lambda \in R$ we define: $\widetilde{x} + \widetilde{y} := (x_1 + y_1,...,x_m + y_m)$, $\lambda \widetilde{x} := (\lambda x_1,...,\lambda x_m)$, $\widetilde{x} - \widetilde{y} := (x_1 - y_1,...,x_m - y_m)$, $\widetilde{x}/\widetilde{y} := (x_1/y_1,...,x_m/y_m)$ if $\widetilde{y} \in R_+^m$, $\widetilde{x} < \widetilde{y}$ if and only if $x_k < y_k$ for $1 \le k \le m$ (analogously $\widetilde{x} \le \widetilde{y}$) and $\widetilde{\lambda} \in R^m$ if $\lambda_k = \lambda$ for $1 \le k \le m$.

Moreover let $\int_{\widetilde{x}}^{\widetilde{y}} f(\widetilde{t}) d\widetilde{t} := \int_{x_1}^{y_1} \dots \int_{x_m}^{y_m} f(t_1, \dots, t_m) dt_1 dt_2 \dots dt_m$ and, for $\widetilde{k} \in N_0^m$, let

$$\sum_{\widetilde{k} \geq \widetilde{0}} := \sum_{k_1 = 0}^{\infty} \dots \sum_{k_m = 0}^{\infty} \text{ and } \widetilde{k} \to \widetilde{\infty} \text{ if and only if } k_j \to +\infty \text{ for } 1 \leq j \leq m.$$

1.2. Let for a fixed $p \in R_+$

(1)
$$v_p(x) := e^{-px}, \quad x \in R_0,$$

and let for a fixed $\widetilde{p} \in \mathbb{R}_+^m$ (with some $m \in \mathbb{N}$)

(2)
$$v_{\widetilde{p}}(\widetilde{x}) := \prod_{j=1}^{m} v_{p_j}(x_j), \qquad \widetilde{x} \in R_0^m.$$

For a fixed $\widetilde{p} \in R_+^m$ we define the exponential weighted space $C_{\widetilde{p},m}$ of all real-valued functions f defined on R_0^m for which $v_{\widetilde{p}}(\cdot)f(\cdot)$ is uniformly continuous and bounded on R_0^m and the norm is defined by the formula

(3)
$$\|f\|_{\widetilde{p}} := \sup_{\widetilde{x} \in R_0^m} v_{\widetilde{p}}(\widetilde{x}) |f(\widetilde{x})|.$$

For $f \in C_{\widetilde{p},m}$ we define the modulus of continuity

$$\omega(f, C_{\widetilde{p}, m}; \widetilde{t}) := \sup_{\widetilde{0} \le \widetilde{h} \le \widetilde{t}} \left\| \Delta_{\widetilde{h}} f(\cdot) \right\|_{\widetilde{p}}, \qquad \widetilde{h}, \widetilde{t} \in R_0^m,$$

where $\Delta_{\widetilde{h}} f(\widetilde{x}) := f(\widetilde{x} + \widetilde{h}) - f(\widetilde{x})$ for $\widetilde{h}, \widetilde{x} \in R_0^m$. Next, for a fixed $\widetilde{\alpha} \in R_+^m$ and $\widetilde{0} < \widetilde{\alpha} \le \widetilde{1}$, we define the class $\operatorname{Lip}(C_{\widetilde{p},m}; \widetilde{\alpha})$ of all functions $f \in C_{\widetilde{p},m}$ for which

$$\omega(f,C_{\widetilde{p},m};\widetilde{t}\,)=0\left(t_1^{\alpha_1}+t_2^{\alpha_2}+\ldots+t_m^{\alpha_m}\right)$$

as $t_k \to 0_+$ for $0 \le k \le m$.

1.3. In the papers [2] – [4] were considered the following operators L_n and U_n for $f \in C_{p,1}$

(4)
$$L_n(f;x) := \sum_{j=0}^{\infty} a_{n,j}(x) f\left(\frac{2j}{n}\right),$$

(5)
$$U_n(f;x) := \sum_{j=0}^{\infty} a_{n,j}(x) \frac{n}{2} \int_{\frac{2j}{n}}^{n} f(t) dt,$$

 $n \in N$ and $x \in R_0$, where

(6)
$$a_{n,j}(x) = \frac{1}{\cosh nx} \frac{(nx)^{2j}}{(2j)!}, \qquad j \in N_0,$$

and $\cosh x$, $\sinh x$, $\tanh x$ are the elementary hyperbolic functions.

In [4] was proved that L_n and U_n , $n \in \mathbb{N}$, are a linear positive operators from the space $C_{p,1}$ into $C_{q,1}$ for every q > p > 0, provided that $n > p (\ln q/p)^{-1}$. Moreover some approximation properties of these operators are given in [2] and [4].

1.4. In this note we introduce the operators $L_{\widetilde{n}}^{[i]}$, $\widetilde{n} \in N^m$, i = 1,2, in the space $C_{\widetilde{p},m}$ with some $m \in N$ and $\widetilde{p} \in R_+^m$. For $\widetilde{n} \in N^m$, $\widetilde{k} \in N_0^m$ and $\widetilde{x} \in R_0^m$ we set

(7)
$$A_{\widetilde{n},\widetilde{k}}(\widetilde{x}) := \prod_{j=1}^{m} a_{n_{j},k_{j}}(x_{j}),$$

(8)
$$B_{\widetilde{n},\widetilde{k}}(\widetilde{x}) := \prod_{j=1}^{m} \frac{n_j}{2} a_{n_j,k_j}(x_j),$$

where $a_{n_j,k_j}(x_j)$ is defined by (6). Next, for $f \in C_{\widetilde{p},m}$, $\widetilde{n} \in \mathbb{N}^m$ and $\widetilde{x} \in \mathbb{R}_0^m$, we define the operators $L_{\widetilde{n}}^{\{i\}}$, i = 1,2, as follows

(9)
$$L_{\widetilde{n}}^{\{1\}}(f;\widetilde{x}) := \sum_{\widetilde{k} \geq \widetilde{0}} A_{\widetilde{n},\widetilde{k}}(\widetilde{x}) f\left(\frac{2\widetilde{k}}{\widetilde{n}}\right),$$

(10)
$$L_{\widetilde{n}}^{\{2\}}(f;\widetilde{x}) := \sum_{\widetilde{k} \geq \widetilde{0}} B_{\widetilde{n},\widetilde{k}}(\widetilde{x}) \int_{\frac{2\widetilde{k}+\widetilde{2}}{\widetilde{n}}}^{\frac{2\widetilde{k}+\widetilde{2}}{\widetilde{n}}} f(\widetilde{t}) d\widetilde{t}.$$

From (6) – (10) we deduce that $L_{\widetilde{n}}^{\{i\}}$, $\widetilde{n} \in \mathbb{N}^m$, i = 1,2, is well-defined on every $C_{\widetilde{p},m}$ and $L_{\widetilde{n}}^{\{i\}}$ is linear positive operator.

Since
$$\sum_{k=0}^{\infty} a_{n,k}(x) = 1$$
 for all $x \in R_0$ and $n \in N$, we have by (6) – (10)

(11)
$$L_{\widetilde{n}}^{\{i\}}(1;\widetilde{x})=1$$
 for all $\widetilde{x} \in R_0^m$, $\widetilde{n} \in N^m$, $i=1,2$.

Next, we observe that if $f(\widetilde{x}) = f_1(x_1) \cdot f_2(x_2) \cdot ... \cdot f_m(x_m)$ for $\widetilde{x} \in R_0^m$ and $f_k(x_k) \in C_{p_k,1}$, $1 \le k \le m$, with some $p_k \in R_+$, then $f \in C_{\widetilde{p},m}$ with $\widetilde{p} = (p_1, ..., p_m)$ and moreover for all $\widetilde{x} \in R_0^m$ and $\widetilde{n} \in N^m$ holds

(12)
$$L_{\widetilde{n}}^{\{1\}}(f;\widetilde{x}) = \prod_{j=1}^{m} L_{n_{j}}(f_{j};x_{j}),$$

(13)
$$L_{\widetilde{n}}^{\{2\}}(f;\widetilde{x}) = \prod_{j=1}^{m} U_{n_{j}}(f_{j};x_{j}).$$

In this paper we shall denote by $M_{p,q}$ the suitable positive constants depending only on indicated parameters p,q.

2. AUXILIARY RESULTS

2.1. First we shall give some basic properties of the operators L_n and U_n defined by (4) – (6). In [2], [4] and [5] are proved the following lemmas:

Lemma 1 ([2]). For every $x \in R_0$ and $n \in N$ we have

$$L_n(1;x) = 1 = U_n(1;x),$$

$$L_n((t-x)^2;x) \le \frac{3(x+1)}{n},$$

$$U_n((t-x)^2;x) \le \frac{19x+1}{4n}.$$

Lemma 2 ([4]). For every q > p > 0 there exist positive constant $M_{p,q}$ and a natural number $n_0 > p(\ln q/p)^{-1}$ such that for all $x \in R_0$ and $n > n_0$

$$\left\| L_n \left(\frac{1}{v_p(t)}; \cdot \right) \right\|_q$$

$$\left\| U_n \left(\frac{1}{v_p(t)}; \cdot \right) \right\|_q$$

$$v_q(x) L_n \left(\frac{(t-x)^2}{v_p(t)}; x \right)$$

$$v_q(x) U_n \left(\frac{(t-x)^2}{v_p(t)}; x \right)$$

$$\leq M_{p,q} \frac{x+1}{n}.$$

Lemma 3 ([5]). For every fixed $s \in N_0$ and q > p > 0 there exists positive constant $M_{p,q,s}$ and natural number n_0 , $n_0 > p(\ln q/p)^{-1}$, such that for all $n > n_0$ holds

$$\sup_{x \in R_0} v_q(x) \sum_{j=0}^{\infty} \left| \frac{d^s}{dx^s} a_{n,j}(x) \right| \frac{1}{v_p\left(\frac{2k}{n}\right)} \le M_{p,q,s} n^s. \quad \blacksquare$$

Using Lemma 1 and Lemma 2, we shall prove

Lemma 4. Let p,q be fixed numbers and q > p. Then there exist a positive constant $M_{p,q}$ and natural number $n_0 > p(\ln q/p)^{-1}$ such that for every $x \in R_0$ and $n > n_0$

$$\begin{vmatrix} v_q(x) L_n \left(\left| \int_x^t \frac{du}{v_p(u)} \right|; x \right) \\ v_q(x) U_n \left(\left| \int_x^t \frac{du}{v_p(u)} \right|; x \right) \end{vmatrix} \le M_{p,q} \sqrt{\frac{x+1}{n}}.$$

Proof. We shall prove only the above inequality for L_n because the proof for U_n is analogous. As in [4] by (1) we have

$$\left| \int_{x}^{t} \frac{1}{v_p(u)} du \right| \le \left(\frac{1}{v_p(t)} + \frac{1}{v_p(x)} \right) |t - x|, \qquad x, t \in R_0.$$

Hence for every $x \in R_0$, $n \in N$ and q > p we get

$$v_{q}(x) L_{n}\left(\left|\int_{x}^{t} \frac{du}{v_{p}(u)}\right|; x\right) \leq v_{q}(x) L_{n}\left(\frac{|t-x|}{v_{p}(t)}; x\right) + L_{n}(|t-x|; x).$$

Using the Hölder inequality and Lemma 1 and Lamma 2 we obtain

$$L_n(|t-x|;x) \leq \{L_n((t-x)^2;x)\}^{1/2} \{L_n(1;x)\}^{1/2} \leq \sqrt{\frac{3(x+1)}{n}},$$

$$v_{q}(x)L_{n}\left(\frac{|t-x|}{v_{p}(t)};x\right) \leq v_{q}\left\{L_{n}\left(\frac{(t-x)^{2}}{v_{p}(t)};x\right)\right\}^{1/2}\left\{L_{n}\left(\frac{1}{v_{p}(t)};x\right)\right\}^{1/2} \leq M_{p,q}\sqrt{\frac{x+1}{n}},$$

for every $x \ge 0$ and $n > n_0$, where n_0 is given in Lemma 2. Summing up, we obtain the desired inequality for L_n .

2.2. Applying the above lemmas, we shall prove two lemmas on the operators $L_{\widetilde{n}}^{\{i\}}$.

Lemma 5. For every fixed $m \in N$, \widetilde{p} , $\widetilde{q} \in R_+^m$ and $\widetilde{q} > \widetilde{p}$ there exist positive constant $M_{\widetilde{p},\widetilde{q}}$ and $\widetilde{n}^* = (n_1^*,...,n_m^*) \in N^m$ satisfying the condition

(14)
$$n_j^* > p_j \left(\ln \frac{q_j}{p_j} \right)^{-1} \qquad \text{for} \quad 1 \le j \le m,$$

such that for all $\widetilde{n} > \widetilde{n}^*$, $\widetilde{n} \in \mathbb{N}^m$, and i = 1,2 we have

(15)
$$\left\| L_{\widetilde{n}}^{\{i\}} \left(\frac{1}{v_{\widetilde{p}}(\widetilde{t})}; \cdot \right) \right\|_{\widetilde{q}} \leq M_{\widetilde{p}, \widetilde{q}}.$$

Proof. By (1) – (12) we have for $\widetilde{x} \in R_0^m$ and $n \in N^m$

$$v_{\widetilde{q}}(\widetilde{x})L_{\widetilde{n}}^{\{1\}}\left(\frac{1}{v_{\widetilde{p}}(\widetilde{t})};\widetilde{x}\right)=\prod_{j=1}^{m}v_{q_{j}}(x_{j})L_{n_{j}}\left(\frac{1}{v_{p_{j}}(t_{j})};x_{j}\right),$$

$$v_{\widetilde{q}}(\widetilde{x}) L_{\widetilde{n}}^{\{2\}} \left(\frac{1}{v_{\widetilde{p}}(\widetilde{t})}; \widetilde{x} \right) = \prod_{j=1}^{m} v_{q_{j}}(x_{j}) U_{n_{j}} \left(\frac{1}{v_{p_{j}}(t_{j})}; x_{j} \right).$$

From this and by Lemma 2 we immediately obtain the desired assertion (15).

Lemma 6. Let $f \in C_{\widetilde{p},m}$ with some $m \in N$, $\widetilde{p} \in R_+^m$ and let $\widetilde{q} \in R_+^m$ and $\widetilde{q} > \widetilde{p}$. Then there exist positive constant $M_{\widetilde{p},\widetilde{q}}$ and $\widetilde{n}^* \in N^m$ satisfying the condition (14) such that for all $\widetilde{n} > \widetilde{n}^*$, $\widetilde{n} \in N^m$, and i = 1,2

(16)
$$\left\|L_{\widetilde{n}}^{\{i\}}(f;\cdot)\right\|_{\widetilde{q}} \leq M_{\widetilde{p},\widetilde{q}}\|f\|_{\widetilde{p}}.$$

This inequality and (6) – (10) show that $L_{\widetilde{n}}^{\{i\}}$, $\widetilde{n} \in \mathbb{N}^m$, i = 1, 2, is a linear positive operator from the space $C_{\widetilde{p},m}$ into $C_{\widetilde{q},m}$ with $\widetilde{q} > \widetilde{p}$, provided that $\widetilde{n} > \widetilde{n}^*$.

Proof. From (1) – (10) we get for $\widetilde{x} \in R_0^m$, $\widetilde{n} \in N^m$ and i = 1,2

$$|v_{\widetilde{q}}(\widetilde{x})|L_{\widetilde{n}}^{\{i\}}(f;\widetilde{x})| \leq ||f||_{\widetilde{p}} |v_{\widetilde{q}}(\widetilde{x})| L_{\widetilde{n}}^{\{i\}}\left(\frac{1}{v_{\widetilde{p}}(\widetilde{t})};\widetilde{x}\right)|,$$

which by (3) and Lemma 5 implies (16) for $\tilde{n} > \tilde{n}^*$ and i = 1,2.

3. THE MAIN THEOREMS

3.1. In this part we shall prove two theorems on the degree of approximation of functions $f \in C_{\widetilde{p},m}$ by $L_{\widetilde{n}}^{\{i\}}$. For a fixed $m \in N$ and $\widetilde{p} \in R_+^m$ we define the space

$$C^1_{\widetilde{p},m} := \left\{ f \in C_{\widetilde{p},m} : \frac{\partial f}{\partial x_j} \in C_{\widetilde{p},m} \quad \text{for} \quad 1 \le k \le m \right\}.$$

Theorem 1. Suppose that $f \in C^1_{\widetilde{p},m}$ with some fixed $m \in N$ and $\widetilde{p} \in R^m_+$. Then for every fixed $\widetilde{q} \in R^m_+$ and $\widetilde{q} > \widetilde{p}$ there exist positive constant $M_{\widetilde{p},\widetilde{q}}$ and $\widetilde{n}^* \in N^m$ satisfying the condition (14) such that for all $\widetilde{x} \in R^m_0$, $\widetilde{n} > \widetilde{n}^*$ ($\widetilde{n} \in N$) and i = 1,2 we have

$$(17) w_{\widetilde{q}}(\widetilde{x}) \left| L_{\widetilde{n}}^{\{i\}}(f; \widetilde{x}) - f(\widetilde{x}) \right| \le M_{\widetilde{p}, \widetilde{q}} \sum_{j=1}^{m} \left\| \frac{\partial f}{\partial x_{j}} \right\|_{\widetilde{p}} \sqrt{\frac{x_{j}+1}{n_{j}}}.$$

Proof. Let $\widetilde{x} = (x_1,...,x_m)$ be a fixed point in R_0^m . Then by our assumption we can write for every $\widetilde{t} = (t_1,...,t_m) \in R_0^m$

$$f(\widetilde{t}) - f(\widetilde{x}) = \sum_{k=1}^{m} \int_{x_k}^{t_k} \frac{\partial}{\partial u_k} f(\widetilde{y}_k) du_k,$$

where $\widetilde{y}_k = (x_1, ..., x_{k-1}, u_k, t_{k+1}, ..., t_m)$. From this and by (11), for $\widetilde{n} \in \mathbb{N}^m$ and i = 1, 2, follows

$$L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t});\widetilde{x}) - f(\widetilde{x}) = \sum_{k=1}^{m} L_{\widetilde{n}}^{\{i\}} \left(\int_{x_{k}}^{t_{k}} \frac{\partial}{\partial u_{k}} f(\widetilde{y}_{k}) du_{k}; \widetilde{x} \right)$$

and consequently for $\widetilde{q} > \widetilde{p}$

$$\left|v_{\widetilde{q}}(\widetilde{x})\left|L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t});\widetilde{x})-f(\widetilde{x})\right| \leq \sum_{k=1}^{m} v_{\widetilde{q}}(\widetilde{x}) L_{\widetilde{n}}^{\{i\}}\left(\left|\int_{x_{k}}^{t_{k}} \frac{\partial}{\partial u_{k}} f(\widetilde{y}_{k}) du_{k}\right|;\widetilde{x}\right)\right|$$

But by (1) - (3) we have

$$\left| \int_{x_k}^{t_k} \frac{\partial}{\partial u_k} f(\widetilde{y}_k) du_k \right| \le \left\| \frac{\partial f}{\partial x_k} \right\|_{\widetilde{p}} \left| \int_{x_k}^{t_k} \frac{du_k}{v_{\widetilde{p}}(\widetilde{y}_k)} \right| =$$

$$= \left\| \frac{\partial f}{\partial x_k} \right\|_{\widetilde{p}} \left(\prod_{j=1}^{k-1} \frac{1}{v_{p_j}(x_j)} \right) \left(\prod_{j=k+1}^{m} \frac{1}{v_{p_j}(t_j)} \right) \left| \int_{x_k}^{t_k} \frac{du_k}{v_{p_k}(u_k)} \right| \quad \text{for} \quad 2 \le k \le m-1$$

and

$$\left| \int_{x_1}^{t_1} \frac{\partial}{\partial u_1} f(\widetilde{y}_1) du_1 \right| \leq \left\| \frac{\partial f}{\partial x_1} \right\|_{\widetilde{p}} \left(\prod_{j=2}^m \frac{1}{v_{p_j}(t_j)} \right) \left| \int_{x_1}^{t_1} \frac{du_1}{v_{p_1}(\widetilde{y}u_1)} \right|,$$

$$\left| \int_{x_m}^{t_m} \frac{\partial}{\partial u_m} f(\widetilde{y}_m) du_m \right| \leq \left\| \frac{\partial f}{\partial x_m} \right\|_{\widetilde{p}} \left(\prod_{j=1}^{m-1} \frac{1}{v_{p_j}(x_j)} \right) \left| \int_{x_m}^{t_m} \frac{du_m}{v_{p_m}(u_m)} \right|.$$

Hence, using (1), (2), (12), Lemma 2 and Lemma 4, we get for i = 1

$$\begin{split} v_{\widetilde{q}}(\widetilde{x}) L_{\widetilde{n}}^{\{1\}} & \left(\left\| \int_{x_{k}}^{t_{k}} \frac{\partial}{\partial u_{m}} f(\widetilde{y}_{m}) du_{m} \right|; \widetilde{x} \right) \leq \\ & \leq \left\| \frac{\partial f}{\partial x_{m}} \right\|_{\widetilde{p}} \left(\left\| \prod_{j=1}^{m-1} L_{n_{j}}(1; x_{j}) \right\| v_{q_{m}}(x_{m}) L_{n_{m}} \left(\left\| \int_{x_{m}}^{t_{m}} \frac{du_{m}}{v_{p_{m}}(u_{m})} \right|; x_{m} \right) \leq \\ & \leq M_{\widetilde{p}, \widetilde{q}} \left\| \frac{\partial f}{\partial x_{m}} \right\|_{p} \sqrt{\frac{x_{m}+1}{n_{m}}} \qquad \text{for} \qquad n_{m} > n_{m}^{*}, \end{split}$$

$$v_{\widetilde{q}}(\widetilde{x}) L_{\widetilde{n}}^{\{1\}} \left(\left| \int_{x_k}^{t_k} \frac{du_k}{v_{\widetilde{p}}(\widetilde{y}_k)} \right|; \widetilde{x} \right) \leq$$

$$\leq \left\| \frac{\partial f}{\partial x_{k}} \right\|_{\widetilde{p}} \left\{ \prod_{j=k+1}^{m} v_{q_{j}}(x_{j}) L_{n_{j}} \left(\frac{1}{v_{p_{j}}(t_{j})}; x_{j} \right) \right\} v_{q_{k}}(x_{k}) L_{n_{k}} \left(\left\| \int_{x_{k}}^{t_{k}} \frac{du_{k}}{v_{p_{k}}(u_{k})} \right|; x_{k} \right) \leq \\ \leq M_{\widetilde{p}, \widetilde{q}} \left\| \frac{\partial f}{\partial x_{k}} \right\|_{\widetilde{p}} \sqrt{\frac{x_{k}+1}{n_{k}}} \qquad \text{for} \qquad n_{k} > n_{k}^{*} \quad \text{and} \quad 1 \leq k \leq m-1.$$

The identical inequalities we get for i = 2, by (13), Lemma 2 and Lemma 4 for U_n .

Using the above inequalities to (18), we obtain the desired estimation (17).

Theorem 2. Suppose that $f \in C_{\widetilde{p},m}$ with some $m \in N$ and $\widetilde{p} \in R_+^m$. Then for every fixed $\widetilde{q} \in R_+^m$ and $\widetilde{q} > \widetilde{p}$ there exist positive constant $M_{\widetilde{p},\widetilde{q}}$ and $\widetilde{n}^* \in N^m$ satisfying the condition (14) such that for all $\widetilde{x} \in R_0^m$, $\widetilde{n} > \widetilde{n}^*$ and $\widetilde{n} \in N^m$, and i = 1,2 holds

$$(19) \quad v_{\widetilde{q}}(\widetilde{x}) \left| L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t}); \widetilde{x}) - f(\widetilde{x}) \right| \leq M_{\widetilde{p}, \widetilde{q}} \ \omega \left(f, C_{\widetilde{p}, m}; \sqrt{\frac{x_1 + 1}{n_1}}, ..., \sqrt{\frac{x_m + 1}{n_m}} \right).$$

Proof. Let as in [3] $f_{\widetilde{h}}$ be the Steklov mean of $f \in C_{\widetilde{p},m}$ defined by the formula

$$f_{\widetilde{h}}(\widetilde{x}) := \frac{1}{h_1 h_2 ... h_m} \int_{\widetilde{0}}^{\widetilde{h}} f(\widetilde{x} + \widetilde{u}) d\widetilde{u}$$

for $\widetilde{h} \in R_+^m$ and $\widetilde{x} \in R_0^m$. Then

$$f_{\widetilde{h}}(\widetilde{x}) - f(\widetilde{x}) = \frac{1}{h_1 h_2 ... h_m} \int_{\widetilde{0}}^{\widetilde{h}} (f(\widetilde{x} + \widetilde{u}) - f(\widetilde{x})) d\widetilde{u}$$

and for $1 \le k \le m$

$$\frac{\partial}{\partial x_k} f_{\widetilde{h}}(\widetilde{x}) = \frac{1}{h_1 h_2 \dots h_m} \int_0^{h_1} \dots \int_0^{h_{k-1}} \int_0^{h_{k+1}} \dots \int_0^{h_m} (f(\widetilde{x} + \widetilde{u}') - f(\widetilde{x} + \widetilde{u}'')) d\widetilde{u}''$$

where $\widetilde{u}' := (u_1, ..., u_{k-1}, h_k, u_{k+1}, ..., u_m), \quad \widetilde{u}'' := (u_1, ..., u_{k-1}, 0, u_{k+1}, ..., u_m),$ $d\widetilde{u}'' = du_1 ... du_{k-1} du_{k+1} ... du_m.$ From this we get for $\widetilde{h} \in R_+^m$

(20)
$$\|f_h - f\|_{\widetilde{p}} \le \omega(f, C_{\widetilde{p}, m}; \widetilde{h}),$$

(21)
$$\left\| \frac{\partial f_{\widetilde{h}}}{\partial x_k} \right\|_{\widetilde{p}} \leq 2h_k^{-1} \omega (f, C_{\widetilde{p}, m}; \widetilde{h}), \qquad 1 \leq k \leq m,$$

which implies $f_{\widetilde{h}} \in C^1_{\widetilde{p},m}$. Hence we can write for every $\widetilde{x} \in R^m_0$, $\widetilde{h} \in R^m_+$, $\widetilde{q} > \widetilde{p}$ and i = 1,2

(22)
$$v_{\widetilde{q}}(\widetilde{x}) \left| L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t}); \widetilde{x}) - f(\widetilde{x}) \right| \leq v_{\widetilde{q}}(\widetilde{x}) \left\{ \left| L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t}) - f_{\widetilde{h}}(\widetilde{t}); \widetilde{x}) \right| + \left| L_{\widetilde{n}}^{\{i\}}(f_{\widetilde{h}}(\widetilde{t}); \widetilde{x}) - f_{\widetilde{h}}(\widetilde{x}) \right| + \left| f_{\widetilde{h}}(\widetilde{x}) - f(\widetilde{x}) \right| \right\} := S_1 + S_2 + S_3.$$

Applying Lemma 6 and (20), we get for $\tilde{n} > \tilde{n}^*$ and $\tilde{h} \in \mathbb{R}_+^m$

$$S_{1} \leq M_{\widetilde{p},\widetilde{q}} \left\| f - f_{\widetilde{h}} \right\|_{\widetilde{p}} \leq M_{\widetilde{p},\widetilde{q}} \, \omega \, (f, C_{\widetilde{p},m}\,; \widetilde{h}),$$

and

$$S_3 \leq \|f - f_{\widetilde{h}}\|_{\widetilde{p}} \leq \omega (f, C_{\widetilde{p}, m}; \widetilde{h}).$$

In view of Theorem 1 and (21) we have

$$S_{2} \leq M_{\widetilde{p},\widetilde{q}} \sum_{j=1}^{m} \left\| \frac{\partial f_{\widetilde{h}}}{\partial x_{j}} \right\|_{\widetilde{p}} \sqrt{\frac{x_{j}+1}{n_{j}}} \leq 2M_{\widetilde{p},\widetilde{q}} \ \omega\left(f,C_{\widetilde{p},m}\,;\widetilde{h}\right) \sum_{j=1}^{m} h_{j}^{-1} \sqrt{\frac{x_{j}+1}{n_{j}}}$$

for $\widetilde{n} > \widetilde{n}^*$ and $\widetilde{h} \in R_0^m$. Consequently we get from (22)

$$(23) \quad v_{\widetilde{q}}(\widetilde{x}) \left| L_{\widetilde{n}}^{\{i\}}(f(\widetilde{t}); \widetilde{x}) - f_{\widetilde{h}}(\widetilde{x}) \right| \leq \\ \leq M_{\widetilde{p}, \widetilde{q}} \ \omega(f, C_{\widetilde{p}, m}; h_1, \dots, h_m) \left\{ 1 + \sum_{j=1}^{m} h_j^{-1} \sqrt{\frac{x_j + 1}{n_j}} \right\},$$

for $\widetilde{x} \in R_0^m$, $\widetilde{n} > \widetilde{n}^*$, $\widetilde{h} \in R_0^m$ and i = 1,2. Now, for fixed \widetilde{x} and \widetilde{n} , setting $\widetilde{h} = (\sqrt{(x_1 + 1)/n_1}, \sqrt{(x_2 + 1)/n_2}, ..., \sqrt{(x_m + 1)/n_m})$ to (23), we obtain the desired estimation (19). Thus the proof is finished.

From Theorem 2 we derive the following two corollaries.

Corollary 1. Let $f \in C_{\widetilde{p},m}$ with some $m \in N$ and $\widetilde{p} \in R_+^m$. Then for every $\widetilde{x} \in R^m$ and i = 1,2 holds

$$\lim_{\widetilde{n}\to\widetilde{\widetilde{\infty}}}L_{\widetilde{n}}^{\{i\}}(f;\widetilde{x})=f(\widetilde{x}).$$

Corollary 2. Let $f \in \text{Lip}(C_{\widetilde{p},m},\widetilde{\alpha})$ with some $m \in N$, $\widetilde{p} \in R_+^m$, $\widetilde{\alpha} \in R_+^m$ and $\widetilde{\alpha} \leq \widetilde{1}$. Then for every $\widetilde{q} \in R_+^m$, $\widetilde{q} > \widetilde{p}$, there exist positive constant $M_{\widetilde{p},\widetilde{q}}$ and $\widetilde{n}^* \in N^m$ as in Theorem 1 such that for all $\widetilde{x} \in R_0^m$, $\widetilde{n} > \widetilde{n}^*$ and i = 1,2 holds

$$\nu_{\widetilde{q}}(\widetilde{x})\left|L_{\widetilde{n}}^{\{i\}}(f;\widetilde{x})-f(\widetilde{x})\right|\leq M_{\widetilde{p},\widetilde{q}}\sum_{k=1}^{m}\left(\frac{x_{k}+1}{n_{k}}\right)^{\frac{\alpha_{k}}{2}},$$

3.2. Finally we shall prove the Berstein inequality for the operators $L_{\widetilde{n}}^{\{i\}}$ (see. [5]).

Theorem 3. Suppose that $f \in C_{\widetilde{p},m}$ with some $m \in N$ and $\widetilde{p} > R_+^m$. Then for every fixed $\widetilde{q} \in R_+^m$, $\widetilde{q} > \widetilde{p}$, and $\widetilde{s} = (s_1,...,s_m) \in N^m$ there exist positive constant $M_{\widetilde{p},\widetilde{q},\widetilde{s}}$ and $\widetilde{n}^* \in N^m$ satisfying the condition (14) such that for all $\widetilde{n} > \widetilde{n}^*$ and i = 1,2 holds the following Berstein inequality

(24)
$$\left\| \frac{\partial^{s_1+s_2+\ldots+s_m}}{\partial x_1^{s_1} \partial x_2^{s_2} \ldots \partial x_m^{s_m}} L_{\widetilde{n}}^{\{i\}}(f; \widetilde{x}) \right\|_{\widetilde{q}} \leq M_{\widetilde{p}, \widetilde{q}, \widetilde{s}} \left(\prod_{k=1}^m n_k^{s_k} \right) \|f\|_{\widetilde{p}}.$$

Proof. Let i=1. In view of (9), (7) and (2) we have for $\widetilde{s} \in N_0^m$, $\widetilde{x} \in R_0^m$ and $\widetilde{n} \in N^m$

$$\begin{split} \left| \frac{\partial^{s_1 + \dots + s_m}}{\partial x_1^{s_1} \dots \partial x_m^{s_m}} L_{\widetilde{n}}^{\{1\}}(f; \widetilde{x}) \right| \leq \\ &\leq \sum_{k_1 = 0}^{\infty} \dots \sum_{k_m = 0}^{\infty} \left| a_{n_1, k_1}^{(s_1)}(x_1) \right| \dots \left| a_{n_m, k_m}^{(s_m)}(x_m) \right| \left| f\left(\frac{2k_1}{n_1}, \dots, \frac{2k_m}{n_m}\right) \right| \leq \\ &\leq \|f\|_{\widetilde{p}} \prod_{j = 1}^{m} \left(\sum_{k_j = 0}^{\infty} \left| \frac{d^{s_j}}{dx_j^{s_j}} a_{n_j, k_j}(x_j) \right| \frac{1}{v_{p_j}\left(\frac{2k_j}{n_j}\right)} \right), \end{split}$$

which by (1) - (3) and Lemma 3 implies

$$\left\| \frac{\partial^{s_1 + \ldots + s_m}}{\partial x_1^{s_1} \ldots \partial x_m^{s_m}} L_{\widetilde{n}}^{\{1\}}(f; \widetilde{x}) \right\|_{\widetilde{q}} \leq$$

$$\leq \|f\|_{\widetilde{p}} \prod_{j=1}^m \left(\sup_{x_j \in R_0} v_{q_j}(x_j) \sum_{k_j = 0}^{\infty} \left| a_{n_j, k_j}^{(s_j)}(x_j) \right| \frac{1}{v_{p_j} \left(\frac{2k_j}{n_j} \right)} \right) \leq$$

$$\leq M_{\widetilde{p}, \widetilde{q}, \widetilde{s}} \|f\|_{\widetilde{p}} \prod_{j=1}^m n_j^{s_j} \qquad \text{for} \quad \widetilde{n} > \widetilde{n}^*.$$

The proof of (24) for i = 2 is similar.

REFERENCES

- [1] M. Becker, D. Kucharski, R.J. Nessel, Global approximation theorems for the Szasz Mirakjan operators in exponential weight spaces, In: Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1997) *Birkhäuser Verlag, Basel, ISNM*, 40(1978), 319-333.
- [2] B. Firlej, L. Rempulska, Approximation of functions by some linear positive operators, Grant KBN, 61–255/DS/1994 (in Polish).
- [3] B. Firlej, L. Rempulska, Approximation of functions of several variables by some operators of the Szasz-Mirakjan type, *Fasc. Math.* 27(1997), ...
- [4] M. Leśniewicz, L. Rempulska, Approximation by some operators of the Szasz Mirakjan type in exponential weight spaces, *Glasnik Matematički*, 32(52)(1997), 57-69
- [5] L. Rempulska, M. Skorupka, The Bernstein inequality for some operators of the Szasz-Mirakjan type, *Note di Matematica*, 14(2)(1994), 277-290.
- [6] A.F. Timan, Theory of Approximation of Functions of a Real Variable, New York 1963.

(Institute of Mathematics, Poznan University of Technology, 60-965 Poznań, Poland) Received on 19.02.1997 and, in revised form, on 25.06.1997.