EVA ŠPÁNIKOVÁ

OSCILLATORY PROPERTIES OF SOLUTIONS OF NEUTRAL DIFFERENTIAL SYSTEMS

ABSTRACT: The purpose of this paper is to obtain oscillation criterions for the neutral differential systems (S).

KEY WORDS: neutral differential system, oscillatory (nonoscillatory) solution.

1. INTRODUCTION

In this paper we consider the neutral differential system of the form

(S)
$$[y_1(t) - a(t)y_1(g(t))]' = p(t)y_2(t),$$

$$y_i'(t) = p(t)y_{i+1}(t), \quad i = 2,3,...,n-2; \quad n \ge 3$$

$$y_{n-1}'(t) = p_{n-1}(t)y_n(t)$$

$$y_n'(t) = p_n(t)y_1(h(t)), \quad i \in R_+ = [0,\infty).$$

The following conditions are assumed to hold throughout this paper:

(a) $p: R_+ \to [K, \infty)$, K > 0 is a continuous function, $p_i: R_+ \to R_+$, i = n-1, n, are continuous functions and not identically zero in every neighbourhood of infinity,

$$\int\limits_{0}^{\infty}p_{n-1}(t)dt=\infty;$$

- (b) $a: R_+ \to R$ is a continuous function satisfying $|a(t)| \le \lambda < 1$, where λ is a constant and $a(t)a(g(t)) \ge 0$ on R_+ ;
- (c) $g: R_+ \to R$ is a continuous and increasing function, g(t) < t on R_+ and $\lim_{t \to \infty} g(t) = \infty$;
- (d) $h: R_+ \to R_+$ is a continuous function and $\lim_{t \to \infty} h(t) = \infty$.

The asymptotic properties of solutions of systems with deviating arguments are studied for example in the papers [1, 5-8, 10-12, 14, 15]. As far as is know to the author, the oscillatory theory of systems of neutral differential equations is studied only in the papers [2-4, 9, 13, 16]. The purpose of this paper is to obtain oscillation criterions for the system (S). This paper is generalization of the results obtained in the paper [15].

Let $t_0 \ge 0$. Denote

$$\widetilde{t}_0 = \min \left\{ g(t_0), \inf_{t \geq t_0} h(t) \right\}.$$

A function $y = (y_1, ..., y_n)$ is solution of the system (S) if there exists a $t_0 \ge 0$ such that y is continuous on $[\widetilde{t_0}, \infty)$, $y_1(t) - a(t)y_1(g(t))$, $y_i(t)$, i = 2, ..., n are continuously differentiable on $[t_0, \infty)$ and y satisfies (S) on $[t_0, \infty)$.

Denote by W the set of all solutions $y = (y_1, \dots y_n)$ of the system (S) which exist on some ray $[T_v, \infty) \subset R_+$ and satisfy

$$\sup \left\{ \sum_{i=1}^{n} |y_i(t)| : t \ge T \right\} > 0 \quad \text{for any} \quad T \ge T_y.$$

A solution $y \in W$ is nonoscillatory if there exists a $T^* \ge T_y$ such that its every component is different from zero for all $t \ge T^*$. Otherwise a solution $y \in W$ is said to be oscillatory.

The following notation will be used throughout this paper: Let $r(t): R_+ \to R_+$ be a continuous and nondecreasing function such that $r(t) \le \min\{t, h(t)\}$ for $t \in R_+$ and $\lim_{t \to \infty} r(t) = \infty$.

$$\gamma(t) = \sup \{s \ge 0, r(s) \le t\}, \quad t > 0.$$

Let $t, s \in R_+, k \in \{0,1,...,n-2\}$. We define: $I_0 \equiv 1$,

$$I_k(t, s; p) = \int_{s}^{t} p(x) I_{k-1}(x, s; p) dx;$$

$$P_j(t) = I_j(t,0;p), \quad j \in \{0,1,\ldots,n-2\}.$$

It is not difficult to verify that the following inequalities hold:

$$(1_m^i) P_m(t) \le (P_1(t))^i P_{m-i}(t), \text{for} t \in R_+,$$
$$m \in \{1, 2, \dots, n-2\}, i \in \{0, 1, \dots, m\}.$$

For any $y_1(t)$ we define $z_1(t)$ by

(2)
$$z_1(t) = y_1(t) - a(t)y_1(g(t)).$$

2. SOME BASIC LEMMAS

The following lemmas will be useful in the proofs of the main results.

LEMMA 1. ([9, Lemma 1]). Let $y \in W$ be a solution of the system (S) with $y_1(t) \neq 0$ on $[t_0, \infty)$, $t_0 \geq 0$. Then y is nonoscillatory and $z_1(t)$, $y_2(t)$, ..., $y_n(t)$ are monotone on some ray $[T, \infty)$, $T \geq t_0$.

LEMMA 2. ([9, Lemma 2]). Let $y = (y_1, ..., y_n) \in W$ be a nonoscillatory solution of the system (S) and let $\lim_{t \to \infty} |z_1(t)| = L_1$, $\lim_{t \to \infty} |y_i(t)| = L_i$, i = 2, ..., n. Then

(3) if
$$k \ge 2, L_k > 0$$
 implies $\lim_{t \to \infty} |y_1(t)| = L_1 = L_2 = \dots = L_{k-1} = \infty$;

(4) if
$$1 \le k < n$$
, $L_k < \infty$ implies $L_{k+1} = L_{k+2} = \dots = L_n = 0$.

LEMMA 3. ([9, Lemma 4]). Let $y = (y_1, ..., y_n) \in W$ be a nonoscillatory solution of the system (S) on $[t_0, \infty)$, $t_0 \ge 0$. Then there exist an integer $l \in \{1, 2, ..., n\}$ with n+l odd or n=l, and a $t_1 \ge t_0$ such that for $t \ge t_1$ either

$$z_{1}(t)y_{1}(t) > 0$$

$$y_{i}(t)y_{1}(t) > 0, \quad i = 1, 2, ..., l$$

$$(-1)^{l+i}y_{i}(t)y_{1}(t) > 0, \quad i = l, l+1, ..., n$$

or

(6)
$$z_1(t)y_1(t) < 0$$

$$(-1)^i y_i(t)y_1(t) > 0, \quad i = 2,...,n, \quad where \ n \ is \ odd.$$

REMARK. The case $z_1(t)y_1(t) < 0$ on $[t_1, \infty)$ can occur only if a(t) > 0 on $[t_1, \infty)$ and n is odd.

We denote by N_l^+ or N_2^- the set of all nonoscillatory solutions of (S) which satisfy (5_l) or (6) respectively. Denote by N the set of all nonoscillatory solutions of (S). Then Lemma 3 the following classification holds for $t \in [t_1, \infty)$:

(7)
$$N = N_1^+ \cup N_3^+ \cup ... \cup N_{n-1}^+ \cup N_n^+ \text{ for } n \text{ even,}$$

$$N = N_2^+ \cup N_4^+ \cup ... \cup N_{n-1}^+ \cup N_n^+ \cup N_2^- \text{ for } n \text{ odd.}$$

LEMMA 4. ([9, Lemma 5]). I). Let $y \in N_l^+$ on $[t_1, \infty)$, $l \ge 2$. Then there exists a $t_2 \ge t_1$ such that

(8)
$$|y_1(t)| \ge (1-\lambda)|z_1(t)|$$
 for $t \ge t_2$.

- II) Let $y \in N_1^+$ on $[t_1, \infty)$.
- (i) If $\lim_{t\to\infty} |z_1(t)| = L_1 > 0$, then there exists an $\alpha: 0 < \alpha < 1$ such that

(9)
$$|y_1(t)| \ge \alpha |z_1(t)| \quad \text{for} \quad t \ge t_2.$$

(ii) If
$$\lim_{t \to \infty} z_1(t) = 0$$
 then $\liminf_{t \to \infty} |y_1(t)| = 0$, $\lim_{t \to \infty} y_i(t) = 0$, $i = 2, ..., n$.

LEMMA 5. ([9, Lemma 6]). Let $y \in N_2^-$ on $[t_1, \infty)$. Then

$$\lim_{t\to\infty} z_1(t) = \lim_{t\to\infty} y_i(t) = 0, \quad i=1,\ldots,n.$$

LEMMA 6. Let $y \in W$ be a solution of (S) on $[t_0, \infty)$, $t_0 \ge 0$. Then the following relations hold:

(10_{1,1})
$$z_1(t) = z_1(s) + \int_{s}^{t} p(x)y_2(x) dx;$$

$$(10_{1,k}) \quad z_1(t) + \sum_{j=2}^k (-1)^{1+j} y_j(t) P_{j-1}(t) = z_1(s) + \sum_{j=2}^k (-1)^{1+j} y_j(s) P_{j-1}(s) + (-1)^{1+k} \int_s^t P_{k-1}(x) p_k(x) y_{k+1}(x) dx,$$

for k = 2,3,...,n-1, $t,s \in [t_0,\infty)$, where $p_k(x) \equiv p(x)$ for k = 2,3,...,n-2;

$$(10_{i,k}) \sum_{j=i}^{k} (-1)^{i+j} y_j(t) P_{j-i}(t) = \sum_{j=i}^{k} (-1)^{i+j} y_j(s) P_{j-i}(s) +$$

$$+ (-1)^{i+k} \int_{s}^{t} P_{k-i}(x) p_k(x) y_{k+1}(x) dx$$

for i = 2,3,...,n-1, k = i, i+1,...,n-1, $t,s \in [t_0,\infty)$ where $p_k(x) \equiv p(x)$ for k = 2,3,...,n-2.

PROOF. Integrating *i*-th equation of (S) from *s* to *t* we get $(10_{i,i})$, $i=1,2,\ldots,n-1$. Suppose that $(10_{i,k-1})$ is true for $i=1,2,\ldots,n-1$, $k \in \{i+1,\ldots,n-1\}$. Integrating

$$(-1)^{i+k} \int_{s}^{t} P_{k-i}(x) p_{k}(x) y_{k+1}(x) dx$$

by parts and then using $(10_{i,k-1})$ we get $(10_{i,k})$.

LEMMA 7. Let $y \in N_l^+$ on $[t_1, \infty)$, $l \in \{2, 3, ..., n-1\}$. In addition let

(11)
$$\int_{0}^{\infty} P_{n-l}(x) p_{n-1}(x) |y_{n}(x)| dx = \infty.$$

Then there exists a $t_3 \ge t_2$ such that

(12) $\frac{|z_1(t)|}{(P_1(t))^{l-1}}$ is nonincreasing function on $[t_3, \infty)$;

$$(13) |z_{1}(t)| \geq \frac{P_{n-l}(t)}{(l-1)! (P_{1}(T))^{n-2l+1}} \int_{t}^{\infty} P_{n-l-1}(x) p_{n-1}(x) |y_{n}(x)| dx, \quad t \geq t_{3}.$$

PROOF. I) Let l = 2. From equation $(10_{1,n-1})$ with regard to (11) and (5_2) we obtain

$$\lim_{t\to\infty}|z_1(t)-y_2(t)P_1(t)|=\infty,$$

(14)
$$|z_1(t)| \ge |y_2(t)| P_1(t), \quad t \ge t_3$$

and

(15)
$$|z_1(t)| \ge \left| \sum_{j=2}^{n-1} (-1)^{j+2} y_j(t) P_{j-1}(t) \right|, \quad t \ge t_3,$$

for sufficiently large $t_3 \ge t_2$.

Form (14) we obtain (12) for l = 2. Using (5₂) and (1_{j-2}^{j-2}) from $(10_{2,n-1})$ we get

$$\left| \sum_{j=2}^{n-1} (-1)^{j+2} y_j(t) P_{j-2}(t) \right| \ge \int_t^\infty P_{n-3}(x) p_{n-1}(x) |y_n(x)| dx, \quad t \ge t_3$$

and

(16)
$$\left| \sum_{j=2}^{n-1} (-1)^{j+2} y_j(t) (P_1(t))^{j-2} \right| \ge \int_t^\infty P_{n-3}(x) p_{n-1}(x) |y_n(x)| dx, \quad t \ge t_3.$$

From (15) with regard to (1_{n-2}^{n-j-1}) we have

(17)
$$|z_1(t)| \ge \left| \sum_{j=2}^{n-1} (-1)^{j+2} y_j(t) \frac{P_{n-2}(t)}{(P_1(t))^{n-j-1}} \right|, \quad t \ge t_3.$$

Multiplying (16) by $P_{n-2}(t)/(P_1(t))^{n-3}$ and then using (17) we get (13) for l=2.

II) Let $l \in \{3,4,\ldots,n-1\}$. From equation $(10_{l-1,n-1})$ with regard to (11) and (5_l) we obtain

(18)
$$\lim_{t \to \infty} |y_{l-1}(t) - y_l(t)P_1(t)| = \infty$$

and

(19)
$$|y_{l-1}(t)| \ge \left| \sum_{j=l}^{n-1} (-1)^{j+l} y_j(t) P_{j-l+1}(t) \right|, \quad t \ge \widetilde{t}_2,$$

for sufficiently large $\tilde{t}_2 \ge t_2$.

Using (5_l) and (1_{l-1}^{j-l}) form (10_{l-1}) we get

$$\left| \sum_{j=1}^{n-1} (-1)^{j+l} y_j(t) P_{j-l}(t) \right| \ge \int_{t}^{\infty} P_{n-l-1}(x) p_{n-1}(x) |y_n(x)| dx, \quad t \ge \widetilde{t}_2$$

and

(20)
$$\left| \sum_{j=l}^{n-1} (-1)^{j+l} y_j(t) (P_1(t))^{j-l} \right| \ge \int_{t}^{\infty} P_{n-l-1}(x) p_{n-1}(x) |y_n(x)| dx, \quad t \ge \widetilde{t}_2.$$

From (19) with regard to $\binom{n-j-1}{n-l}$ we have

$$|y_{l-1}(t)| \ge \left| \sum_{j=l}^{n-1} (-1)^{j+l} y_j(t) \frac{P_{n-l}(t)}{(P_1(t))^{n-j-1}} \right|, \quad t \ge \widetilde{t}_2.$$

Multiplying (20) by $P_{n-l}(t)/(P_1(t))^{n-l-1}$ and then using (21) we get

$$(22) |y_{l-1}(t)| \ge \frac{P_{n-l}(t)}{(P_1(t))^{n-l-1}} \int_{t}^{\infty} P_{n-l-1}(x) p_{n-1}(x) |y_n(x)| dx, \quad t \ge \widetilde{t}_2.$$

Denote

$$\rho_k = |ky_{l-k}(t) - y_{l-k+1}(t)P_1(t)|, \quad k = 1, 2, \dots, l-2,$$

$$\rho_{l-1}(t) = |(l-1)z_1(t) - y_2(t)P_1(t)|.$$

It is easy to prove that $(\rho_{k+1}(t))' = p(t)\rho_k(t)$, $t \ge \widetilde{t}_2$, k = 1, 2, ..., l - 2. Using (18) and (a) we have $\lim \rho_i(t) = \infty$, i = 1, 2, ..., l - 1 and

$$(23_k) k|y_{l-k}(t)| \ge |y_{l-k+1}(t)|P_1(t), t \ge t_k^*, k=1,2,\ldots,l-2,$$

$$(23_{l-1}) (l-1)|z_1(t)| \ge |y_2(t)|P_1(t), t \ge t_{l-1}^*,$$

where the points t_i^* , i = 1, 2, ..., l-1 we can choose such that $t_{l-1}^* \ge t_{l-2}^* \ge ... \ge t_2^* \ge t_1^* \ge \widetilde{t}$. From (23_{l-1}) we obtain (12) and combining (22) with (23_i) , i = 2, 3, ..., l-1 we get (13) where $t_3 = t_{l-1}^*$.

LEMMA 8. Let $y \in W$ be a nonoscillatory solution of (S) on $[t_0, \infty)$, $t_0 \ge 0$. Then there exists a $t_4 \ge t_3$ such that

i) If $y \in N_1^+$ on $[t_1, \infty)$ then

(24)
$$|z_{1}(t)| \geq \int_{t}^{\infty} p(x_{1}) \int_{x_{1}}^{\infty} p(x_{2}) \dots \int_{x_{n-2}}^{\infty} p_{n-1}(x_{n-1}) \times \int_{x_{n-1}}^{\infty} p_{n}(x_{n}) |y_{1}(h(x_{n}))| dx_{n} dx_{n-1} \dots dx_{1}, \quad t \geq t_{4}.$$

ii) If $y \in N_l^+$ on $[t_1, \infty)$, $l \in \{2, 3, ..., n-1\}$ then

(25)
$$|y_n(t)| \ge (1-\lambda) \int_{t}^{\infty} p_n(x) |z_1(r(x))| dx, \quad t \ge t_4.$$

iii) If $y \in N_n^+$ on $[t_1, \infty)$ then

(26)
$$|y_n(t)| \ge (1-\lambda) \int_{s}^{t} p_n(x_n) \int_{r(s)}^{r(x_n)} p(x_1) \int_{r(s)}^{x_1} p(x_2) \times$$

$$\times \dots \int_{r(s)}^{x_{n-2}} p_{n-1}(x_{n-1}) |y_n(x_{n-1})| dx_{n-1} dx_{n-2} \dots dx_1 dx_n, \quad t \ge s \ge t_4.$$

PROOF. i) In this case the functions $|z_1(t)|$, $|y_i(t)|$, i = 2,3,...,n are nonincreasing on $[\gamma(t_1),\infty)$. Integrating all equations of (S) using (5_1) and then by their combination we have (24).

ii) In this case the function $|y_n(t)|$ is nonincreasing on $[\gamma(t_1), \infty)$. Integrating the last equation of (S) and then using (5_l) , (8) and the monotonicity of $|z_1(t)|$ we have (25).

iii) In this case the functions $|z_1(t)|$, $|y_i(t)|$, i = 2,3,...,n are nondecreasing on $[\gamma(t_1),\infty)$. Integrating all equations of (S) and then by their combination with help (5_n) and (8) we have (26).

3. OSCILLATION THEOREMS

THEOREM 1. Let n be odd and the assumptions

(27)
$$\limsup_{t \to \infty} \left\{ \frac{P_{n-2}(r(t))}{(P_1(r(t)))^{n-2}} \left(\int_{r(t)}^{t} P_{n-2}(r(x)) p_{n-1}(x) \int_{x}^{t} p_n(s) ds dx + P_{n-2}(r(t)) \int_{t}^{\infty} p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx \right) \right\} > \frac{(n-2)!}{1-\lambda}$$

and

(28)
$$\int_{s}^{\infty} p_{n}(x_{n}) \int_{r(s)}^{r(x_{n})} p(x_{1}) \int_{r(s)}^{x_{1}} p(x_{2}) \times \dots \times \times \int_{x_{n-2}}^{x_{n-2}} p_{n-1}(x_{n-1}) dx_{n-1} \dots dx_{2} dx_{1} dx_{n} = \infty$$

hold. Then every solution $y \in W$ of (S) is either oscillatory or $\lim_{t \to \infty} |y_i(t)| = \infty$, i = 1, 2, ..., n or $\lim_{t \to \infty} y_i(t) = 0$, i = 1, 2, ..., n.

PROOF. Let $y \in W$ be a nonoscillatory solution of (S). Using (7) we get

$$y \in N_2^+ \cup N_4^+ \cup ... \cup N_{n-1}^+ \cup N_n^+ \cup N_2^-$$
 on $[t_1, \infty)$.

A) Let $y \in N_l^+$ on $[t_1, \infty)$, $l \in \{2, 4, ..., n-1\}$. We shall prove that (11) holds. Denote

(29)
$$\int_{t_4}^{\infty} P_{n-l}(x) p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx = \infty.$$

From (11) with regard to (25) and the monotonicity of $|z_1(t)|$ we get

$$\int_{t_4}^{\infty} P_{n-l}(x) p_{n-1}(x) |y_n(x)| dx \ge K_1 \int_{t_4}^{\infty} P_{n-l}(x) p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx,$$

where $K_1 = (1 - \lambda) |z_1(r(t_4))| > 0$. The last inequality implies that (29) yields (11). We shall prove that (27) implies (29). Suppose the contrary:

$$\int_{t_4}^{\infty} P_{n-2}(x) p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx < \infty.$$

Then there exists a $t_5 \ge t_4$ such that

(30)
$$\int_{r(t)}^{t} P_{n-2}(x) p_{n-1}(x) \int_{x}^{t} p_{n}(s) ds dx +$$

$$+ \int_{t}^{\infty} P_{n-2}(x) p_{n-1}(x) \int_{x}^{\infty} p_{n}(s) ds dx \le \frac{(n-2)!}{1-\lambda}, \quad t \ge t_{5}.$$

From (30) with regard to (1_{n-2}^{n-2}) and the monotonicity of $P_{n-2}(x)$ we have

$$\frac{P_{n-2}(r(t))}{(P_1(r(t)))^{n-2}} \left(\int_{r(t)}^{t} P_{n-2}(r(x)) p_{n-1}(x) \int_{x}^{t} p_n(s) ds dx + P_{n-2}(r(t)) \int_{t}^{\infty} p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx \right) \le \frac{(n-2)!}{1-\lambda}, \quad t \ge t_5.$$

which contradicts (27). The assumption (11) of Lemma 7 is satisfied. From (13) and (25) we get

$$(31) |z_{1}(r(t))| \geq \frac{(1-\lambda)P_{n-1}(r(t))}{(l-1)!(P_{1}(r(t)))^{n-2l+1}} \begin{cases} \int_{r(t)}^{t} p_{n}(s)|z_{1}(r(s))| \times \\ \int_{r(t)}^{t} p_{n}(s)|z_{1}(r(s))|z_{1}(r(s))| \times \\ \int_{r(t)}^{t} p_{n}(s)|z_{1}(r(s))|z_{1}(r(s))|x_{$$

$$\times \int_{r(t)}^{s} P_{n-l-1}(x) p_{n-1}(x) dx ds + \int_{t}^{\infty} p_{n}(s) |z_{1}(r(s))| \int_{r(t)}^{s} P_{n-l-1}(x) p_{n-1}(x) dx ds \bigg\},$$

 $t \ge t_6$, $t_6 = \max{\{\gamma(\gamma(t_3)), t_4\}}$. From (12) for $s \in [r(t), t]$ we obtain

(32)
$$|z_1(r(s))| \ge \frac{|z_1(r(t))|(P_1(r(s)))^{l-1}}{(P_1(r(t)))^{l-1}}, \quad \text{for} \quad t \ge \gamma(\gamma(t_3)).$$

From (31) in view of (32) and the monotonicity of $|z_1(t)|$ we derive

$$\frac{(l-1)!|z_{1}(r(t))|(P_{1}(r(t)))^{n-2l+1}}{P_{n-l}(r(t))} \geq \frac{(1-\lambda)|z_{1}(r(t))|}{(P_{1}(r(t)))^{l-1}} \times \left\{ \int_{r(t)}^{t} p_{n}(t)(P_{1}(r(s)))^{l-1} \int_{r(t)}^{s} P_{n-l-1}(x) p_{n-1}(x) dx ds + + (P_{1}(r(t)))^{l-1} \int_{t}^{\infty} p_{n}(s) \int_{r(t)}^{s} P_{n-l-1}(x) p_{n-1}(x) dx ds \right\}, \quad t \geq t_{6}.$$

Using (1_{n-1}^{l-1}) , (1_{n-2}^{l-2}) and the monotonicity of $P_{n-l-1}(x)$ and $P_1(r(s))$ from the last inequality we obtain

$$(n-2)! \ge (1-\lambda) \frac{P_{n-2}(r(t))}{(P_1(r(t)))^{n-2}} \left\{ \int_{r(t)}^{t} P_{n-2}(r(x)) p_{n-1}(x) \int_{x}^{t} p_n(s) ds dx + P_{n-2}(r(t)) \int_{t}^{\infty} p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx \right\}, \quad t \ge t_6,$$

which contradicts (27) and $N_2^+ \cup N_4^+ \cup ... \cup N_{n-1}^+ = 0$.

B) Let $y \in N_n^+$ on $[t_1, \infty)$. In this case the functions $|z_1(t)|$, $|y_i(t)|$, $i=2,3,\ldots,n$ are nondecreasing on $[\gamma(t_1),\infty)$ and $\lim_{t\to\infty}|y_n(t)|=L_n>0$. From (3) we have $\lim_{t\to\infty}|y_i(t)|=\infty$, $i=1,2,\ldots,n-1$. We shall prove that $L_n=\infty$. In view of (26) we get

$$|y_n(t)| \ge (1-\lambda)|y_n(r(s))| \int_{s}^{t} p_n(x_n) \int_{r(s)}^{x_1} p(x_2) \times \dots$$

$$... \times \int_{r(s)}^{x_{n-2}} p_{n-1}(x_{n-1}) dx_{n-1} ... dx_1 dx_n, \quad t \ge s \ge t_4.$$

The last inequality and (28) yield $L_n = \infty$.

C) Let $y \in N_2^-$ on $[t_1, \infty)$. Then using Lemma 5 we have $\lim_{t \to \infty} y_i(t) = 0$, i = 1, 2, ..., n. The proof of Theorem 1 is complete.

THEOREM 2. Let n be even and the condition (28) holds. In addition

(33)
$$\lim_{t \to \infty} \sup \left\{ \frac{P_{n-3}(r(t))}{(P_1(r(t)))^{n-3}} \left(\int_{r(t)}^{t} P_{n-3}(r(x)p_{n-1}(x)) \int_{x}^{t} p_n(s) ds dx + P_{n-3}(r(t)) \int_{t}^{\infty} p_{n-1}(x) \int_{x}^{\infty} p_n(s) ds dx \right) \right\} > \frac{(n-2)!}{1-\lambda}$$

and

(34)
$$\int_{t}^{\infty} p(x_1) \int_{x_1}^{\infty} p(x_2) \dots \int_{x_{n-2}}^{\infty} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} p_n(x_n) dx_n dx_{n-1} \dots dx_1 = \infty$$

hold. Then every solution $y \in W$ of (S) is either oscillatory or $\lim_{t \to \infty} |y_i(t)| = \infty$, i = 2,3,...,n or $\liminf_{t \to \infty} |y_i(t)| = 0$, $\lim_{t \to \infty} z_1(t) = \lim_{t \to \infty} y_i(t) = 0$, i = 2,3,...,n.

PROOF. Let $y \in W$ be a nonoscillatory solution of (S). Using (7) we get

$$y \in N_1^+ \cup N_3^+ \cup ... \cup N_{n-1}^+ \cup N_n^+$$
 on $[t_1, \infty)$.

- A) Let $y \in N_l^+$ on $[t_1, \infty)$, $l \in \{3, 5, ..., n-1\}$. By arguments similar to those as in A) of the proof of Theorem 1, we prove that this case is impossible.
- B) Let $y \in N_n^+$ on $[t_1, \infty)$. Analogously as in the case B) of the proof of Theorem 1 we can show that $\lim_{n \to \infty} |y_i(t)| = \infty$, i = 1, 2, ..., n.
- C) Let $y \in N_1^+$ on $[t_1, \infty)$. Then the functions $|z_1(t)|$, $|y_i(t)|$, i = 2, 3, ..., n are nonincreasing on $[\gamma(t_1), \infty)$ and $\lim_{t \to \infty} |z_1(t)| = L_1 < \infty$. From (4) we obtain $\lim_{t \to \infty} y_i(t) = 0$, i = 2, 3, ..., n. We shall prove $L_1 = 0$.

Let $L_1 > 0$. From (24) and (9) we have

$$|z_1(t)| \ge \alpha L_1 \int_{t}^{\infty} p(x_1) \int_{x_1}^{\infty} p(x_2) \dots \int_{x_{n-2}}^{\infty} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{\infty} p_n(x_n) dx_n dx_{n-1} \dots dx_1,$$

for sufficiently large t, which contradicts (34) and $L_1 = 0$. From Lemma 4 we have $\liminf_{t \to \infty} y_1(t) = 0$. The proof of Theorem 2 is complete.

REFERENCES

- [1] I. Foltyńska, J. Werbowski, On the oscillatory behaviour of solutions of system of differential equations with deviating arguments, *Colloquia Math. Soc. J. B.* 30, *Qualitative theory of Diff. Eq. Szegéd*, (1979), 243-256.
- [2] I. Györi, G. Ladas, Oscillation of systems of neutral differential equations, *Diff.* and *Integral Equat.* 1(1988), 281-286.
- [3] A.F. Ivanov, P. Marušiak, Oscillatory and asymptotic properties of solutions of systems of functional-differential equations of neutral type, *Ukrain. Mat. J.* 44(1992), 1044-1049. (In Russian)
- [4] A.F. Ivanov, P. Marušiak, Oscillatory properties of systems of neutral differential equations, *Hiroshima Math. J.* 24(1994), 423-434.
- [5] Y. Kitamura, T. Kusano, On the oscillation of a class of nonlinear differential systems with deviating argument, *J. Math. Annal. and Appl.* 66(1978), 20-36.
- [6] Y. Kitamura, T. Kusano, Asymptotic properties of solutions of two-dimensional differential systems with deviating argument, *Hiroshima Math. J.* 8(1978), 305-326.
- [7] P. Marušiak, Oscillatory properties of solutions of nonlinear differential systems with deviating arguments, *Czech. Math. J.* 36(111)(1986), 223-231.
- [8] P. Marušiak, Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type, *Hiroshima Math. J.* 20(1990), 197-208.
- [9] P. Marušiak, Oscillatory properties of functional differential systems of neutral type, *Czech. Math. J.* 43(118)(1993), 649-662.
- [10] B. Mihalíková, Asymptotic behaviour of all solutions of differential systems with deviating arguments, *Math. Slovaca* 40(1990), 71-86.
- [11] V. Šeda, On nonlinear differential systems with deviating arguments, Czech. Math. J. 36(111)(1986), 450-466.
- [12] V.N. Shevelo, V.N. Varech, On some properties of solutions of a system of functional differential equations, *Kiev* (1980), 153-171. (In Russian)
- [13] V.N. Shevelo, V.N. Varech, A.G. Gritsai, Oscillations of components of solutions of systems of functional differential equations of neutral type, *Inst. Mat. Preprint*, *Acad. Nauk. Ukr. SSR* (1984), 116-126. (In Russian)
- [14] E. Špániková, Asymptotic properties of solutions of nonlinear differential systems with deviating arguments, *Čas. Pěst. Mat.* 2(1990), 178-191.
- [15] E. Špániková, Asymptotic properties of solutions of differential systems with deviating argument, *Práce a štúdie VŠDS v Žiline* 9(1992), 171-181.

[16] E. Špániková, Oscillatory properties of the solutions of differential system of neutral type, *Archivum Math.* (*Brno*) 29(1993), 177-185.

Research was supported by Grant Agency for Science 1/5254/98.

(Department of Appl. Mathematics, University of Žilina, J. M. Hurbana 15, 010 26 Žilina, Slovak Republic (e-mail: spanik@fstroj.utc.sk))

Received on 1999.03.17 and, in revised from, on 1999.09.01.

