ALEKSANDER WASZAK

ON PROPERTIES OF SOME MODULAR SPACES OF DOUBLE SEQUENCES

ABSTRACT: We consider modular spaces of strong (A, φ) – summable and $|A, \varphi|$ – summable double sequences. The main results are two theorems in which are given the necessary conditions for inclusion between the spaces T_{φ}^* and T_{ψ}^b . These theorems are generalization of theorems given by J. Musielak and W. Orlicz in [6].

KEY WORDS: sequence spaces, modular spaces.

1. INTRODUCTION

Modular spaces of strongly summable sequences and integrable functions are applied in various problems in mathematical analysis. In order to built up a general theory of modular spaces it is advisable to investigate special cases of modular spaces. In papers of J. Musielak [3], W. Orlicz [9], R. Taberski [10], J. Musielak and W. Orlicz [6] and myself [11], [12] there are considered and investigated some modular spaces connected with strong (A, φ) and $|A, \varphi|$ summability of sequences. Continuing the investigations of J. Musielak and W. Orlicz there are given necessary conditions of these spaces but for double sequences.

2. PRELIMINARIES

Let T denotes the space of all real double sequences. Sequences belonging to T will be denoted by $x=(t_{\mu\nu}),\ y=(s_{\mu\nu}),\ |x|=(|t_{\mu\nu}|),\ e=(1),\ \Theta=(0)$ and $x^j=(t^j_{\mu\nu}),\$ where j=1,2,... Moreover, we shall denote $e_{pq},\ e^{p'q'}_{pq},\ e_p.,\ e_{.q}$ the sequences having 1 at the intersection point of the p-th row and q-th column and 0 elsewhere, having 1 at the intersection of p-th, ..., (p+p'-1)-th rows and q-th, ..., (q+q'-1)-th columns and 0 elsewhere, having 1 in the p-th row and 0 elsewhere, and having 1 in q-th column and 0 elsewhere, respectively. If $x=(t_{\mu\nu})$ is a given sequence then x^{mn} will mean the sequence having $t_{\mu\nu}$ at the intersection of 1-st, ..., m-th rows and 1-st, ..., n-th columns and 0 elsewhere.

By a convergent sequence we shall mean double sequence $x = (t_{\mu\nu})$ converging in the sense of Pringsheim i.e. for every $\varepsilon > 0$ there exists an integer

N such that $|t_{\mu\nu} - t_{...}| < \varepsilon$ for every $\mu, \nu > N$, where $t_{...} = \lim_{\mu, \nu \to \infty} t_{\mu\nu}$ denotes the limit of the sequence x.

If $x, y \in T$ the inequality $x \ge y$ will mean $t_{\mu\nu} \ge s_{\mu\nu}$ for all μ and ν . The relation \ge is a semiorder relation in T. Let us remark that an arbitrary nonvoid set of elements from T bounded from above has a least upper bounded belonging to T, i.e. T is a linear lattice complette with respect to the relation \ge .

Moreover, let T_0 , T_b , T_f denote spaces of all real double sequences convergent to zero, bounded real double sequences and finite double sequences (i.e. real double sequences with a finite number of elements different from zero), respectively.

By a φ -function we understood a continuous non-decreasing function $\varphi(u)$ defined for $u \ge 0$ and such that $\varphi(0) = 0$, $\varphi(u) > 0$ for u > 0 and $\varphi(u) \to \infty$ as $u \to \infty$. φ -function will be denoted by φ , Ψ , ..., and their inverse functions by φ_{-1} , Ψ_{-1} , ..., respectively.

The symbol $\varphi(|x|)$ means the function $\varphi(|x(t)|)$. For more properties of φ -function see e.g. [1], [2], [8] and also [4], [5].

Throughout this paper we shall need the following hypotheses:

(α) there exists a constant $\delta > 0$ satisfying the inequality

(1)
$$\Psi(\delta uv) \le \varphi(u)\Psi(v)$$

for all u, v > 0 such that $\varphi(u)\Psi(v) \le \delta$, $\varphi(u) > 1$.

 (β) if there exists a positive constant δ satisfying the condition

(2)
$$\varphi(u)\Psi(v) \le \Psi(\frac{1}{\delta}uv)$$

for all u, v > 0 such that $u, v \le \delta$ and $u \ge 1$.

Moreover, $A=(a_{mn\mu\nu})$ denotes a four-dimensional nonnegative matrix (i.e. $a_{mn\mu\nu} \ge 0$ for $m, n, \mu, \nu = 1, 2, ...$) and such that for arbitrary two positive integers m, n there exists a pair of positive integers μ_0 and ν_0 such that $a_{mn\mu_0\nu_0} \ne 0$.

In the following we will denote

$$A_{\mu\nu} = \sup_{m,n} a_{mn\mu\nu},$$

$$A_{\mu\cdot} = \sup_{m,n} \sum_{\nu=1}^{\infty} a_{mn\mu\nu},$$

$$A_{\cdot\nu} = \sup_{m,n} \sum_{\mu=1}^{\infty} a_{mn\mu\nu},$$

$$A_{p,q}^{p',q'} = \sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} a_{mn\mu\nu}.$$

Besides the above assumptions, the following properties of the matrix A play an essential role in theory of summability of double sequences:

a. there exists
$$\lim_{m,n\to\infty} a_{mn\mu\nu} = 0$$
 for $\mu, \nu = 1, 2, ...$

b.
$$\sup_{m} \sum_{\mu,\nu=1}^{\infty} a_{mn\mu\nu} = K < \infty,$$

c. there exists
$$\lim_{m,n\to\infty} \sum_{\mu,\nu=1}^{\infty} a_{mn\mu\nu} = a$$
,

d. there exists a constant C such that

$$\sum_{\mu,\nu=1}^{\infty} \Psi_{-1}(A_{\mu\nu}) < C$$

for an arbitrary φ -function Ψ ,

e. there exist constants K_1 , K_2 and K_3 such that:

$$\sum_{\mu=1}^{\infty} a_{mn\mu\nu} \le K_1 \quad \text{for fixed } m, n \text{ and } \nu,$$

$$\sum_{\nu=1}^{\infty} a_{mn\mu\nu} \le K_2 \quad \text{for fixed } m, n \text{ and } \mu,$$

$$\sum_{\mu,\nu=1}^{\infty} a_{mn\mu\nu} \le K_3 \quad \text{for all } m \text{ and } n.$$

3. Strong φ -summability of double sequences

Let the matrix $A = (a_{mn\mu\nu})$ and the φ -functions φ , Ψ be given.

3.1. The modular space of sequences of strongly (A, φ) -summable to zero

For $x = (t_{\mu\nu}) \in T$ we define a map $(t_{\mu\nu}) \to (\sigma_{mn}^{\varphi})$ by the formula

$$\sigma_{mn}^{\varphi}(x) = \sum_{\mu_{\nu}=1}^{\infty} a_{mn\mu\nu} \varphi(|t_{\mu\nu}|) \text{ for } m, n = 1, 2,$$

In the following we introduce subspaces of the space T

$$T_{\varphi_0} = \{x \in T : \sigma_{mn}^{\varphi}(x) < \infty \text{ for } m, n = 1, 2, \dots \text{ and } \sigma_{mn}^{\varphi}(x) \to 0 \text{ as } m, n \to \infty\},$$

$$T_{\varphi}^* = \{x \in T : \lambda x \in T_{\varphi_0} \text{ for a certain } \lambda > 0\}.$$

It is well known that in the space T_{φ}^{*} first we may introduce the following modular

$$\rho_{\varphi}(x) = \begin{cases} \sup_{m,n} \sigma_{mn}^{\varphi}(x) & \text{for } x \in T_{\varphi_0}, \\ \infty & \text{for } x \in T_{\varphi}^* \setminus T_{\varphi_0} \end{cases}$$

and next a norm which is an F-norm

$$||x||_{\varphi} = \inf \{ \varepsilon > 0 : \rho_{\varphi}(\frac{x}{\varepsilon}) \le \varepsilon \}.$$

Moreover, if φ is a convex φ -function then homogeneous F-norm can be introduced in the space T_{φ} by means of the formula

$$||x||_{\varphi}^{1} = \inf \{ \varepsilon > 0 : \rho_{\varphi}(\frac{x}{\varepsilon}) \le 1 \}.$$

In these notions we did not mention the dependence on the matrix A, since in our considerations we shall deal with a fixed matrix A only.

If the series $\sigma_{mn}^{\varphi}(x)$ are defined for every m and n, we say that the method (A,φ) transforms sequence $x=(t_{\mu\nu})$ into the sequence $(\sigma_{mn}^{\varphi}(x))$. Double sequences x belonging to T_{φ}^* are called strongly (A,φ) -summable to zero. Let us remark that this definition of strongly (A,φ) -summability to zero of double sequences is generalization of the definition introduced in [11] for singular sequences (compare also [3], [6]).

A list of basic theorems and properties concerning the space T_{φ}^{*} is presented below (compare [13] and see also [3], [6], [9], [11]).

- 1. $T_f \subset T_{\varphi}^*$ if and only if the matrix A satisfies the condition a.
- **2.** If the matrix A possesses the property **b**, then $T_{\varphi}^* \cap T_b = T_{\Psi}^* \cap T_b$, for arbitrary two φ -functions φ and Ψ .
 - 3. The space T_{φ}^* is complete with respect to the norm $\|\cdot\|_{\varphi}$.
- 4. If φ is a convex φ -function and the matrix A satisfy the conditions \mathbf{a} and \mathbf{b} , then the sequences $e_{\mu\nu}$, $e_{\mu\nu}$, $e_{\nu\nu}$ and $e_{pq}^{p'q'}$ belong to the space T_{φ}^* .
 - 5. The following formulas are true:

$$\begin{split} & \| \, e_{\,\mu\nu} \, \|_{\,\varphi}^1 = \Bigg[\, \varphi_{-1} \Bigg(\frac{1}{A_{\mu\nu}} \Bigg) \Bigg]^{-1} \,, \\ & \| \, e_{\,\mu\, \cdot} \, \|_{\,\varphi}^1 = \Bigg[\, \varphi_{-1} \Bigg(\frac{1}{A_{\,\mu\, \cdot}} \Bigg) \Bigg]^{-1} \,, \\ & \| \, e_{\,\, \cdot\nu} \, \|_{\,\varphi}^1 = \Bigg[\, \varphi_{-1} \Bigg(\frac{1}{A_{\,\, \cdot\nu}} \Bigg) \Bigg]^{-1} \,, \\ & \| \, e_{\,\, pq}^{\,\, p'q'} \, \|_{\,\varphi}^1 = \Bigg[\, \varphi_{-1} \Bigg(\frac{1}{A_{\,\, pq}^{\,\, p'q'}} \Bigg) \Bigg]^{-1} \,. \end{split}$$

3.2. THE MODULAR SPACE OF SEQUNCES OF STRONGLY $|A,\varphi|\text{-SUMMABLE TO ZERO}$

In this part first in the space T_f we may define the following functional

$$\rho_{\Psi}^b = \sum_{\mu,\nu=1}^{\infty} \Psi(|t_{\mu\nu}|)$$

and next a norm by means of the formula

$$||x||_{\Psi}^{R} = \inf \{ \varepsilon > 0 : \rho_{\Psi}^{b}(\frac{x}{\varepsilon}) \le 1 \}.$$

It is easily verified that the functional ρ_{Ψ}^{b} is a modular in T_{f} in the sense of e.g. [4] and [5] (compare also [1], [2], [8], [16]) and moreover it is well known that the norm $\|\cdot\|_{W}^{R}$ is monotonic and homogenous.

Since in our considerations we shall deal with a fixed matrix A only then in these notations we did not mention the dependence on the matrix A.

If $A = (a_{mn\mu\nu})$ is a given matrix, $x = (t_{\mu\nu}) \in T$ and Ψ is a given convex φ -function, then we define the class T_{Ψ}^b of sequences satisfying the condition

$$\lim_{m,n\to\infty} \|\overline{x}^{mn}\|_{\Psi}^{R} = 0,$$

where \overline{x}^{mn} is a new sequence such that $\overline{x}^{mn} \in T_f$ and

$$\bar{x}^{mn} = \begin{cases} \Psi_{-1}(a_{mn\mu\nu})t_{\mu\nu} & \text{for } \mu \leq m \text{ and } \nu \leq n, \\ 0 & \text{elsewhere.} \end{cases}$$

Double sequences x belonging to T_{Ψ}^b are called strongly $|A, \Psi|$ -summable to zero. Obviously this definition of strongly $|A, \varphi|$ -summability to zero of double sequences is generalization of the definition introduced in [12] for singular sequences (compare also [6], [10]).

A list of the most interesting theorems and properties concerning the space T_{Ψ}^{b} is presented below (compare [16] and see also [6], [10], [12]).

1. The space T_{Ψ}^{b} with the norm

$$||x||_{\Psi}^{b} = \sup_{m,n} ||\bar{x}^{mn}||_{\Psi}^{R}$$

is a Banach space,

2. If
$$x \in T_{\Psi}^b$$
, then $\lim_{k,l \to \infty} ||x - x^{kl}||_{\Psi}^b = 0$,

3.
$$x \in T_{\Psi}^b$$
 if and only if $\lim_{k,k',l'\to\infty} ||x^{kl}-x^{k'l'}||_{\Psi}^b = 0$,

4. We have the formulas:

$$\begin{split} \|e_{\mu\nu}\|_{\Psi}^{b} &= [\Psi_{-1}(1)]^{-1} \Psi_{-1}(A_{\mu\nu}), \\ \frac{1}{mn} \left[\Psi_{-1} \left(\frac{1}{mn} \right) \right]^{-1} \sum_{\mu,\nu=1}^{\mu=m,\nu=n} \Psi_{-1}(a_{mn\mu\nu}) \leq \|\bar{e}^{mn}\|_{\Psi}^{R}, \\ [\Psi_{-1}(1)]^{-1} \sum_{\mu,\nu=1}^{\mu=m,\nu=n} \Psi_{-1}(a_{mn\mu\nu}) \geq \|\bar{e}^{mn}\|_{\Psi}^{R}, \\ \frac{1}{p'q'} \left[\Psi_{-1} \left(\frac{1}{p'q'} \right) \right]^{-1} \sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(a_{mn\mu\nu}) \leq \|e_{pq'}^{p'q'}\|_{\Psi}^{b}, \\ [\Psi_{-1}(1)]^{-1} \sum_{\mu=p+p'-1,\nu=q+q'-1}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(A_{\mu\nu}) \geq \|e_{pq'}^{p'q'}\|_{\Psi}^{b}. \end{split}$$

3.3. REMARK

Let us remark that the spaces T_{φ}^* and T_{Ψ}^b were introduced and investigated in [6] by J. Musielak and W. Orlicz (compare aslo [3], [9]) and in [10] by R. Taberski. In these papers the authors limited themselves to investigation of the case of strong (A,φ) -summability and $|A,\varphi|$ -summability to zero of single sequences by means of the firts arithmetic means.

It is easily seen that for $x=(t_{\mu})$, $A=(a_{m\mu})$ where $a_{m\mu}=\frac{1}{m}$ for $\mu \leq m$ and $a_{m\mu}=0$ for $\mu > m$ and for convex φ -functions φ and Ψ we have

$$\sigma_m^{\varphi}(x) = \frac{1}{m} \sum_{\mu=1}^{m} \varphi(|t_{\mu}|) \quad \text{for} \quad m = 1, 2, \dots;$$

$$T_{\varphi}^* = \{x = (t_{\mu}) : \sigma_m^{\varphi}(\lambda x) < \infty \quad \text{for} \quad m = 1, 2, \dots$$

$$\text{and} \quad \lim_{m \to \infty} \sigma_m^{\varphi}(\lambda x) = 0 \quad \text{for a certain } \lambda > 0\};$$

$$\sigma_{\Psi}^b(x) = \sum_{\mu=1}^{m} \Psi(|t_{\mu}|) \quad \text{for} \quad x \in T_f,$$

$$\|x\|_{\Psi}^R = \inf \{\varepsilon > 0 : \rho_{\Psi}^b(\frac{x}{\varepsilon}) \le 1\},$$

$$T_{\Psi}^b = \{x = (t_{\mu}) : \lim_{m \to \infty} \Psi_{-1}(\frac{1}{m}) \|x^m\|_{\Psi}^R = 0\},$$

where $x^m = (t_1, t_2, ..., t_{m-1}, t_m, 0, 0, ...)$. Moreover, let us remark that if $\varphi(u) = \Psi(u) = |u|^{\alpha}$ where $\alpha \ge 1$, then we have

$$\sigma_{m}^{\varphi}(x) = \frac{1}{m} \sum_{\mu=1}^{m} |t_{\mu}|^{\alpha}, \quad \Psi_{-1}(\frac{1}{m}) = (\frac{1}{m})^{1/\alpha}, \quad ||x^{m}||_{\Psi}^{R} = \left(\sum_{\mu=1}^{m} |t_{\mu}|^{\alpha}\right)^{1/\alpha},$$

and by the conditions

$$\lim_{m \to \infty} \sigma_m^{\varphi}(\lambda x) = 0 \quad \text{for a certain } \lambda > 0$$

and

$$\lim_{m \to \infty} \Psi_{-1}(\frac{1}{m}) \| x^m \|_{\Psi}^R = 0$$

we obtain the following condition

$$\lim_{m\to\infty}\frac{1}{m}\sum_{\mu=1}^m|t_{\mu}|^{\alpha}=0.$$

Evidently, we have

$$(A, \varphi) - \lim t_{\mu} = |A, \varphi| - \lim t_{\mu} = |C^{\alpha}, 1| - \lim t_{\mu}.$$

4. Relations between the spaces T_{φ}^* and T_{ψ}^b

Theorem 1. If $T_{\varphi}^* \subset T_{\Psi}^b$ then the convex φ -functions φ and Ψ satisfy the condition (α) .

PROOF. Let φ and Ψ be two convex φ -functions. It is well known that if $T_{\varphi}^* \subset T_{\Psi}^b$ then there is an arbitrary sufficiently positive number η such that if $\|x\|_{\varphi}^1 \le \eta$ than $\|x\|_{\Psi}^1 \le 1$ for every $x \in T_f$ (compare e.g. [6] and also [13] or [16]).

Now, we choose u, v > 0 such that

(3)
$$\varphi(u)\Psi(v) \leq \eta, \qquad \varphi(u) \geq 1.$$

Thus, $\Psi(v) \le \eta$ and there exist natural numbers p, p', q, q' such that

(4)
$$\eta A_{pq} < \Psi(v) \le \eta p' q' A_{pq}$$

and

$$\frac{1}{2} \le A_{pq}^{p'q'} \varphi(u) \le 1.$$

It is easily seen that by (3) and (4) we obtain $A_{pq}\varphi(u) < 1$ and $u < \varphi_{-1}(\frac{1}{A_{pq}})$.

In the following applying the definition of $\|\cdot\|_{\varphi}^1$, the formulas 3.1.5 and the inequality (5) we obtain

$$\|\,u\eta\,e_{\,pq}^{\,p'q'}\|_{\varphi}^{1}\,=\,u\eta\,\|\,e_{\,pq}^{\,p'q'}\|_{\varphi}^{1}\,\,u\eta[\varphi_{-1}(\tfrac{1}{A_{\,p'q'}^{\,p'q'}})]^{-1}\,\leq\,\eta.$$

Moreover, by the formulas 3.2.4 we have

$$\begin{split} u\eta[p'q'\varphi_{-1}(1)]^{-1}\Psi_{-1}(A_{pq}) \leq \\ &\leq u\eta[p'q'\Psi_{-1}(1)]^{-1}\sup_{m,n}\sum_{\mu=m,\nu=n}^{\mu=p+p'-1,\nu=q+q'-1}\Psi_{-1}(a_{mn\mu\nu}) \leq \\ \leq \|u\eta e_{pq}^{p'q'}\|_{\Psi}^{b} \leq 1. \end{split}$$

In consequence we obtain

$$u\eta\Psi_{-1}(A_{pq})) \leq u\eta \sup_{m,n} \sum_{\mu=p,\nu=q}^{p+p'-1,q+q'-1} \Psi_{-1}(a_{mn\mu\nu}) \leq p'q'\Psi_{-1}(1),$$

$$\Psi(\frac{1}{p'q'}u\eta\Psi_{-1}(A_{pq})) \leq \Psi(\frac{1}{p'q'}u\eta \sup_{m,n} \sum_{\mu=p,\nu=q}^{p+p'-1,q+q'-1} \Psi_{-1}(a_{mn\mu\nu})) \leq 1,$$

(6)
$$\Psi(\frac{1}{p'q'}u\eta\Psi_{-1}(A_{pq})) \le 1.$$

But Ψ is a convex φ -function and Ψ_{-1} is the inverse function to Ψ then it is easily seen that

(7)
$$\Psi_{-1}(A_{pq}) \ge p'q'\Psi_{-1}(\eta p'q'A_{pq})$$

where $n \leq (p'q')^{-2}$.

In the following by (6) and (7) we have

$$\Psi(u\eta\Psi_{-1}(\eta p'q'A_{pq}))\leq 1.$$

and next by (4) we obtain

$$(8) \Psi(\eta uv) \leq 1.$$

Applying the properties of the matrix A and the inequalities (4) and (5) we get

$$\eta < \frac{1}{A_{pq}} \Psi(v) \leq p'q' \frac{1}{A_{pq}^{p'q'}} \Psi(v) < 2p'q'\varphi(u)\Psi(v),$$

$$\eta \leq 2p'q'\varphi(u)\Psi(v).$$

Hence applying (8) we have

$$\eta \frac{1}{2p'q'} \Psi(\eta uv) \leq \varphi(u) \Psi(v).$$

But φ -function Ψ is convex then we get

$$\Psi\left(\frac{1}{2}\eta^2 \frac{1}{p'q'}uv\right) \leq \varphi(u)\Psi(v).$$

Choosing $\eta^2 \frac{1}{p'q'} = 2\delta$, we conclude the inequality (1)

THEOREM 2. If $T_{\psi}^{b} \subset T_{\varphi}^{*}$ then the convex functions φ and Ψ satisfy the condition (β) .

PROOF. We suppose that $T_{\psi}^{b} \subset T_{\varphi}^{*}$ where φ -functions φ and Ψ are convex. Then there is an $\eta > 0$ such that $\|x\|_{\Psi}^{b} \leq \eta$ implies $\|x\|_{\varphi}^{1} \leq 1$ for every $x \in T_{f}$ (compare e.g. [6], [12], [15] or [16]). In the following we choose $\eta \in (0,1)$. Now take u,v>0 satisfying the condition

(9)
$$uv \leq \eta \Psi_{-1}(1), \quad u \geq \eta.$$

Then $v \le \Psi_{-1}(1)$ and there exist the integers p, p', q and q' such that

(10)
$$\sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(a_{mn\mu\nu}) < \nu \le \Psi_{-1}(p'q'A_{pq}^{p'q'}).$$

In consequence by (9) and (10) we have $u[\Psi_{-1}(1)]^{-1}v \le \eta$ and

(11)
$$u[\Psi_{-1}(1)]^{-1} \sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(a_{mn\mu\nu}) < \eta.$$

Hence by the definition of $\|\cdot\|_{\Psi}^b$ and the formulas 3.2.4 we get

In the following by the condition 3.1.5 we obtain

$$\|ue_{pq}^{p'q'}\|_{\varphi}^{1} = u\left\{\varphi_{-1}\left(\frac{1}{A_{pq}^{p'q'}}\right)\right\}^{-1} \le 1$$

and

$$\varphi(u) \le \frac{1}{A_{pq}^{p'q'}}.$$

Finally, inequalities (10) and (12), give

(13)
$$\varphi(u)\Psi(v) \leq \frac{1}{A_{pq}^{p'q'}} p'q' A_{pq}^{p'q'} = p'q'.$$

Moreover, the inequality (11) give

$$\frac{1}{\eta} \sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(a_{mn\mu\nu}) \leq \Psi_{-1}(1),$$

$$\Psi\left(\frac{1}{\eta} u \sup_{m,n} \sum_{\mu=p,\nu=q}^{\mu=p+p'-1,\nu=q+q'-1} \Psi_{-1}(a_{mn\mu\nu})\right) \leq 1,$$

and for a certain pair of natural numbers (p'', q'') such that $1 \le p'' \le p'$, $1 \le q'' \le q'$ we have

(14)
$$\frac{1}{2} \leq p''q''\Psi\left(\frac{1}{\eta}u\Psi_{-1}(A_{p''q''})\right) < 1.$$

However, by the property of φ -function Ψ and by the conditions (10) and (14) we obtain

Thus '

$$(15) p'q' \le \Psi\left(2\frac{1}{\eta}(p'q')^2 uv\right)$$

where u and v satisfy the condition (9).

Now, choosing

$$\delta = \eta \min \left\{ \Psi_{-1}(1), \frac{1}{2(p'q')^2} \right\} \le \eta \min \left\{ \Psi_{-1}(1), \frac{1}{2} \right\}$$

and applying the inequalities (13) and (15) we obtain the condition (2).

Let us remark that the above theorems give the necessary conditions for inclusion between the spaces T_{φ}^* and T_{Ψ}^b . These theorems are generalization (on the double sequences) of the theorems due to Julian Musielak and Władysław Orlicz (see [6], pp. 135-139). The paper [15] contains the theorems in which there are given the sufficient conditions for the inclusions of the spaces T_{φ}^* and T_{Ψ}^b of double sequences (compare also [6]).

THEOREM 3. Let us suppose that the φ -functions φ and Ψ are convex function and let the matrix A has the properties given in part 2.

- (a) $T_{\varphi}^* \subset T_{\Psi}^b$ if and only if the condition (α) holds,
- (b) $T_{\omega}^* \subset T_{\Psi}^b$ if and only if the condition (β) holds.

REFERENCES

- [1] M.A. Krasnosielskiej, Ya.B. Rutickij, Convex functions and Orlicz spaces, Groningen 1961.
- [2] A. Kufner, O. John, S. Fučik, Function spaces, Prague 1977.
- [3] J. Musielak, On some modular spaces connected with strong summability, *Math Student* 27(1959), 129-136.
- [4] J. Musielak, *Orlicz spaces and modular* spaces, Lecture Notes in Math. 1034, Springer Verlag, Berlin-Heidelberg-New York-Tokyo 1983.
- [5] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18(1959), 49-65.
- [6] J. Musielak, W. Orlicz, On modular spaces of strongly summable sequences, *Studia Math.* 22(1962), 127-144.
- [7] N J. Musielak, A. Waszak, On a property of some methods of summability, *Publ. Electr. Fak. Univ. u Beorgradu* 280(1969), 27-32.
- [8] H. Nakano, Generalized modular spaces, Studia Math. 31(1968), 438-449.
- [9] W. Orlicz, On some spaces of strongly summable sequence, *Studia Math.* 22(1963), 331-336.
- [10] R. Taberski, A theorem of Toeplitz type for the class of *M*-summable sequences, *Bull. Acad. Polon. Sci Sér. Sci. Math. Astr. et phys.* 8(1960), 453-458.
- [11] A. Waszak, On some of strongly summable sequence with an Orlicz metric, *Comment. Math.* 11(1968), 229-246.
- [12] A. Waszak, Linear functionals in Orlicz spaces of strongly $|A, \varphi|$ -summable sequences, *Comment. Math.* 13(1969), 97-105.
- [13] A. Waszak, Modular spaces connected with strong (A, φ) -summability of double sequences, *Funct. et App.* 17(1987), 139-146.
- [14] A. Waszak, The Musielak-Orlicz theorems, Funct. et App. 26(1998), 257-264.
- [15] A. Waszak, D. Żurakowski, The Musielak-Orlicz relations between some modular spaces, *Comment. Math.* 14(2000), 225-234.
- [16] D. Żurakowski, On modular spaces of strongly $|A, \varphi|$ -summable double sequences, *Fasciculi Math.* (in print).

(Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland)

Received on 30.11.2000 and, in revised form, on 07.12.2000.

