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HYPERBOLIC TRANSFORMATION AND
HYPERBOLIC DIFFERENCE SYSTEMS

ABSTRACT: Transformations of symplectic difference systems
0 7
Zin =57, SkTJ5k=J? Jz( / OJ

are investigated. It is shown that symplectic systems satisfying certain additional
condition can be transformed (using a transformation that preserves oscillation properties
of transformed systems) into the so-called hyperbolic difference system. Basic properties
of solutions of hyperbolic systems are established.
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hyperbolic transformation.

1. INTRODUCTION

In this paper we deal with transformations and qualitative properties of
solutions of a certain class of symplectic difference systems (further SdS)

(1) Zen = SpZs

where ze R*" and Sis a real, symplectic 2x x 2n-matrix, i.e.,

(2) SRS Ji-with™ 5T =[ 3 é)

where I denotes the identity matrix and ” stands for the transpose of the
indicated matrix. Sometimes, it will be convenient to write (1) in the from

| Xer1 | A B\ %
2 (”knj_[ck ij[“k)

with x,ue R" and real nxn-matrices A, B, €, D. Substituting into (2), it is
easy to see that the matrix Sin (1) is symplectic if and only if
4 AD-cTB=I=D"A-B"C, A"C-C"A=0=8"D-D"8.

Here and throughout we use the convention that no index at a matrix or a vector
actually means the index k € Z. Consequently,
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D" -BT)A B S DPA- BV _ DFR-BED i {eleh0
et T N el I G e e T Ry

A T A ARBY DB BN S CT0NS
That is, 57 =(—CT i ] Now, (C’ D)(—DCT E el o0 implies that

(4) is equivalent to

(5) ADREBGE =T = DAl RE AR E BAT = DT = Pt

and (2) is equivalent to S, JS; =J. Furthermore, (3) can be written as

(6) Xk = DkT —ng Xher1
A\ Ui —Ckr Akr Up .

In this paper we show that every symplectic difference system (1) satisfying
certain additional condition can be transformed, using the transformation
preserving oscillatory behaviour, into the so-called hyperbolic symplectic
system. We also study basic properties of solutions of these hyperbolic systems.

In the continuous case, it is shown in [7] that any nonoscillatory self-
adjoint equation of the form

(7) (R@O)x") + P(t)x = 0

with symmetric nxn matrices R, P and R nonsingular, can be transformed
using the transformation x=H(t)y, H being a nonsingular nx» matrix, into

the hyperbolic system
(€)) @7 (Y)Y -0)y=0, Q=(H"RH)™.

Here the terminology “hyperbolic system” is justified by the fact that in the (
scalar case n=1 linearly independent solutions of (8) are

Vi(Z)= sinh( J‘Q(s)ds} Yy ()= cosh[ J‘Q(s)dsJ.

Basic properties of solutions of hyperbolic system (8) are established in the
recent paper [11]. Here it is also shown that even a more general system than
(8), namely the linear Hamiltonian system

x' = A(t)x + B(t)u, u = C(x-A" (D,

with nxn matrices 4, B, C and B, C symmetric, can be transformed into the
hyperbolic Hamiltonian system. More details along this linea are given in the
next section.
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Oscillation properties and transformations of SdS have been investigated in
[4] (see also [1, 3, 5, 6, 8]), where the so-called Reid Roundabout Theorem for
(1) is established. This theorem relates oscillation properties of (1) to positivity
of the corresponding quadratic functional and to the solvability of the associated
Riccati-type matrix difference equation.
A hyperbolic SdS is the system
P
) Ziwt = SiZp D (Q g]

with nxn matrices £, @ satisfying
(10) PP-QIQ=I=PPF —QR" " PIQ-QR P=0=PR" —QP~.

The terminology will be justified in the third section. The first equality in (10)
imply that matrix Pis nonsingular and, since

(P +Q@NP-Q=PTP+QP-PIQ-Q'Q=T,

matrices P+ @, P —Q are nonsingular, too. Further :
(11) P-Q =P +Q", P+@Q)'=P"-Q".

Moreover, left multiplication by A" and right multiplication by
IDT—I (: (PT)—I :(P_I)T) of the equality PQT :QPT giVCS QTPT—I ____P—IQ,

that is

(12) (RAG)E TR

P7'Q is symmetric.

In this paper, we investigate properties of hyperbolic SdS and we also show
that a certain class of general symplectic systems (1) can be transformed into a
hyperbolic system (9). We follow essentially the recent papers [2] and [4] where
the so-called trigonometric systems and trigonometric transformations are
investigated. Recall that the trigonometric system is a symplectic difference

P Q
__Q P
trigonometric system comes from the fact that in the scalar case n=1 solutions
of this system can be expressed via the classical sine and cosine functions. Here
we establish “hyperbolic analogies” of the results given in these papers.

The paper is organized as follows. In the next section we recall basic
properties of symplectic difference systems and we also give, for the sake of
comparision, some statements concerning transformations of differential
Hamiltonian systems. Section 3 is devoted to the investigation of hyperbolic

system (1) whose matrix is of the from 5=( j The terminology
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symplectic systems and basic properties of their solutions. Oscilation properties
of these solutions are studied in the fourth section and a necessary and sufficient
condition for nonoscillation of hyperbolic systems is given there. In the last
section, it is shown that any nonoscillatory symplectic system (1) can be
transformed into hyperbolic symplectic system without changing oscillatory
properties of transformed systems. ‘

2. AUXILIARY RESULTS

We start with some basic properties of solutions of SdS (1). Let (gj(), (’5)

be matrix solutions of (1), i.e., X, U, )?, U are nx n-matrices satisfying
(X/m )?/m] i (Xk )?k]
~ — k ~ .
Uk+| Uk+l Uk Uk
Then symplecticity of the matrix S implies that
: TR o RS o,
(Xk-f-] /EkH] J’[Xkﬂ )Ek-rlJ:(Xk )fkj SkTJSk(Xk )Sk]: ‘
Uk+l Uk+l Uk+| Uk+l Uk Uk Uk Uk ‘

~ i ~
& Xy ‘}fk 7 X, /Elc
U. U, Uy U ’

|

T~ 7T o~
G Y R

(13) AT IS T e e L | B )
Uk Uk Uk Uk

where A is the usual forward difference operator. Consequently, if (’[\; ‘5) is

symplectic at some £, then it is symplectic everywhere. If this is the case, then,
according to (4), (5) we have the identites

(AR Ul X =0 =Xl Xy -t X —0=XT0 "%
and

~ g

(SIS N B S . Yk (= TS = U

Let (Z\; j be a matrix solution of (1). Since the matrix S, is nonsingular,
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X X X
(16) rank |~ “*' | = rank|S,| T || = rank| " * |,
Ukt Uy Uy

hence rank (‘5") 1s the same for all ke Z.

The matrix solution (’5) of (1) which satisfies the first part of the second

identity in (14) and rank[’g):n is said to be a conjoined basis of (1). The

; e Seoine - .
solutions (UJ’ ([7]’ such that (U (7) is symplectic, are called normalized

conjoined bases of (1).

A conjoined basis [5) of (1) is said to be recessive at « if X is eventually

nonsingular and there exists another conjoined basis (gj with X eventually

nonsingular such that XU —UT X is nonsingular and lim /?,:‘Xk =0. If this
t—w

is the case, (‘5) is called dominant solution.

Now, we turn our attention to transformations of SdS. Let R, =(§<1" A]g") be
k k

a real, symplectic 27 x 2n -matrix, i.e.,
H'N-K"M=I, H'K=K"H, M'N=NT"M.

Then the transformation

transforms (1) into another symplectic system
[fk-H] = .i[fk] Wlth \§;( = ﬂ( % = Rk_:l‘skpk’
Up Uy k ch
where in detail:
A=N! (AH + BK) - M (CH + DK),
B = NI (AM + BN) - M., (CM + DN),
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C =H! . (CH +DK) - KL, (AH + BK),

D =HI, (GM +DN) - K[, (AM + BN).
(Recall again the convention that no index at a matrix actually means the index
k.) Moreover, if M =0, then this transformation preserves oscillation behavior
of transformed systems (see [4, Lemma 7]).

Finally recall concepts of hyperbolic system and hyperbolic transformation
of differential Hamiltonian systems

(17) x' = AQ)x+B(@®)u, u' = Cx—A" ) u,

where 4, B, C are nxn matrices of continuous functions and B, C are symetric.
Hyperbolic systems is a special system (17) of the from

(18) s'=P(t)s +O(t)c, ¢'=0(f)s + P(t)c,

wher P is antisymmetric (P’ + P =0) and Q is symmetric. If n=1 (then, of
course, P =0) solutions of (18) are

t
[Sj sinh I 0 [F) cosh I[Q
: cosh J‘[Q ¢ sinh IIQ
For n>1 (18) cannot be in general solved explicity, but its solutions have many
of the properties of hyperbolic sine and cosine functions. In particular, the sum
formulae for hyperbolic functions extend in a natural way to (18).
U

that X'U=U"X and X(¢) is nonsingular for large #) then (17) can be

transformed into hyperbolic system (18) by a transformation preserving
oscillatory properties of transformed systems. More precisely, there exists nxn
matrices H, K of differentiable functions such that A is nonsingular,

H"K = K" H, and the transformation

A R s
u) K@) H™'®))\c

transforms (17) into hyperbolic system (18) (see [11] where also further
properties of (18) can be found).

If (17) is nonoscillatory (i.e. there exists 27 x n matrix solution (X) such
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3. DISCRETE HYPERBOLIC MATRIX FUNCTIONS
In this section we deal with particular matrix solutions of system (9), that is,
with solutions of the following system of (matrix) difference equations.
(19) Xew = RX + QUL
Upn = QX +RU,,

or, of the equivalent one
T ji
X =R Xy -Q Uias
Up = -Q X4u +A Uy,

(cf. (3) and (6)). Obviously, if matrices A, &, are defined for all k€ Z, than a

(20)

solution of (19) is defined on Zfor any initial conditions.

DEFINITION 3.1. We define the discrete hyperbolic sine and hyperbolic
cosine matrix functions starting at me Z

Slc;m :Sk;m (P’Q)’ Ck;m :Ck;m ('D9Q)
to be the unique solution
Xk :Sk;m’ Ulc :Ck;m
of system (19) with the initial conditions

1) X, =0, U,=I

m

For m=0,we abbreviate S;., =S,, Ci,=C,.

Let F,, keZ be matrices and s,r€Z, s=r. We define the product of
matrices in the following way

F.

r+l

HF =FF, F

If matrices F), k€ Z are nonsingular and s <r, we put

o r— L r—
HF,:[I—IIEJ for s<r-1, l_l[F,. — 1.

i=s+1 =

Now, the solutions of the initial value problem (19), (21) can be expressed
in the following way:
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k-1 k-1
(22) S/c;m T 5[ (e +Q)~H(E _Q)Ja

(23) " —~[H<E+Q)+H<P Q)j

I=

Indeed, matrices (P £ @) are nonsingular according to the results presented in
the first section, so that §,.,, C x:m are expressed correctly. Further,

m-1
St =%(H(/€+Q) H(P Q)J~—(1 Be=302

i=m i=m

m-1 m-1
A —;[H(/%Q-HH(/‘?—QJJ = %(1”) e

hence initial conditions (21) are satisfied. If k£ > m, then
1
e:Sk;m +chk;m = E (H(P +Q) H(P Q)J
1 k=1 =
EQk[H(P- +Q)+H(e —cz-)] -

k=1 k-1
= %{(P +Q[ B +Q)-A ~Qk)H(P,—Q-)J =

i=m i=m

(H (P i Q ) H(P Q )J k+l;m

va-*

and, in a similar way,

QkSk;m +ecck;m = Ck+l;m5
if k<m—1, then [

1
QkSk;m +e(Ck;m =3 EQk[
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[0%]

(98]

m—1 7
+%(&—@>[H (/?—Q,-)] -
i=k
1 m—1 =1 m-1 =
=5[ (/?+62,)} +(H(€—Q~)j =
i=k+1 i=k+1
1 k k
= E[U(3+Q)+H(3_Q)J = Ck+1;rn s

PkSk;m a5 chk;m = Sk+l;m >

and if £k =m —1, then
PkSk;m +chk;m = 'D—lSm+l;m +Qm—lcrn—l;m =

=R DR el
b Qo (B + Qo) 4 Br = Q)™ =

(1_1) =0= Sm;m = Sk+l;m >

N | =

QkSk;m + Hcck;m = C'k+1;m %

Now, let p,, g, be real numbers satysfying
(24) pF—qi =1 for keZ,
and let us consider the system of (scalar) difference equations

X =sn X U
25) kel = PrXe T g Uy
Ul = qpXg + Drldy .

Obviously, (25) is a special case of (19) for n=1. The unique solution of (25)
with the initial conditions
(26) x, =0, u, =1

are x; =S8y.,, 4, =C;,, defined by

1 k-1 k-1
= E(H(pi +qi)—1__[(p,~ —q;)},
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1 k-1 k-1
e E(H(p; +q,-)+H(p,- —q,-)J,

according to (22), (23). Moreover, (24) yields | p, | >| g, | for k€ Z, hence

sgn (p, +4q;) = sgn(p, —q,) = sgn p,.

Consequently,
pi+4q; =sgnp;|p; +q;| = sgnp,exp(ln|p, +q,|)
e _ q,
pi—q;, =sgnp;|p —q| = sgnp, =sgnp, ——
D i | D t4q; l

sgn p; exp(—In| p; +¢q,|)
for ie Z. Thus

k-1
H (P +4,) = [H sgnp,JeXP( In| p; +¢, J

i=m' i= i=m

k-1 k-1 k-1
H (P —q,) = (H sgnpi] GXP(—Z In| p, +g, l],

and the solution of initial value problem (25), (26) can be rewritten:

k-1 k-1

27) Skm = (H sgn p,-]sinh(z In|p, +g, I],
k-1 k-1

(28) Com = (H sgn p,J cosh( In| p, +g¢, )

i=m =m

Note, that the convention

r-1

ia,=—§a, for s<r-1, Za,:O

i=s+1 i=r

is used. The above considerations establish the reason, why system (25) and its

generalization (19) are called the hyperbolic ones.

The following theorem shows that tha pair of functions (S5,C) can be

regarded as a certain fundamental system of solutions of (19).

THEOREM 3.1. Matrices X,, U, satisfy (19) if and only if
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X, =C. X, +S.U,,
Uk = S/(XO +CkU0‘

In particular, [gj satisfies (19) with the initial condition

X, =1, U,=0.

PROOF. Let X, ¥ satisfy (29). Then
X = ConXo +8,,Up = (@S, +ACHX, +(BS, +RLCU, =
=R (C Xy +S,Up) +Q, (S, Xy +CUy) = BX, + QU,,
U = SieaXo +CaUy = BS, +QCHX, + (RS, +ACU, =
=16 (C0X, +SkUO)+/3c(SkX0 + CyUy) = Q. Xy +’chUk‘

Hence, X, Y satisfy (19). Since (19) has a unique solution for each initial
condition, the proof is complete.

COROLLARY 3.1. The discrete hyperbolic matrix functions S and C satisfy
the following:

(30) ste-cfs =0 = sct -cst,
(31) CEE—8IS— [ =CCE =857,
(g), (gj are normalized conjoined bases of (19).

Cn So o 1 O 1 CI: Sk
PROOF. (50 Coj_(o 1). Thus, according to (13), (Sk C

for each keZ. Hence, (30), (31) are particular cases of (14). Moreover,
Ck e 1 o = 0 — Sk
rank(s ) = rank(oj = rank(l) = rank(ckj by (16).

k

j is symplectic

Identity (31) implies that C is nonsingular. Considering (27), (28), we can
say that this fact generalizes the classical formula cosh x > 0. (31) can be also

regarded to be a generalization of the formula cosh’x —sinh”x =1. It can be
also generalized in a different way:

COROLLARY 3.2. The discrete hyperbolic matrix functions S and C satisfy
ICIF=[ISIF = n,

where || || denotes the Euclidian norm of an indicated matrix.
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n
PROOF. Let 4 be a matrix. Then 44 * =(c;), where ¢, = > a,a,,. Thus
k=1

(A =Dl =N o i
=] i=l k=1

Hence, (31) implies
(G -887) = tr (CCT)-tr (SST) = ICIE ISP

The following theorem shows a connection between the discrete hyperbolic
matrix functions and the coefficients of system (19).

THEOREM 3.2. The matrices S, and C, satisfy

(32) Ck+1CkT —Sk+lSZ=/i, C/chTn _SkSkT+1 = ﬂTa
(33) Sk+ICZ o Ck+1S1Z = Qk’ CkSIZ;I —SkCZ+] = QkT
for ke Z.

PROOF. Since S and C satisfy (19), we have
(34) Sin=FS, + QCy, Cra= &S +ARC,.
Right multiplication of the first equality by —S ,{ and of the second one by C[
and subsequent addition gives
CeniCh = SenSi = QSiCi + AC.C{ RS, ST -Q.C,S{ =
= Q. (5,Cy —CuS{)+R(C.C{ -5,.5]).

Identities (30), (31) now yield the first equality in (32). The second one is the
transpose of it.

- Right multiplication of the first equality in (34) by C/ and of the second

one by —S Z and subsequent addition gives
SknCi =CruSi = ASCi +QC.C{ - Q.S S{ —AC,S] =
= Pk(SlchT -CS{)+Q, (CiCi —SiSP)-
Again, we obtain (33) with the aid of (30), (31).

Now, we are going to derive analogoies of the difference and sum formulae:
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sinh(x F y) =sinhxcoshy F coshxsinh y,
cosh(x ¥ y) =coshxcoshy F sinhxsinh y.

First, let us provide a heuristic computations. Let us consider the scalar initial
value problem (25), (26) and its solutions defined by (27), (28). Denote
@, =In|p, +q,|. For k >m >0 we have

k-1

k-1 k-1 el k-1 m—1
s (Hsgnp[]smh(zqo,r] L (il sinh[Zw,- —zco,) :
i=m i=m Hsgn 2 i=0 i=0

i=0

= ﬁ sgnp, ﬁ sgnp; [sinh[g o; J cosh[m_1 ®; ] = sinh(i ®, jcosh(i ®; H =
i=0 =0 i=0 0 =0

i= i i=0

= Sk0Cm0 — Sm;Ock;O'
THEOREM 3.3. (Difference formulae) Let m,k € Z. Then
(35) S Skcrz; ‘CkSnTu Crm CkC,: _SkS;'
PROOF. Set

By S SICleGpS L S E = Giet s S
First, note that
Dy = 84uCp = CiuSy = (RS, + QC)CE ~(QS, +AC,)ST
:Bc(SkC,: "CkS;)JFQk(CkCnTz '"SkS;) = AD, +R.E,,
By = CkHC;: “Sk+1SZ; = (&S, +Pka)C; (RS, +R.C, )S,Z =
=Qi(8.Cp ~C S+ A(C,CT —5,57) = Q.D, + RE,.
Next, D,, =0 and E, =1 by (30). Thus D and E solve (19), (21). But the
unique solution of this problem is D, =S,.,, E, =Cpp-

COROLLARY 3.3. (Sum Formulae) Let m,k e Z. Then

Sk = S/c;mcm +Ck;mSm’ Ck = Ck;mcm +Sk;mSm'
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PROOF. Right multiplication of the first formula in (35) by C,, and of the
second one by S, and subsequent addition gives

SEaCaECy S (8,00, —C, STC Y (CICES, =5,8,5,)=
= (G =5 Sn) = Ce(S1C =CrS,) =
=S,1-C.0=S,
by (30). Thus, the first formula holds. The second one can be proved in a similar
way.
COROLLARY 3.4. Let m,ke Z. Then

N J5 _S/cT;m’ Cm;k = C/Zm

m

PROOF. First difference formula (35) yields
Sux = SnCi =CpSi = (C,S, =5,Cp)" = =Sy,
and the second one yields
Coe =CuC{ =S,8{ = (C,Cp =8,8,)" = Cyn.

The last corollary represents an analogy between parity of the usual
hyperbolic functions (sine is odd and cosine is even) and the introduced discrete

hyperbolic matrix functions.

DEFINITION 3.2. We define the discrete hyperbolic tangent matrix function
to be
Iir=Gp 1Sk

for k e Z. We define the discrete hyperbolic cotangent matrix function to be
K =87C;

for those k € Z such that S, is nonsingular.
Let us recall that matrix C, is nonsingular for each k € Z.

THEOREM 3.4. The discrete hyperbolic tangent matrix function T satisfies
(36) T =l
(37 T, +(CCY™ =1,
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(38) AT, = Tk+1—Tk =Ck_il kaT_la

Jor each k € Z. The discrete hyperbolic cotangent matrix function K satisfies
(39) Ky =K,

(40) K; +(S{8,)" =1,

Jor ke Z such that S, is nonsingular
(41) AK, = Ky - K, = “Sk_lleS[—l,

Jor ke Z suchthat S,and S,,, are nonsingular.

PROOF. If S is nonsingular, then X, is well defined. Right multiplication

by S* and subsequent left multiplication by S~ of the second equality
in (30) give 0=C"S™" - 57'C. Consequently, (S'C)" =8~'C, which is (39).

Right multiplication by S”™' and subsequent left multiplication by S7! of
the second equality in (31) give S7'S”" = KKT — I, so that (40) holds.

Since matrices S, and S,,, are nonsingular, matrices X, and K,,, exist
and are symmetric by (39). Left and right multiplication of the first equation
in (33) by Sg}, and S;~', respectively, gives C{ S, —S;1,C,., =8;, Q.S
Sinces Sy Gy =Ky and CiSg = (SPE) = K] =K, , the identity (41)
holds.

The validity of remaining formulae can be verified in a similar way.

COROLLARY 3.5. The matrix C;LQ,CL™" is symmetric for ke{0,1,2,...,
a—1} and

k-1
(42) IE= D CHROE
i=0
for ke{0,1,2,...,a}.
If S, is nonsingular for ke{0,1,2,..,a}, then the matrix S;},Q,SI™" is
symmetric for k€{l,2,....,a-1} and

k-1

(43) K, =K - SiyQs™

i=1

for ke{l,2,...,a}.

PROOF. Since the left hand side of (38) is symmetric by (36), so is the right
hand side. Now, the sum of both sides of (38) from 0 to k£ —1 gives
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k-1
Ti=Ty = ch_il iCiT-]
i=1

Using 7, =Cy'S, =0, we obtain (42). Identity (43) can be verified in a similar
way.

4. A NONOSCILATION PROPERTY

We denote the fact that matrix 4 is symmetric and positive definite by
A>0. Recall some basic properties of matrices: If A>0 then 47 >0. If
matrix 4 is nonsingular, then 447 >0 and 47 4>0. If A>0 and B> 0, then

A4+ B>0. If matrix 4 is nonsingular, then B>0 if only if 47 BA>0.
Corollary 3.5 allows us to formulate the following definition.

DEFINITION 4.1. 4 discrete hyperbolic cosine matrix function C has a
generalized zero at ke Z, if C;'Q,_,C[7 is not positive definite.

A discrete hyperbolic sine matrix functions S has a generalized zero at
keZ, if S, is nonsingular and either S, is singular or S5 @S lisro
positive definite.

In other words, if C has not a generalized zero at &, then
(44) Cr' Qi Cid > 0;

if § has not a generalized zero at £ and S, is nonsingular, then S, is
nonsingular and

i QSIS > 0.

The definition of a generalized zero of C is simpler than the definition of a
generalized zero of S since the matrices C, and C,, are nonsingular
everywhere.

Let k € Z. The matrix C has not a generalized zero at £, if and only if

by (38).
3 (Lei ke Z and let S, and S, be nonsingular. S has not a generalized zero
at k, if only if
K=K, >0
by (41).
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Relations (19) and (20) imply immediately
Sl e Q()a Cl = Pm S-1 = —Q—Tls C—l :P—ilr'
Thus, C has not a generalized zero at 0, if and only if @_P;' > 0. Since Cy=1

and C, =4, C hast not a generalized zero at k=1, if 7;'Q, >0. S has a
generalized zero at 0 if @, is nonsingular.

THEOREM 4.1. Let aeN and let C have not a generalized zero at
ke{0,1,2,...,a}. Then Q, is nonsingular for ke{0,1,2,...,a— 1} and S has not
a generalized zero at k€ {1,2,...,a}.

PROOF. Since C;'@Q,;C >0 for ke{l,2,..;a}, &, is nonsingular for
k€{0,1,2,...,a—1}. Further, (42) yields

Tk Lo Z CH—I iCiT_1 >0

for ke{l,2,..,a}. By Definition 3.2, S, =C,T,, thus, S, is nonsingular for
ke{l,2,..,a}. For ke{l,2,..,a -1}, we have using (38)

S[Qk—lSkH = TkTC & Ck+1 kel = T C Q Ck+1(Ck_+1-1QkC/Z'—1 +T1;) =
= TkT +Tk Ck /c_ Cenly = Tk +Tk (C;:IQkCZ_I)—ITk > 0.

Hence® S8 QS+ =0 for kalliom o 1), Consequently, S has not a
generalized zero at k €{2,3,...,a}.
Since S; =0 is singular, S has not a generalized zero at k =1.This

observation completes the proof.

Before formulating a condition for nonexistence of generalized zeroes of C,
we provide a heuristic consideration. A discrete cosine scalar function ¢ defined
by (28) does not vanish for any ke Z since cosh(x)>0 for each xeR and

| p1|21 according to (24). Moreover,

sgn (Ck_lq}c—lclil) =

B 91 3
= k-1 = k-1 k=2

[H sgn p,ﬁ sgn p,}cosh (H In| p, +qilj cosh[H In| p, + qilj
i=0 i=0 i=0 i=0
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= sgn (—q"_l j
Pra

Thus ¢ has not a generalized zero at ke NV ifand only if ¢, ,/p,_, >0.
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THEOREM 4.2. The matrix C has not a genaralized zero at ke N if and
only if BAQ, > 0.

PROOF. Let ke /N andlet 4,, B, be matrices defined by
k-1 k-1

4=[1c+a),  B=T]E-2
i=0 i=0

for k£ >0. By (11), matrices 4,, B, are nonsingular and

AB{ = AlB, = B4l = Bl4, =1I.

Using (23), we have
' 1 1 A
Cp = (4, +B,) = ~(4, + 4, ) = 4] (47 4, + 1),
o) 2 2

thus
G =20t dy v ) AL =2(A7 4, +I) B,
CF =24, (AT A, + DT =24, (AT 4, +1)

Hence,

Ck—lc?/c—lclcT—_lI :4(AkTAk R I)_l Bk_le—lAk-l (AkT-xAk—l i 1)—1-

Since (4; 4, +1)™ >0 and (4;_ 4, +1)' >0, C;'Q,,CI7' >0 ifand only if
B;'@, A, > 0. Further,

B, B'G, =B, By Q. Bl7B =B, (B'Q,,B;)BL,.

that is B;'Q,_, 4, >0 ifand only if B, | B;'@,_, >0.

Let A,4,...,4, be eigenvalues of matrix P \Q,,. Since P7'Q is
symmetric by (12), A;,4,,...,4, are real. There exists orthogonal matrix G (i.e.
G =G") such that

PLG = Ghdiae (A o, A6

2300/

BY(IO): 1=e¢_|PkZ1 _Qk_leTLI, thUS
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0 < ALARL = I-ALQuRQLAL = T-(RIQ)RIQu) =
= G'G-G'diag{A,, Ay..., 4, }G[G diag {4, A,,..., A, }GT =
= GG -G’ (diag{A;, 4;,--,4,})* G = GT[I - diag{A?, 22,.., 2}]G =

Dees sty
= G diag{l- 42,1~ 13,....1 - 22}]G.
Hence, I—A,.z >0, thatis —1< 4, <1 and, consequently,
1-4,>0, i=1L2,..,n
Now, we have
Bk—lBIZIQk—l = (/’k_l =7 Qk—1 )—1 BkBk_le—I o
=AU -ALQ " Qu=U-ALQ) " AR, =
= [G"G -G"diag{ 4}, Ay,..., ,}GT'G diag {4, Ay,..., 4,}G =
=[G (diag{l - A,1- 4,,...,.1 - 1,}GT'G"diag {4, 4,,..., A, }G =

= G’ diag Al b b G.
G

Thus, B, ,B;'Q,, >0 ifand only if 4, >0, 4, >0, .., A, >0. This observation
completes the proof.

Following [4], we say that the conjoined basis (5) of (19) has a focal point
in an interval (k—1,k] if
(45) KerX, cKer X, and X, X'Q,,20

does not hold. Here, ¢ denotes the Moore-Penrose generalized inverse, the
inequality > means nonnegative definiteness, and Ker stands for the kernel of a
matrix. Note that if the kernel condition in (45) holds, then the matrix

X, ,XQ,_, is really symmetric, see [4, Section 3].
System (19) is said to be nonoscillatory if there exists m, €N and a

conjoined basis (?J(j which has not a focal point in an interval (k—1,k] for

any k > n,, in the opposite case (19) is said to be oscillatory.




Ondrej Dosly, Zdengk Pospisil

The 2n x n matrix (g) is a conjoined basis of (19) by Corollary 3.1. Since
C, is nonsingular for each k€ Z, condition (45) ensuring that the conjoined

basis (g) has not a focal point in an interval (k —1,k] can be reduced to

CraCi @y 2 0.

Since C;'Q,,C/ =CH(CoiCi'@,_)CIL, the conjoined basis (gj has not

a focal point in (k —1,k] if and only if C has not a generalized zero at k or Qe
is singular (cf. (44)).

Observe that in contrast to continuous hyperbolic system (18) which is
always nonoscillatory (see e.g. [10]) discrete hyperbolic system can be
oscillatory and the next corollary presents a necessary and sufficient condition
for nonoscillation of (19).

COROLLARY 4.1. Hyperbolic system (19) is nonoscillatory if and only if
P7'Q, =0 eventually.

S. HYPERBOLIC TRANSFORMATION

In this section we prove that any symplectic difference systems (1)
satisfying certain additional condition can be transformed into a hyperbolic
System.

THEOREM 5.1. Suppose that symplectic system (1) possesses normalized

conjoined bases Z =(’5), Z =(‘§) such that XXT is positive definite in a

given discrete interval. Then, in this interval, there exists nx n-matrices H and
K such that H is nonsingular, H'K =K"H, and the trnasformation

(46) @ 7 (—H o - J@

transforms symplectic system (1) into the hyperbolic system (9) without

changing the oscillatory behavior, i.e., a conjoined basis (5) of (1) has a focal
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Sl L ; : H'X -
point in (k—1,k] if and only if (_ o HTU] has there a focal point.
Moreover, the matrices Pand Q are given by formulae
(47) A=H;,AH, +H, 8Ky, Q=HpyB.H, ™.

PROOF. Let Z = (gj, Z :(1(\7/) be normalized conjoined bases of (1) such

that XX7 is positive definite, / be any nxn matrix satisfying HH' =2XxXx"
and let K =(UX" + UX" YH'™'. Then H is nonsingular and using (14), (15)

EE K= kO HE (U Ol e F sl (R vl =
= Bl [HHNOX D = (XU F XU D HH N
=0 HE [Py (U BT Oy (i Sy e [
Denote Z, = H;'X,, then
Ly :ch—ileHXk—lHka_l=H;i1Xk+1X;1HkHZ_IZk =
= 2H \(AX, +BUNX; X X H'Z, =
= Hi [AHH] +BUX[)+B.(I+ ﬁkXT)]HkT_le T
= (HenlAH, + BUX{ +UX)H[ 1+ H\BH]"}Z, =
= (A +Q)Z,

with P, @ given by (47). Similarly, for Z=H"'X we have (by the same
computation as above)

Z}m =(A -G )Zk'
Consequently, if we denote
Zk + Zk Z/( T Z}(
= _T; Sk in7” <)

then S, C satisfy the hyperbolic system (9) with 2, @ given by (47). To finish
the proof, i.e. to show that (46) really transforms (1) into (9), we need to verify
that

Cy

Ul

Darilas KCELH S, o kS+HE"C.
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For example, concerning the second identity (computations in proving the first
identity are the same), we have

KS+H T C= 2 +Ux DI H ! [—XT_)ZJ +2HT g (-X;—)?] =
= %{(ﬁXT SO R G A R R T e B e
= %{(ﬁXT +UXTYE™ - X+ X7 4 X7 =
= %{ﬁXT)?T‘I +U-T-UXTX™ + x4 X7 =

1 ol o 2 i 2
= 5{U—U+ (X E DX ey e %(U =17y,

here we have used identities (15). The proof is complete.

REMARK 1. Observe that any hyperbolic system (9) can be transformed into
another hyperbolic system with symmetric and positive semidefinite matrices

@, at the position of the matrices &, using the transformation

()05 )

where the matrices H, are recursively defined by Hy=/ and H,,, =G;'H,
with orthogonal matrices Gy, i.e., G{G, =1, such that G,@, are symmetric and
positive semidefinite. Such matrices G, exist according to the well-known

principle of polar decomposition, see e.g. [9, Theorem 3.1.9 (c)]. This setting
implies that all matrices /, are orthogonal and hence that the transformation

matrices [H;)* ;TJ are symplectic. The transformed system then reads
k

Xpo = BX) + Qi U = QX + AU,
where

P: o Hk_llPkH/c and G, = Hk—i]Qka 3 Hk—leQkaT-I

so that indeed all matrices Q~k are symmetric and positive semidefinite.
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REMARK 2. This remark concerns the assumption of the existence of a pair

of normalized conjoined bases ()U()’ ()(7() such that XX is positive definite. If

(1) is nonoscillatory, this system possesses recessive and dominant solutions

()—(J, (){ ), respectively, such that XTU -UX =1. Then

U U
RO e 5 bl S
Uu) 2\u+u) [ 20 = T
is the normalized pair of conjoined bases for which XX” = XX7 — Xx” is
positive definite eventually, since
lim X XE0.

Consequently, any nonoscillatory symplectic difference system (1) can be
transformed into hyperbolic system.
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