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BOUNDED OSCILLATION FOR A CLASS OF EVEN ORDER
NEUTRAL DIFFERENCE EQUATIONS®

ABSTRACT: We investigate bounded oscillation for the even order neutral delay
difference equation
A” (xn T cxn—m) = pnxn—k 2
where u is even. The sufficient conditions obtained in this paper improve and generalize
the results in related literature.
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1. INTRODUCTION

Recently, there has been a lot of activity concerning the oscillatory behavior
of difference equations, and various applications have been found in the
literature. We refer to [1-9] and the references cited therein for more details.

In [3, 4], the authors considered the following second order neutral delay
difference equation

(1) Az(xn T N n=ny,

and proved that Eq. (1) always has an unbounded positive solution, where ¢, p,
are real numbers with p, >0, P, #0, nzny, m, k, n, are nonnegative
integers and m =1, A denotes the forward operator Ax, = X1 — %, Lherefore,

for Eq. (1) we only need to find conditions for all bounded solutions to be
oscillatory. [3] first established such conditions in the cases when 0 <c <1 and
¢ >1. Later, these conditions were further improved by [4]. The main results in
[4] are the following two theorems.

THEOREM A. Let 0<c<1 and k>1. If

k-1
() lim sup Z (i+Dp,, >1-c,

n—rx i=0

then every bounded solution of Eq. (1) oscillates.
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THEOREM B. Let ¢ <0 and k> m. If

3) lim sup 22— = ¢ (0, )
noo P, . [
and |
k—-m ‘
4) lim sup Z s ok o el

n—»o0 i=1

then every bounded solution of Eq. (1) oscillates.

In this paper, we consider the following more general even order neutral
delay difference equation

(5) A= cv e =N e

where u >2 is an even integer, ¢, p,, m and k are the same as in (1). Our main

aim is to establish some criteria which guarantee every bounded solution of ;
Eq. (5) oscillates, which generalize and improve the above Theorem A and
Theorem B.

For the sake of convenince, throughout this paper, we use the convention

J
Z p, =0 whenever j<i-I, !

n=i

n-1
2@ =1 and x =x(x-1)x-2)-x-n-1) =[] x- ).

J=0

2. MAIN RESULTS

THEOREM 1. Assume that 0<c <1 and k =1, and that

k=1 n+k-i 5 J+l
j 1- i
(6) lim supZ Z —q’(])—-[ H C+ (s 1)} S
n—w o

J=n 1—c-l—qlcﬂ (.]) s=j—k+i+l I—C—qk(s—l)

where q,(n)=((i+u- 2)("'2) /(u =2)D)p;,n- Then every bounded solution of
Eq. (5) oscillates.

PROOF. Suppose the contrary, and let {x,} be and bounded eventually
positive solution of (5). Set y, =x,-cx,_,. Then {y,} is bounded and

A"y, =p,%,, 20. It follows that A'y, (i=1,2,..,u—1) are monotone and

each of them doesn’t change sign eventually. In view of [1. Theorem 1.7.11],
there exists an integer n, > n, such that
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(7 (-D'A'y, >0 for n2n and limA'y =0, i=0,1,2,--,u-1.

n—>0

Let h, =[(n—n,)/m], where [-] denotes the greatest integer function. Then we

have for n>n,

Xoi= Vo +an—m =

2 h,—1 h,
SOV E SR CE ) ek Yn=(h,~lym +c xn—h,,m ;
By using the decreasing nature of {y,}, we have

h
=g
h. -
x, 2 (+c+c?+- 4Ny, = R

From (6) there exists sufficiently small positive number & such that

k=1 n+k-i /
: (1-8)q,())
8 ! X [
®) H:l—i:lp i=0 ; I—c+(1-6)g,())

J+l

- 1- -1
J 1—[ IS EtiSe)qris=1)
s=j=k+i+l L=g& (1 T S)Qk (S e 1)

For this &, there must exists an integer N such that

and thus

Substituting the last inequality into Eq. (5), we have
9) Ay, z—gpny,,_k, n>N.
c

Summing (9) from n> N to « for (#—1) times and using (7), we have

o i L SN G
S e ( 0

(u-2)!
Hence
1-e" & (i-n+u-2)""?
Ay, + View <0,
A Z e ol s

and thus
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-G ((+u-2)42
A n + +nJ/ I+n— S O'
T ZO: (D) Et i

That is
k+1

(10) Ayn Z 4q; (n)yu-n—k = nzN.

From (10) we have

=
Yoriew Ynt & 1 Eqi(n)yi+n—/c = 07 0<i<k+1.
=IC

Then

Ynet = Vn +i—”"q,(l1)y,, <0 0<i<k.

Hence
l-¢
0 < Yntl = (1 '—_—-——Qi(n))yrn
l-c
which implies
(11) L=c=(l="g)q (n)i=10; 0<i<k.
On the other hand, it follows from (10) that

[1 == - qk+l (n)\JynH (1 el I__Eqk (n)jyn
Jle= =z

l-—€& '
b e () R (e =T
_C;CI())’ k

Therefore, we have
l-c-(1-8)q,(n)
L=c+ (- &)gpu ()
1
+
I=ed (L= €)qk+1 (n) =

Ynel =

qu( )yH—nk —0 n=>N.

Multpling both sides of the last inequality by [T}, l::_(zl'fg);’;k(f'_;)” , we have
A ynﬁ 1“C+(1—5)Qk+1(.’.“1) T
; l-c-(1-¢&)q,(i-1)

S [, 17 Lleet (=8, G-D )| 1-8)g,n
+Z {Y”H ' l—c+(1-8)g,(n) e

Ayiilzc=(l=g)q (1 =1
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Set z, =y, H?:le%%, then we obtain

k=1 ( n+l I=anllsc) aial) X
Az -+ Z [H L= e (=g e 1)

i=0 \_j=N

(-8)g(m) ﬁ l—c=(-8)q,( -1 _
I—c+(1=8)ge(m) "™ 1y 1-c+1-8)g,., (i -1)

So, we have
k-1 n+l -, £ )
AZn 5 z H I=c+ (1 5)qk+l(:/ 1) 2
(12) i=0 \ j=n—k+i+l * G (1 O g)qk (-] g 1)

(1= )g,(m O
n —k+i — M-
l-c+(-¢&)q,.,(n)

It is obvious that (12) has an eventually positive solution and Az, <0. Summing

(12) from M to o, we have

z 1 = ad l-c+(-8)g,,(j-1)
2, Z(,H IR EEYRTEDY

n=M 1—C+(1—5)61k+1(") =0 \ j=n—k+i+l

X (1=£)q,(M)z, 4, 2

A 1 7 Loetd-8g,0G-D)
2, 1~C+(1—€)qk+1(n)[ L1 l—c—(1~€)qk(1—1)j

=0  n=M J=n—k+i+l

v

x (1= )¢, (W20 2
S ME (1-9)q,0m) i )
B )

b oot =8)a (o) e o (=e)g (-

\2

2y

Thus, we have

k=1 M+k-i n+l ]
7 -£)g,(n) l—c+(-8)g,u(U=D) _,
( ) Z Z g a (1 e E)Qkﬂ (n) J=n—k+i+l Lsce (1 3 8)%\7 (-] = 1) :

=0  n=M

Taking the limit superior as M — o we obtain

k=1 M+k—i E)q (}’l) Jiiel 1—C+(1 —E)Qk+](j_l)
li : 3
1m SUPZ Z c+(1 )G (1) { ki L= =8)g, (=1 ]

Mo i=0 n=M
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That is
k=1 n+k-i & - :
(14) lim supz Z 1=2)g,()) :
M—wo J=n lee +(1 _E)pkﬂ(.])

; ﬁ L-ct+(-8)gu(s=D | _
s=j—k+i+l I=c= (1 = E)qk (S = 1)
This contradicts (8). The proof is complete.

When u =2, it is easy to see that ¢,(n) = p,,,. So we obtain the following.

COROLLARY 1. Assume that 0<c <1 and k>1 and that

k=1 n+k-i Jj+l
P o
15 llmsu e [
(15) EDEOT [/ [fles

=00 )= c+ pk+1+/ mn—ktitl + T C T Phas-l
Then every bounded solution of Eq. (1) oscillates.

REMARK 1. Corollary 1 improves Theorem A. In fact, when k =1, it is easy
to verify that (15) implies (2). When £>2, in view of Theorem A, if

limsup, ., p, 2%(1-c), then every bounded solution of Eq. (1) oscillates.

Therefore, we only consider the case when p, <2(1-c).

Note that
< nil S e ﬁ I =
i=0  j=n L=t DPisirj \ s=j-k+i+l e, el
1 k=1 n+k-i 1 e b D
=i— Dot e
l=c ; j; ; Les (1/(1 = C))pj+lt s=jI:[i+1 e Pii-1
1 k=1 n+k-i
S R ij-H 7 Z(l+1)pn+1+kpn+l
Ii= (o e iz
k-1
P Z (l gt l)pn+1
T EN

This shows that (15) also implies (2). On the other hand, we can easily cite an
example to show that condition (2) does not imply condition (5). We omit it.
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THEOREM 2. Assume that ¢ <0, k>m and that

(16) lim sup 22— = g € (0,00)
n—>0 pn—m
and
k=m—1 n+k-m—i g, (])

17) lim sup -
n—o ; oAl ot gy ()

J+l et T
1 ca+qk—m+l('s )J > 1’

5= j—(k—m)+i+l l-ca- Qi-m (s-D
where q,(n)=((i +u—-2)*"2 /(u =2, - Then every bounded solution of
Eq. (5) oscillates.

PROOF. For the sake of contradiction, assume that (5) has an bounded
eventually positive solution {x,}. Set y, =x, —cx,_,. Then {y,} is bounded
and A"y, =p,x,_, 20. It follows that A'y, (i=1,2,,...u —1) are monotone and
each of them doesn’t change sign eventually. In view of [1. Theorem 1.7.1 1],
there exists an integer n, > n, such that

(18) (-D'A’y, >0 for n>n, and limA'y, =0, i=0,12,.. . u-1

n—>w0
In view of (17) there must exist a constant z >1 such that
k—m—1 n+k-m—i q, (])

(19) lim sup =2
oo Zo: JZ I-pca+ g pnn())

= = + -1
% [ H Hea qk—m+l (S ) <,

s=j—(k-m)+i+1 I=licai=q, - (s=1)

For this 4, it follows from (16) that there must exist an integer 7, =7, such
that

(20) —c pp" < - uca, nzn,
clearly o

Adyis Cp—"Auyn-m e o e e L
that is 2 2

Auyn_cp—nAuyn—m = PnVn-k> 7121’12.

n—m
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Substituting (20) into the obove equation, we obtain

(21) Au(yn _/ucayn—m) 2 pnyn—k'

Set z, =y, —ucay,_,, then {z,} is bounded. Meanwhile, there must exist an
integer N > n, such that

Auzn = pnyn—k’
(—1)'A’z,1 >0 for n>N and limA'z, =0 i=0,1,2,---,u—1.

n—w0

22)

On the other hand, we have

Zp = Yp - HCQy, , < Yn-m ~HCAY, y = (1 ~;tca)y,,_m,

and then
1
Yn 2 Znim -
1 - pea
Therefore, we obtain
1
(23) AZ‘Zn = pnzn+m—k s
11— pca

Summing (23) from n> N to « for (u—1) times and applying (22), we have

1 i (i-n+u-2)"">
1 - pca (u—-2)!

Az +

n

plzl—(k—m) s 0’

i=n

that is

0 5 e 2 (u—2)
Az Zp Z (l bk ) pn+izn+i—(k—m) < 0.
l =/l & (u-2)!

Then we have

24 Az )z e <)
(24) : I_Mqu (kom)
It follows from (24), we have
k—-m+1

25 Az, + )z e < 0 n =N,
(25) n 1_#00!;4() (k=m)
and so

il 2y q.(Mz, <0, 0<i<k-m.

+
1 — pce
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Hence

which implies

(26) =

g;(n) > 0, 0<i<k-m.
1— pca

- pcatgy el o
Set w, =z,TT., 1_ﬁ :;Z: umy- Similar to the proof of Theorem 1, from (25)

we have

k—m-1 n+l 1—uca + 1 —1
P 1 H H 9y m+1 (J )j
J=n+i—(k—=m)+1 == HC& —q,_, (.] £ I)

" %

(27) l-peca+qp,(n) i
A qi(n)wnw ~(k-m) < 0.

Summing (27) from NV to <o, we obtain

= e n+l l—/lca+Q—m+ (j—l)
Z Z( H : k l' )Jx

n=N Hea + 9r-m+1 (7’2) i=0 J=n—(k-m)+i+l * Hea — Di—m (] =1

X q; (}’l) wn+l—(k—m) =

k=m-1 N+k-m—-i 1 n+l o= uea + e (] o 1) ;
i=0 n=N 1 - pea + Di-m+1 () J=n—(k=m)+i+l 1 —pca - dm el

\V2

=g, (ﬂ) wn+i—(k—m) 2

ey g,(n) 7 lopeatq . (G-
i=0 n=N 1 - pca + Die-m+1 (n) J=n—(k—m)+i+l 1-uca - qes A i 1y

v

Wy

It follows that

k=m—1 N+(k=m)~i q,(n)

e Y

PR it o U ot e ()

T l-pca+q (-1
-m+ <
x[ [Elat e

J=n=(k-m)+i+l * Hea =gy _p (-1

Taking the limit superior as N — w0, we obtain
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k—-m—1 N+k—m—i
i (n
lim sup 9.(n)
Now 15 nony 1= pea+qp ()

: { ﬁ 1_yca+qk_m+l(j_1)] =

J=n—(k—-m)+i+1 I~ HC& =y p (.] o 1)

That is

k-m-1 n+k-m—i 2
llm sup qi (.]) .
Noo g Jj=n e HCA + Gy (./)

J+l 2 A7
5, [ H 1 HCO + Gy (S I)J s 1,

smjm(b-mysis] 1= HCX =G _p (s=D

which contradicts (19). The proof is complete.

COROLLARY 2. Assume that ¢ <0, k >m and that

29) | lim sup —22— = ¢ € (0,0)
now  Pp oy
and
k«zm—l n+kzm-1 pﬁ-i
(30) lim sup X
n— i=0 Jj=n l—ca+ P jk-m+1

=

J+l
% { l=co+ Psik-m

s=j—k+m+i+l l-ca - Psik-m-1

Then every bounded solution of Eq. (1) oscillates.

REMARK 2. Similarly, we can prove that Corollary 2 improves Theorem B.
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