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APPROXIMATION OF FUNCTIONS OF ONE AND TWO
VARIABLES BY SOME OPERATORS

ABSTRACT: We consider some operatos of Szasz-Mirakyan type in exponential
weighted spaces of functions of one and two variables.

We give theorems on the degree of approximation of functions by these operators
and the Voronovskaya type theorems.
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I. APPROXIMATION OF FUNCTIONS OF ONE VARIABLE

1. INTRODUCTION

1.1. Similarly as in [1] let ¢ > 0 be a fixed number,

(L) v, (x) = e™*, x € R, = [0,+x),

and let C, be the space of all real-valued functions f continuous on R, for
which v, f is uniformly continuous and bounded on R, and the norm is
defined by the formula

(1.2) 1A lly =1 Oy = supv, () | f()].

X€R,

As in [1] for feC,, g>0, we define the modulus of continuity
@ (f;C,; ) and the modulus of smoothness w, (f; i I

(1.3) @ (G Y = sup || ASFER TR S0 S0

0shst

where
A f(x) = fx+B) - f(x), &, F() = f(R)=2f(x+h)+ f(x+2h),
for x,h e Ry. It is known ([1], [6]) that if f€C,, ¢ >0, and k =1,2, then
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(2)
(b)

operators

(1.4)

(1.5)

(1.6)

(1.7)

mo._ . £k =
Moreover let Cq = {fqu LT qu for k=1,2,...,m}, for fixed
me N ={,2,..} and ¢>0.
In the paper [1] were given approximation theorems for the Szasz-Mirakyan

for functions feC,, ¢g>0.

In [2], for f' e C,, were considered operators

and in [3] were examined operators

X€Ry, neN, feC,, where

and sinh x, coshx, tghx are elementary hyperbolic functions.

In [1] was proved that S, is a positive linear operator form the space C 7

into C, provided that » >¢ >0 and »n > n,, where n, is a fixed natural number
such that n, > g/In(/p). In [2] and [3] were proved that these properties have
also operators 4, and B, defined by (1.4) and (1.6).

In [2] and [3] was proved the following theorem

THEOREM L Let feC,, q>0. Then

at every x € R. This convergence is uniform on every interval [x,,x,], x; =0.

0 <, (f;Cpst) < 0 (f5C5ty) i 0<t <1y,
lim a, (f3C,31) = 0

SEE =it Z (nx) (;J, xe Ry, neN,

A(fx) = i ak(nx)f(%), XeR,, neN,
n

k=0

b

cosht (2k)!

a, () = teR,, ke N,:=Nu{0},

B =—L9 L S0 )f[z"”]

PR SR z2c S e

1 t2k+1

b= : teR,, keN,,
A g (2k +1)! : ‘

lim 4,(f;x) = f(x) = lim B,(f;x)
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In [4] was proved the following
THEOREM IL. Let f € C;, g >0.Then

lim n{d4,(f;x)- f(x)} = izc“f”(x),

n—>0

lim n{B,(f;x)- f(x)} = gf'%x),

h—>0

at every x € R,.

1.2.In this paper we modify formulas (1.4) and (1.6) such that new
operators are positive linear operators from the space C, into C 90

Let g >0 be a fixed number. For functions f & C, and ne N, xeR, we

introduce the following operators:

(1.8) L) (fi4:%) = ). a,(m) f [nikq}

k=0
Sl o (2k+2)/(n+q)
(19) IO(fign) = =23 am) e,
2 3 2k/(n+q)
0) - 2k +1
1.10 I (fiq; :-—.—L-F b, (nx )
e n (f30%) 1 + sinh nx ; () f n+q
o (2k+3)/(n+9)
0) n+q
1.11 L (fiq;x) = ( + b, (nx t)dt,
(L.11) U R U ) i

(2k+1)/(n+q)

where a,(-) and b, (-) are defined by (1.5) and (1.7).

We observe that for every ¢ >0 and i=1,23,4, L' is positive linear
operator and

(1.12) I g;x) =1 xeR,, nehl.

We shall prove that L (f;q), ne N, ¢ >0, is an operator from C g into C,.

In Section 2 we shall give some auxiliary results and in Section 3 we give
main approximation theorems.
In this paper we shall denote by M, (a,b), k=1,2,..., suitable positive

constants depending only on indicated parameters a, b.
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2. AUXILIARY RESULTS
2.1. By elementary calculations we can prove the following
LEMMA 1. For every ¢ >0, xe Ry and ne N we have

L@ —xg;%) = ( .
I har

tgh nx — l]x,
q

2
LY ((t-x);q3x) = {—LJ +—2—'—Z—(1—tgh nx)}x2 +

n+gq n+q

cosh(rxe?/ ")

L, (e";4;x)
cosh nx

Il

Ly ((t - x)e™; ;%) =

(n+q)

nxe? 9 sinh(nxe? 9 2 rcosh(nxe"/(””’))

tgh nx,

2

q/(n+q) Z
LY ((t-x)e”;q;x) = {COSh(nxe )( Z e"/("“’)—l] +

cosh nx n+q

n+gq coshnx

2n exp(—nxe"/(”*") +q/(n+ q))} Sl

nxe 9 sinh(nxe"/ (n+q)

(n+q)° cosh nx

L2 (- xq;x) = LVt —x);q52) + ——,
n+q

LBt -x)2qx) = L (-2 q;%) + LY (t-xq;x) +

n+gq
+ ;
L (e™;q;%) = %(62"/(” L =DLL (e%5452),

LL3) (t—xq:%) = ( n  coshnx ljx’

n+q 1+sinhmx

L) (t=0"q;%) = [

1+sinhnx n+gq 1+sinhnx

n Jz sinh nx 2n  coshnx }
+1
n+q

n+q cosh nx cosh nx

3(n+ q)2 £

Tk }
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nx cosh nx
(n+q)* 1+sinhnx’

_ l+sinh (nxed/0))

LY (e™;q;%) :
1 + sinh n2x
L ((t-x)e”;q;x) = Y ) cosh(nxe?/ "y _ 1 - sinh(nxe?/ "Dy
l+sinhnx (n+gq

5 2

Lff} (t-x)%e?,; g x) = x 4 24/ | 1 |sinh (nxeq/(”“’)) =
l1+sinhnx [[\n+q
) q/(n+q)
=7 cosh(nxe )+1e +
n+q

L R (%) cosh(nxe )y
(n+q)* 1 + sinh nx

1 sinh nx

LY e-xqx) = LY (¢~ x;q;%) + )
n+gq 1+ sinh nx

L -0%030) = IO =0 %q0) + —2— LD (= xgs ) +
P’l+q

2% 1 : 4 sinh nx
n+ql+sinhnx  3(n+q)* 1+sinhnx’

L ("3 ;%) = L (204 1) I8 (e% 5 +

2q
'1 i nt4q (ezq/("*-tl) i
1 + sinh nx 2q

Applying Lemma 1, we shall prove the main lemma.
LEMMA 2. Let g >0 be a fixed number. Then
(1.13) I L (e*;q;-)|l, < M, for neN, 1<i<4,
Wwhere M, =2, M, =2e?, M,=3, M, = Se’. Moreover for every i i
have

(1.14) 1L (fsx)ll, < M| fll,, neN, 1<i<4,
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where M, are constants given in (1.13).
The inequality (1.14) and definitions (1.8) — (1.11) and (1.5), (1.7) show that
Lﬁf} (f;9), neN, gq>0, is positive linear operator from the space C g into

(eh
PROOF. By Lemma | we get
L (e*;q;%) < 2 exp[mx (e ~1)],

2+ exp[me"'/("*")]

L (e";q5x) < < 3exp[nx(e?"9 ~1)],

—hXx

2+e™ —e

for xe R;, ne N and ¢ > 0. But

b k
(1.15) 0<e"/(”+q)—132( g ] =2 for qg>0, neN,
“\n+q n

which by (1.1) implies that
vq(x)L{,,” (et a2ty (X)L (e®;q;%) < 3,

for every xe R, and ne N, g >0. Thus (1.13) is proved for i =1,3.
In the case i =2 and i =4, we shall apply the following inequalities:

(1.16) (e ot b et R A e e
: Qi et e e 2 o SR
By Lemma 1 and (1.16) we get
(sl peil = ce i R e

et | LY (") 1,5

IA

2
8267/('”9') I L(n3} (e”;q;-) “q £ _qufl/("Hl) <

IA

Bt edig Sl

IA

LY ;g0 + 21,

forall ne N and g >0, which by (1.13) for i =1,3 imply (1.13) for i =2,4.
From (1.8) — (1.11) it follows that

12 CF5a )0 < NS I, IEY %505l

forevery feC,, ¢>0, ne N and 1<i<4. Now by (1.13) we obtain (1.14).
Thus the proof is completed.
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LEMMA 3. Let q >0 be a fixed number. Then

£+l if i=1,
4 +
L1 [ Pe-xgn| <"1 "

£+g if i=3,

n+q n
2
( qx J o 3x il
> n+ g5y
G e T S
qx j S e
n+gq n+gq

L9 (¢~ x)e";g33) <

(1.19) v, (%)

2qx +2q+3 i i,

n+q n
2

9q " x o4 4x ik

: + n+
(120) v, (LY ((t-x)e":q;x) < (rd) !
4 3 9g*x* (5he 18

ey Lol )

(n+q)t n+q n’

Jorall xeR,, ne N.

PROOF. We shall prove only (1.17) — (1.20) for i =1, because the proof of
(1.17) — (1.20) for i = 3 is analogous.
From Lemma 1 and by e’ >¢ for t € R, we get

qgx

| LY (¢ - x;4;%)| < x| tghnx—1] + tgh nx <
n+q
9 2 i qx . qx +_1~,
e?™ n+q n+q n

2 ; & 35
LE,”((t—x)z;q;x) < q = 2 ;2 X o = 12 o - )
(n+q)° n+qge™ (n+q) (n+q) n+q

for xe R, and ne N. By (1.16) we have
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(1.21)

R palmg) _q| = |galoe) _ | _ 4 alma) | o
n+q n+gq
2
< q 2eq/(n’fq)’ neN.
(n+q)

Applying (1.15) and (1.21), we get by Lemma 1

n

. q/(n+q)
v, IV (0~ )e;;3) | < xvq<x>{ Sltate vl o
n+

cosh nx

eq/("ﬂl) =

<

yi | sinh(nxe?"*?) — cosh(nxe? gy
coshnx

IA

2 :
x{—14 : D) exp[nx(e? ™ —1) - gx] + ;2 <
(n+q) )

x{_ﬁ_CI_J,l},
n+q n

IA

and analogously

4
vq(x)lL‘n”((t—x)ze"’;q;x)lsz{ L o290 explm(e?+) 1) - g] +

(n+q)*
+ e 1 + — T alnea) exp[nx(e"/("“’) -1)—gx] <
n+q e™ (n+q)2
1) 4.2
i qgex g X 4 55 ol < 9" x ;] 4x
(n+q)* n+q n+q (n+q)* n+gq

for xe R, and ne N. Thus the proof is completed.

REMARK. It is obvious that by formulas given in Lemmal and by

Lemma 3 we can obtain analogies of (1.17)-(1.20) for i =3 and i = 4.

3. APPROXIMATION THEOREMS

3.1. First we shall prove four theorems on the degree of approximation.

THEOREM 1. Suppose that f € C, with a fixed g >0. Then
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(1.22) WL (fsq:) - L (f305 ), Zwl[fC fq]

1LY (fiqs ) - L8 (fs0) M, <3w1(f Cq»LJ
n+q

forall ne N.
PROOF. From (1.8) and (1.9) it follows that

(L2)s el (= L ) =

o (2k+2)/(n+q)
L e [f(t)—f[n—zfgﬂdt

k=0 2k[(n+q)

for xe R, and ne N. But for fixed k, n and 2k/(n+q) <t < (2k +2)/(n+ q)

we have by (1.1) — (1.3)
2k 2k
lf(l‘)“f[mj A, 2k/(n+q)f[n+qj

<

IA
IN

=
2k
wl(f;Cq;t—Zk/(nqu))(Vq(n+ qD

IA

@ (f5Cy3 2 (n+ )9,
which implies that

| L2 (f30:%) = LV (f3q5%) | < o, (f3C52/(n+ @) LY (e¥ ;%)

for xe R, and ne N. From this we immediately obtain (1.22) by (1.2) and
(1MI3 ) withi s =t 1
The proof for L{* and LY is analogous.

Theorem 1 and properties of @, (f;C,;-) imply the following

COROLLARY 1. For every feC,, q>0, we have

; '-)—L{,f}(f;q;-)uq-

) -1 (fig0)] =

THEOREM 2. Suppose that f € C; , ¢>0. Then
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(124) v, L (frx)-f@ < N, 1 L E-xgx0)] +
LA, O (@ =-0)75g5%) + v (DI (- %) e”;45%)},

forall xe Ry, ne N and 1<i<4.
In particular

(125) v, ()| LY (fsg: ) - fl < |l f'nq[ = +l] +

n+q n

106]2.‘62 " 753
(n+q)2 n+q (

+Hf”l|q[

(126) v, LY (f;:0) - fF < || f n,,[n‘fq +%] +
e e e i il
+ I f 11,,[(n+q)2 +n+q+n2}

for xe R, and ne N.
PROOF. Let x € R, be a fixed point. Then for f e C: and f € R, we have
t's
f@) = fx) + f'x)t=x) + [ | f'(u)duds,

which yields
F@) = F() + fe-x) + [du [ f'(wyds =

=f(x) + f/(x)t-x) + IJ'(t—u)f "(u)du.
From this and by (1.12) we get x
LY (f@sg:%) = f() + fOL(-xq:%) +
+ Lf;’[ "[(z -—u)f"(u)du;q;x], neN, 1<i<4.

Consequently,

v, L (f3q:0) - @ < | 1,1 L ¢ = x93 | +
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;q;x]

—x) f"(w)du

t
+ v, (%) Lf,” [

for ne N and 1<i<4. But

j (t —u) f"(u)du

X

" g 2
= ” f ”q (e]l +eqX)(t_x) » tEROJ

;q;x] s

<y g I (e = %) e q5%) + LY (- %)% 5%))

for ne N and 1<i < 4. Combining the above, we obtain (1.24).
Estimations (1.25) and (1.26) follow from (1.24) and (1.17), (1.18) and
(1.20).

which implies that

v, (%) Lﬁf}[

j (t —u) f"(w)du

THEOREM 3. Let feC,, q >0, and let

1/2
10g% x> i 7x]

xeR,, neN.

(1.27) D,(x;9) = ((n+q)z e

Then
(1.28) v, LP(f34:%) - F(x)| < 120,(F3C,3 @, (x:9)) +
1 =
+ 16(—ﬂ—+—J(®n(x;q)) ‘o, (f;C, 2@, (x39)),
n+qg n
forall x>0 and ne N.
PROOF. From (1.8)-(1.11) we get

(1.29) LA (f:9:0) = £(0) for ne N, i=13.

Similarly as in [1] we shall apply the Stieklov function
g 22
£,(x) = = j J.[Zf(x+s+t)—f(x+2(s+t))]dsa’t, xeRy,, h>0,
0 0

of function f € C,. It is known ([1]) that for 4> 0:
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(1.30) 15 = A, s @, (f5C5m),

(1.31) | i |, st6n”'wy(f5C,52m),
(1.32) 1filly < 9h7 @y (f3C,sh),

which show that f, quz if feC,, ¢>0. Hence for xeR, and ne N we

can write

v, ) LY (f30:%) = F) | < v, ) LY (f ~ frsq5%)| +
+ | L (fs@:0) = £, + | /(D)= F) )} = W, + W, + W,.
By (1.14) and (1.30) we have

W

IA

2 f = lly < 20,(F5C5h),
@, (f5Cy3h).
Applying (1.25), (1.27) and (1.31), we get

IA

W

1 ’
Wy <\ fu Hq[ qfq ;] I £ lly @a(xq) <

n

< 16(q—x+1)h'lwl(f;cq;2h) + 9B D) (x,9) @, (f3C,5h).
n+q n

Collecting the above results, we obtain

L
n

v, ) LY (f3q:%) - f()] < 16(%+ ]h“wl(f;cq;zm +

+ B3+987 @ (x:9) @, (f3C, 3 h),

for h>0, x>0 and ne N. Now, for given ¢, x>0 and ne N, choosing
h=®,(x;q), we obtain the estimation (1.28).

Analogously we can prove the following
THEOREM 4. Let feC,, q>0, and let

10g%x* lixse a1

1/2
Rt )= i e XeR,, neN.
(n+q)” n+q n




Approximation of functions of one and two variables ... 69

Then
v, (| L (f33:%) = F(D)] £ 120,(f:C,5 ¥, (59)) +
5 2 z
h 16(61— = —](‘Pn @)~ o, (f;C,52%, (x5 9)),
n+q n
forall x>0 and ne N. Moreover for x =0 we have (1.29).
From Lemma 2 and Theorem 1 we derive

COROLLARY 2. Let f € C'q, q>0. Then

v, ) L (f;0:0) = f()] <
< 20,(f;C,;2/(n+ @) + v, )| LY (f34:%) - £ ()],

vq(X)lLff)(f;q;x)—f(x)l < 3a)1(f;cq;2/(n+q)) 5
+ v, (LY (f30:0) - F (),

forall x>0 and ne N.

Theorem 3, Theorem 4, Corollary 2 and properties of @, and @, imply

COROLLARY 3. Let q >0 be a fixed number. Then for every feC, and

x € R, we have
el (fag )= 1<i<4.
lim L, (f34;%) = S (), Sis
This convergence is uniform on every interval [x;,x,], x, 20.

3.2. In this section we shall give the Voronovskaya type theorems.

THEOREM 5. Suppose that [ € C ;', q>0. Then

(1.33) lim n {L? (f;0:2)- LY (f;q;%)} = f'(%),
(1.34) lim n{LY(f;q:0)- L (f;4:%)} = f'(x),

atevery x € Ry.
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PROOF. We apply the formula (1.23). But for fixed k, n, ¢ we get by the
Taylor formula for f e C; and t e [2k/(n+ q) Qk+2)/(n+q)]:

2
£ =f( L ]+ f'(ij[r % j+ Sy (r:m( ——2"—] ,
n+q n+q n+q n+q

where &, is a point such that 2k/(n+q) < &y, <t. From this and by (1.23) it
follows that

L2 (fiq:x)- LY (f;q5%) =

_n+g< [ 2k
S5 ;ak(nx)f(mq)

(2k+2)/(n+q)
t— dt +
n+q

i (2k+2)/(n+q) 5
+ E a, (nx) ¢ )[t————j dt =Y + 7Y
4 k=0 '[ : n+q ! &

2k/(n+q)

2k/(n+q)

o

for xe Ry and ne N. It is obvious that
Y = LL‘"”(f’(t);q;X), xeR,, neN,
n+q

which by Corollary 3 implies that
lim n¥ = lim L (fq;x) = f'(x), X€R,.

n—

Moreover we observe that

n+q ) (2k+2)/(n+q) 2% 2
= lvalis= Y. @ (nx) J. eq’(t— ) dt <
k=0

2k/(n+q) n+q
g Brq 1 _2 ' q(2k+2)/(n+q)

=l 5 Zak(nx)e <

k=0
2624/(n+q)

Ilfllq( o L(el g e

< —2 ALY g, e

- (n+q)’ CE Joie

which by Lemma 2 yields
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12e"x
(n+

|5 | <

[|f|| xeRy,, neN.

From this we get
lim nY, = 0 forevery xeR,.

n—o

Combining these, we obtain (1.33).
The proof of (1.34) is analogous by definitions (1.8)-(1.11).

THEOREM 6. Suppose that f € C;, g >0. Then

(1.35) lim n {LY(f;q;x) - 4,(f30)} = —qxf'(x),

n—>x0

(1.36) lim 7 {L (f;q;x) - B,(f;%)} = —qxf'(x),

at every x € R;,.
PROOF. From (1.4) and (1.8) we get

< 2k 2k

for xe R, and ne N. Moreover we have

IV (fq:00=A4,(f;0) =0, neh.

Arguing as in the proof of Theorem 5, we get by the Taylor formula for f e C;
and fixed £, n, q:

2k S R ok S R T 2% 2k
f[n+qj=f(7j+f(7)(n+q_nj f(k")[n+q n]’

where y, , is a point such that 2k/(n+q)< s 2k/n. Consequently,

(1.37) L (f3q53) = 4, (f3%) = —1 iak( )f[ j% +

n+q - n

k
Zak(”‘c)f"(hn [2 ] =2, + 2y,

(n+ )2

for xe R, and ne N. By (1.4) we have
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Z, = —L 4, (i7" ();),
n+q

q2 = / 2k :
7o =<5 i a, (nx e"z"”(—j <
z3 ||f||q(n+q2; o (1) .
qz 7
< £ 4, (t%e";x),
" (n+q)’

for xe R, and ne N. Since the functions g,(x)=xf'(x) and g,(x)=x’e®

2

4> We have by Theorem I given in §1:

belong to the space C,,, if feC
31_1)1; ARy x) = ()] nll_l;l; At x) = x2e®,
for x € R, . Hence for every x € R, we get
,1’212) nz, =—qxf(x), 31_130 nZy =0;

and by (1.37) we obtain (1.35).
The proof of (1.36) is identical.

Now we shall prove the main Voronovskaya type theorem for operators

Ihe,

THEOREM 7. Let f € Cj, g > 0. Then for every x € R, we have:
(138) lim 7 {Z{) (£34:3)~ f(@)} = =o' () + 7 /")
ifi=13; and

(139)  lim n{Z)(fig0)~f@) = 1=g0)f () + S/"(x),
if i=2,4.

PROOF. If i =1,3, then we write
LY(fq:0 - (%) = [P (f;5%) - 4,(f3 0] + [4,(F:x)- f(0)],
O (fiqx) - £() = [LO(fi05%) = B, (f;0)] + [B,(f3) - F()],

xeR,, neN. Applying Theorem 6 and Theorem II given in §1, we
obtain (1.38).
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For i =2 and i =4 we have
L2 (fi4:0) = f(x) = [LP2 (Fig:0) - LY (f;¢30] + [LY(f30%) - £(2)],
LIf4:%) - f(x) = [L (figs0) - LY (30591 + (L2 (f3050) - F()],
x € Ry, ne N. Now, by Theorem 5 and (1.38), we immediately obtain (1.39).

Theorem 7 implies the following

COROLLARY 4. For every function f e C;, q>0, and for i =1,2,3,4 we

have
LY (fiq:%) - f(x) = O@/n)
in every fixed x € R,,.

II. APROXIMATION OF FUNCTIONS OF TWO VARIABLES

1. INTRODUCTION

1.1. In the paper [2] were examined approxinmation properties of operators
of the Szasz-Mirakjan type

SR 2ok
(21) Am,n (f>x>}’) = Z Zaj(m)ak (ny)f(—J'f_Ja
J=0 k=0 JEoRT

2Jj+2)/m (2k+2)/n

Q2) A, (fimn="ES S amam) [ [ f6odd,

Jj=0 k=0 2j/m 2k/n

(x,y)e RO2 =Ry xR, and m,ne N where R,, N, N, and a,(¢) are defined in

§1, Section I.
These operators were considered in exponential weighted space o

p>q >0, connected with the weighted function
(2.3) Vo (ke PR () € R

C,, is the set of all real-valued functions £ continuous on R; for which Vil

is uniformly continuous and bounded function on R;. The norm in C s
defined by
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(2.4) IS g =l FCpgi= sup v, , (6 ) (x|

(x.9)eR}
It is obvious that
G R =Cr S Gt C G C if 0<p<r and 0<g<s.

r.so

As in [2] we shall denote by C7',, with fixed me N and p,q >0, the set

P.q°
of all functions f € C,, which have partial derivatives of the order <m on R;
and these belong alsoto C, ,

In [3]-[5] were examined operators

i e J0.0)
@3) Bun(fixy) = e (Lt simh)
+1
; mz bk(ny)f( j+
g 1+smh ny ! Z & (mr)f( j K

£ 303 b (mohe )f(zf = 2";1)

Jj=0 k=0

Y 0,0
(2.6) B, . (f3%,y)= - Lo i
: (1 + sinh mx)(1 + sinh ny)
(2k+3)/n
Z by (ny) = f(0,2)dz +
1+ smh mx ¢ (2k+:’l-)/n
(2k+3)/m
1+ smh ny Z i (2,+'!;/mf )d

(2j+3)/m (2k+3)/n

+ i ibj(mx)bk (ny)% [ [ fezau,

Jj=0 k=0 (2j+1)/m (2k+1)/n

(x,y)€R}, mneN, feC
In [2] and [4] was proved that operators A

with p,g >0, where b, (¢) is defined by (1.7).

Am,n’ Bm,n and Bm n
positive linear operators from the space C,,, p,q>0, into C, prov1ded that

P9

m,n
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r>p, s>q and m>my > p/In(r/p), n>ny >q/In(s/q). In [2] and [4] was
proved the following

THEOREM L. Let feC,,, p,q>0. Then
Jim 4, (fix,9)=f(xy) = lim 4,,(f;x,),

lim B, ,(f;x)=f(xy) = lim B, (f;x),

m,n—

at every point (x,y)€ Rg. The above convergence is umiform on every
rectangle D = {(x,y)0<x, <x<x,, 0<y, <y<y,}.

In [5] was proved the Voronovskaya type theorem.

THEOREM 1I. Suppose that feC th, p.q>0. Then for operators A
defined by (2.1) we have

lim 1 {4, ,(f%,0)=f )} = SLEGE+2 f3 (%)

at every (x,y)eR;. The identical property have operators B, , defined
by (2.5).

Theorems on the degree of approximation of feC,, by the above

operators were formulated in [2] and [4] by the metric of the space C, , r> p,
=

1.2. In this paper we modify formulas (2.1), (2.2), (2.5) and (2.6). We
introduce the following operators in the space C,, with fixed p,¢>0:
S 2 e 2
@Sl r g s ~ED B 0 (0 Ve (ny)f[———j j

2
s m+p n+gq

@RV EST (i i) —

3 W S 4, (ma, () Dj [ £t 2)drc,

j=0 k=0

/(0,0
(1 + sinh mx)(1 + sinh ny)

LR e
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1 + sinh mx ¢

Z . (ny)f[O, 2k+1] i

n+q

e SO Zb(mr)f{m+p ]+

1+ smh ny

+ZO Zob,(mv)bk(ny)f[ZJH 2k+1]
i

m+p n+gq

/(0,0)
(1 + sinh mx)(1 + sinh ny)

z by (ny)~

(SO p i )=

(2k+3)/(n+q)
£(0,2)dz +

(2k+1)/(n+q)

1+smhmx

(2j+3)/(m+p)

£(t,0)dr +

(2j+1)/(m+p)

Zb(x)

1+ smh ny

L DIEED S S b, e () 1762k

J=0 k=0 Ey

(x,y)eRg, m,ne N, feC, , where

p.q’

Dy ={(x,y) € R; :2j/(m+ p) S x<(2j+2)/(m+ p),
2k/(n+q) < y < 2k +2)/(n+ )},

E, :={(x,y)eR02 :(2j+1)/(m+p)st(2j+3)/(m+p),
QRk+1)/(n+q)<y<2k+3)/(n+q)}.

It is easily verified that operators LY  1<i<4, and m,ne N, are well

m,n?

defined on the space C, . Moreover we have

(2.11) L) (p.gx,y) =1 for (x,y)eR;, mneN, 1<i<4.
If feC,,, p,g>0, and f(x,y) = fi(x)f,(y) for x,y € R, then
(2.12) LY, (f(t:2); 45 %, y)=Li} (10 P, ¥)LY (f3(2):9, %)

for x,y € Ry and m,n e N, where L, i=123,4, are defined by (1.8)-(1.11).
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Similarly as in Section I we shall denote by M, (a,b), k=12,.., the
suitable positive constants depending only on indicated parameters.

2. MAIN RESULTS

2.1. Applying Lemma 2 we shall prove

LEMMA 4. Let p,q >0 be fixed numbers. Then

(2.13) |2, /v, .20 pas)| <M,

i
P4

for mne N and 1<i<4, where M, =4, M, =4e*, M,=9, M, =25"
Moreover for every feC,, we have

(2.14) I8, (fipa)| <M fllpg. mneN and 1<i<4,
: s :

where M, are numbers as in (2.13).

The inequality (2.14) and definitions (2.7)-(2.10) show that L'} | m,ne N

m,n >

and 1< i< 4, are positive linear operators from the space C, , into C, .

q

PROOF. We shall prove only (2.13) and (2.14). From (2.7)-(2.12) and by
(2.3) we get

v, G L (v, (6,2); Py g % ) =le ™ L) (e p; Ol L %4, 7)]

for x,ye R,, mne N and 1<i<4, which by (2.4) and Lemma 2 implies
(2.13).
From (2.7)-(2.12) and by (2.3) and (2.4) we obtain

NGRS IS W AR UURRT Y

for feC m,ne N and 1<i<4, which by (2.13) yields (2.14).

p.q°?

2.2. Now we shall prove theorems on the degree of approximation of
functions feC,, by operators L(,,’;},,, (f;p,q). We shall apply the modulus of

continuity of feC,
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(215) wl(f;cp,q;t,s) = Sup”Ah,ﬁf(':')”p,q7 t,SZO,

O<h<t
0<d<s

where A, f(x,y):=f(x+hy+38)- f(x,y) for (x,y)eRg, h,6 € Ry. This

modulus of continuity have the properties

@ o(f;C, 5t8) 20 forss =0 a/C G 0.0) =0,

p.q?
(SR C1C s )i <tay (f5C 050 . s) Tor Osti<rrand's=0,

o (f5C,q3t8) < o, (f;C, 5t8,) for 0<s <s, and ¢ 20,

s s)i=10}

p.q°

() lin(l) o, (f;C
t,5—0"

THEOREM 8. Suppose that feC,,, p,q>0, and

Il

(G y) = L (fing ey LS fipigi x, ),
G (DR L pigs, v) = Lo (5 p,03 % V),

for (x,y)e R; and m,neN. Then

2
(216) ”Fm,n(f)”p,q S 4a)l(f’Cp’q,m+p’nqu
' e o)
(2.17) WG G170 9w1(f;Cpq,m+p,n+q],

forall m,ne N.

PROOF. We shall prove only (2.16) because the proof (2.17) is analogous.
From (2.7), (2.8) and (2.11) it follows that

F,.(fix,y) =

(m+P)(n+q)i iaj(mx)ak(ny) J‘J‘lif(’ - f( 2k Hdtdz

= m+p n+q

for (x,y) EROZ and m,n e N. But for fixed j, k, m, n and (¢,z) e D, we have
by (2.15):
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‘f(tZ) f( 2/ 2]‘) A4,Lf[2j,2k]<

m+p ' n+q e Taee \M+p n+q )|

=
2] 2k 2] 2k
< a)l(f Cpq, e ,Z— ][V""’( : ]]
p n+gq m+p n+q

From this and by property (b) of modulus of continuity we get

2
| Enn (3% )] sw][f;cp,q, =% n+qJL£3,},.(1/v,,,q;p,q;x,y)

for (x,y) e RO2 and m,ne N, wich by (2.1), (2.2) and (2.13) implies

1B (Ol < wx(f cpq-—z—,i]{ N

‘m+p n+q
2 2
m+p n+q

s4a)1[f;Cp,q; j, for m,ne N.

THEOREM 9. Suppose that f e CL,q, p,q > 0. Then there exists a positive
constant M = M, (p,q) such that

@18) v, Y (fipgm ) - F(x )|

forall (x,y)e Rg, m,ne N and i =13, where

x2 X s
2.19 O (x:p):= ;
(2.19) AL {(m+p)2+m+p}

PROOF. Let i =1 and let (x,y) e RO2 be a fixed point. Then for f e C‘p’q we
have

ft,2)- f(x,y) = j £ (u, 2)du + j fl(x,wydw,  (t,z)eRZ.
From this and by (2.11) we get

t
@220 LD (Fpgry)=fxy) =Ly, [ [ £i 0 2)du; p.q; y] +
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+Lilll%n[".f\:l(xa"v)dw;psq;x;yJ; m,nEN.

34

By (2.3) and (2.4) we have

t

du , 1
[ —’ <[ £y (€745 +e74%) | £ —x |

=il TN
x PN

IJ‘ Su(u,z)du

and from this it follows that

Vp 0 (% V) <

t
130 { j fuu,2)du; p,q; x, y]

t
=0 % (x,y)L‘,R,,[ [ fitw2)duf p.g;x, y] <

SN fillpy €LY (59 0) e LY (|t - x| e”; pyx)+ LI (|t x|, p;x)},

m,n € N. By the Holder inequality and by Lemma 2 and Lemma 3 we get
e Lt -x|e”; psx) <

< {e PLY (- p )} 2 e 7 L) (e gy )} <
4 2 2
<l 90} % 4x :
(m+p)” m+p

v, ()L (|t —x]; pyx) < (LY (t —x); p; )} 2 s{

/2
e o 2
(m+ p)2 m+p

for m € N. Conseguently,

v, (%) S MO fill g @0 (x5 0)

t
Lot (I [ (u, z)du; p, g; x, y)

for m,ne N, where @, (-;p) is defined by (2.19). Analogously we obtain

vp,q(xsy) = M7(‘])”f; ”p,q (Dn(y’q)

il (I fi (e, w)dw; p, g; x, yj
Y

for myne N.
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The last inequalities and (2.20) immediately yield the estimation (2.18) for
i=1. The proof of (2.18) for i=3 is analogous. Finaly, we remark that for

e C e n a0,
(2.21) Lf;},n(f;p,q;0,0):f(0,0), mneN, i=13.

THEOREM 10. Let f€C,,, p,q>0. Then there exists a positive constant
Mg =My (p,q) such that

222) v ) L (Fimg % y) - f(x,¥)] <
< Mo, (f5C, 59, (x5 p), P, (¥;9))
forall (x,y)e Rg, m,ne N and i =13, where ®, (-; p) is defined by (2.19).

PROOF. Similarly as [2] we shall use the Stieklov function f, ; of

feCM
h

= .
Jhs(x,)) :=;lé: duJ.f(x+u,y+w)dw, (x,y)ER;, h,6>0.
0 0

From this we get

e
fh,g(x,y)—ﬂx,y)=$Idu?/su,wf<x,y>dw, Sl

(s (50 ——j(Ahw (%)= Ao, £ (5, Y)dbw,

h
Urspy == [ (B (53 =By f Gyl
0

and by (2.4) and (2.15) we obtain
(2.23) Wi —f”p = (G, h0),

(2.24) ||(f,,,5); S @ (1.C o),
(2.25) I f,,,,,.)’pr’q < 257w, (f;C, .5k 0),

for 4,6 >0, which prove that f, 5 € C,l,,q if feC,,. Hence for (x,y)e Rt

m,ne N and i=1,3 and for h,J >0 we have
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L), (f - frs: @in )| +
LG i3 oG35 D) = Fos 6 9|+ |5 o 2) = f(@,3)] 1= S, 8, + 5.
By (2.4), (2.14) and (2.23) it follows that

Voo oIS SML I F = fos e < 300(F5C,p 1380,

Vg (5085 < 0(f5C, 45h,0).

Applying Theorem 9 and (2.24) and (2.25), we get

|2, (fipgsx )~ F (x|

4

vp,q (x,y)S?_ S MS{” (fh,b’); ”p,q (Dm(xyp)'*'“ (fh,5 ),y ”p,q (Dn(%‘I)}S
<2Ms0,(f;C, 3 1 8) D@, (x; p)+ 67D, (1:9)} .

p.q°

Combining these, we obtain
Vo G, (fs .05, 9) - £ (5, »)| <
< My(2,9)0,(f3C g3 h {1+ A7®, (x; p) + 57, (139)}

for (x,y)eRg', mmneN, i=12 and h,46>0. Now, for fixed x,y>0,
m,ne N and i=1,2, choosing h=®, (x;p), 6=D,(y;q), we obtain (2.22)
for x,y > 0.

If x=0 or y=0 we obtain (2.22) similarly as in [2] or [5].

THEOREM 11. Suppose that f €C, ., p,q>0. Then where exists a positive
constant My = My(p,q) such that

(226) v, (o y|Le, (fs s n ) = F(x )| <

2 2
< Mg{wl(f;C,,,q;—, j+ w,(f;Cp,q;<Dm(X;p),fDn(y;q)}

m+p n+gq
forall (x,y)eR;, mne N and i =2,4, where @, is defined by (2.19).

PROOF. The estimation (2.26) follows by the inequality

Ly (i 2055 0) = f59)| < |, (F 252, 0) - L (fi pagsn, )| +
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Lo (s 0.0 )= f (%, y)|

(x,y)ER;, mneN, i=24,
and by Theorem 8 and Theorem 10.

Theorem 10 and Theorem 11 imply the following
COROLLARY 5. Forevery feC,,, p,q>0, and (x,y)e R} we have

lim 0 (f;p,gs 0, p)=f (%), 1<i<4.

This convergence is uniform on every rectangle P={(x,y): A==,
NESYEVa4, %, 20.

2.3 In this section we shall give the Voronovskaya type theorems for
operators L ', defined by (2.7)-(2.10) if m = n.

THEOREM 12. Let feCpq, p,q>0. Then

@27 lim Al (f: 0% )~ LD (F3 2@ 5 0] = £ 9)+ ()

Jor (x,y)e R} and i=24.

PROOF. Let i=2. Similarly as in Theorem 8 we have

@28). UF,, (finy) = L (fipany) = L (Fip.d 5 )) =
W;Mi i"/ (nx)a, (ny) ”{ F(t,2)- f( ks ﬂdzdz,
/=0 k=0 L ey
for (x,y)eRO2 and neN, where 0, :{(1‘ Z)i nijp <t< 2nj++q2 S

2k 2k + 2
o

< } For fixed j, k, n we apply the Taylor formula for
n+ P et q
fe Cf,)q




Lucyna Rempulska, Mariola Skorupka

)= f( e )+f.:( e J[z— 2) )+
n+p’ n+q n+p n+gq n+p
+fy’( 2j 2k ](Z_ 2k J+
n+p n+gq n+p
Bl 2 5 A 2k
+_{fu(aj,1!ﬂk,z)[[_—]J +2f\fy(aj,l7ﬂk,3)[[— / J[Z_ J-'_
g n+p n+p n+gq

2
a 2k
i3 yy(aj,r,ﬂk,z)(z—n+pj } (t,2)€ Dy,

where 2L < ay, <t ;ﬁ"; < B, <z. Hence we can write

n+p
3
(2.29) B (Ga =) Ha (), (sy)eR:, nel,
r=1
where
}{ml(x:}o =
(n+p)(n+q) AT 2j o
; kzzt;aj(nx)ak(ny)f [ s n+q}”(r n+p}dtdz—
= —— 10 (it 2 i Y,
n+p
1¥m2(x’y)::
(n+p)(n+q) S 2j A
; ;aj(nx)ak(ny)f ( L nHJ ”[ n+q]dtdz—

1

e DY)
n-+ q

H,,(x,y) =

S Y Za,(nx)m(ny)ﬂ{f“(a,,,ﬁk (r— szj +

J=0 k=0

/
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; 2) 2k ; 2%
+2fxy(aj,1’ﬁk,z)([— / ](2— J+fyy(aj’“ﬂk’z)(z_n+pj :'dldz.

n+p n+q

We observe that

n+ n+ il ) (2[:2)2_‘_(21\‘:1)1
| Hy3(x,9)| < ( p)( q)ZZaj(nx)ak(ny)e 2 e e

J=0 k=0

2j 2%
il ”(r———] dedz+2 £ 1, J:J[t—n+jpj(z-n+qjdtdz+

+11 £y g ”(Z_n+p]2dtdz =

8

R, 5N el LT
+Z”fxy”p,q(n+pJ( +q] llfyy"p,q§n+p(n+qj =

el AL,
P 3(n+ p)?

3
It n+ +qz " 1 2 2
_ntp)n+q) ;% "*qL“’ (" q-;p,q;x,y){” FEs -3-( j +
n+p

4 1 "
<! | ™7, p,g;.) | reei {II Sl

+“fxy ”p,q (n+p)(n+q)+|lfyy ”p,q 3(”‘*‘6])2J’

for (x,y)e R; and n e N. From this and by (2.13) we deduce that
(2.30) limnH,(x,y)=0 for (x,y)eR;.

Applying Corollary 5, we get
o LY (i, 2, q:%9) = fi(%)),

llmL{” ;20,4 %, ) = f(x ),

for (x,y) e R; , which imply
(2531 limnH, (x;y) = fi(x, ),
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(2.32) limnH,, (%y) = f,(% ),
for (x,y) e ROZ. Now the desired assertion (2.27) for i=2 follows by (2.28)-
(2.32).

The proof for i =4 is identical.

Arguing analogously as in the proof of Theorem 12, we can prove the
following

THEOREM 13. Let feC), p,q>0. Then

lim n{L}),(f;P,4:%¥) = 4,,(f:% )} = = pxfi(x,») - quf; (x, »),

n—»co

lim 7 {L7)(f;p,4:%,9) = B, ,(f3x.9)} = = pxfi(x,3) - quf; (%, ),

for every (x,y) € RO2 :

Applying the above theorems, we shall prove the main Voronovskaya type
theorem.

THEOREM 14. Suppose that f € Cfm , P.q>0. Then for every (x,y)€ R}
and i =1,3 we have
233)  lim 2 {L}(fin.g:%0) = f(6 )} = = pfi(60) ~gfy (%, p) +

x ”n n
+5ftx(x7y)+_§fyy(xay)

Moreover for i = 2,4 and (x,y)e Ro2 we have
(2.34) lim n{L}},(f;p,:%,) = f(x.)} = (1= pO)fi(x, ) +
, X Vi
i (1 —‘IJ’)fy(X,)’) + 2 fx_t(xsy)+ 2 fyy(x:y)'
PROOF. Let i =1. Then for (x, y)e Rg and ne N we have

LY (fip, 4% ¥) ~ (%, 9) =

=0 f: 2.5, 0) - Ay (i) + [0 (i) = £ 0)]
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Applying Theorem 13 and Theorem II given in §1, Section II, we obtain (2.33
for i =1. Analogously by Theorem 12, Theorem 13 and Theorem II we obtain
(2.33)and (2.34)for i =2,3,4. W

From Theorem 14 we derive the following

COROLLARY 6. For every feC

2
p.q°

P-9>0, and for every fixed

(x,y)e RO2 we have

Ly (fimgny)-fxy) = OWn),  1si<4,
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