ZBIGNIEW WALCZAK

CERTAIN MODIFICATION OF SZASZ-MIRAKYAN OPERATORS

ABSTRACT: We consider certain modified Szasz-Mirakyan operators $A_n(f;r)$ in space C_0 of uniformly continuous functions. We study approximation properties of these operators.

KEY WORDS: Szasz-Mirakyan operator, degree of approximation, Voronovskaya type theorem.

1. INTRODUCTION

1.1. In the paper [1] were examined approximation properties of Szasz–Mirakyan operators

(1)
$$S_n(f;x) := e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} f\left(\frac{k}{n}\right), \quad x \in R_0 = [0,+\infty), \quad n \in \mathbb{N} := \{1,2...\},$$

in polynomial weighted spaces C_p , $p \in N_0 := \{0,1,2,...\}$.

If p=0, then C_0 is the set of all real-valued functions f uniformly continuous and bounded on R_0 and the norm in C_0 is defined by the formula

(2)
$$||f|| \equiv ||f(\cdot)|| := \sup_{x \in R_0} |f(x)|.$$

In [1] were proved theorems on the degree of approximation of $f \in C_p$ by operators S_n defined by (1). From these theorems was deduced that

(3)
$$\lim_{n \to \infty} S_n(f; x) = f(x),$$

for every $f \in C_p$, $p \in N_0$, and $x \in R_0$. Moreover, the convergence (3) is uniform on every interval $[x_1, x_2]$, $x_2 > x_1 \ge 0$.

1.2. In this paper we shall modify the formula (1) and we shall study certain approximation properties of introduced operators.

Let C_0 be the space given in above and let $C_0^1 := \{ f \in C_0 : f' \in C_0 \}$, where f' is the first derivative of f.

For $f \in C_0$ we define the modulus of continuity $\omega_1(f;\cdot)$ as usual ([2]) by formula

(4)
$$\omega_1(f;t) \equiv \omega_1(f;C_0;t) := \sup_{0 \le h \le t} ||\Delta_h f(\cdot)||, \quad t \in R_0,$$

where $\Delta_h f(x) = f(x+h) - f(x)$, for $h, x \in R_0$. From the above it follows that

$$\lim_{t\to 0+}\omega_1(f;t)=0,$$

for every $f \in C_0$. Moreover, if $f \in C_0^1$ then there exists $M_1 = const. > 0$ such that

(6)
$$\omega_1(f;t) \le M_1 \cdot t$$
 for $t \in R_0$.

1.3. We introduce the operators A_n by the following

DEFINITION 1. Let $R_2 := [2, +\infty)$ and let $r \in R_2$ be a fixed number. For function $f \in C_0$ we define the operators

(7)
$$A_n(f;r;x) := e^{-(nx+1)^r} \sum_{k=0}^{\infty} \frac{(nx+1)^{rk}}{k!} f\left(\frac{k}{n(nx+1)^{r-1}}\right), \quad x \in R_0, \ n \in N.$$

It is obvious that $A_n(f;r)$ is well defined for every $f \in C_0$ and $n \in N$. Moreover from (7) we easily derive the following formulas

(8)
$$A_{n}(1;r;x) = 1,$$

$$A_{n}(t;r;x) = x + \frac{1}{n},$$

$$A_{n}(t^{2};r;x) = \left(x + \frac{1}{n}\right)^{2} \left[1 + \frac{1}{(nx+1)^{r}}\right],$$

for every fixed $r \in R_2$ and for all $n \in N$ and $x \in R_0$.

2. MAIN RESULTS

2.1. From formulas (7), (8) and $A_n(t^k; r; x)$, k = 1, 2, given in the above we obtain

LEMMA 1. Let $r \in R_2$ be a fixed number. Then for all $x \in R_0$ and $n \in N$ we have

$$A_n(t-x;r;x) = \frac{1}{n},$$

$$A_n((t-x)^2;r;x) = \frac{1}{n^2} \left[1 + \frac{1}{(nx+1)^{r-2}} \right],$$

and

$$||A_n((t-\cdot)^2;r;\cdot)|| \equiv \sup_{x \in R_0} A_n((t-x)^2;r;x) \le \frac{2}{n^2}$$
 for $n \in N$.

Moreover, by the Hölder inequality and by (7) and (8) we have

$$||A_n(|t-\cdot|;r;\cdot)||^2 \le ||A_n((t-\cdot)^2;r;\cdot)||$$
 for $n \in \mathbb{N}$.

Now we shall prove the main lemma.

LEMMA 2. Let $r \in R_2$ be a fixed number. Then for every $f \in C_0$ and $n \in N$ we have

(9)
$$||A_n(f;r;\cdot)|| \le ||f||.$$

The formula (7) and the inequality (9) show that $A_n(f;r;\cdot)$, $n \in \mathbb{N}$, $r \in \mathbb{R}_2$, is a positive linear operator from the space C_0 into C_0 .

PROOF. From (7) and (2) we deduce that

$$||A_n(f;r;\cdot)|| \le ||f|| ||A_n(1;r;\cdot)||$$

for $f \in C_0$, $n \in N$ and $r \in R_2$. Now applying (8), we obtain (9).

2.2. In this section we shall give three theorems on the degree of approximation of $f \in C_0$ by A_n .

THEOREM 1. If $f \in C_0^1$ and $r \in R_2$ is a fixed number, then

(10)
$$||A_n(f;r;\cdot) - f(\cdot)|| \le \frac{\sqrt{2}}{n} ||f'||, \qquad n \in \mathbb{N}.$$

PROOF. Let $x \in R_0$ be a fixed point. Then for $f \in C_0^1$ we have

$$f(t) - f(x) = \int_{x}^{t} f'(u)du, \qquad t \in R_0.$$

From this and by (7) and (8) we get

$$A_n(f(t);r;x) - f(x) = A_n \left(\int_x^t f'(u) du; r; x \right), \qquad n \in \mathbb{N}$$

But by (2) we have

$$\left| \int_{x}^{t} f'(u) du \right| \leq \|f'\| |t-x|, \quad t, x \in R_0,$$

which implies

(11)
$$||A_n(f(t);r;x) - f(x)|| = ||f'||A_n(|t-x|;r;)$$

for $n \in N$. Applying Lemma 1, we get

$$A_n(|t-x|;r;x) \le \frac{\sqrt{2}}{n}, \quad n \in \mathbb{N}.$$

From this and by (11) we immediately obtain (10).

THEOREM 2. Let $r \in R_2$ be a fixed number and let $f \in C_0$. Then

(12)
$$\|A_n(f;r;\cdot) - f(\cdot)\| \le 3\omega_1\left(f;\frac{\sqrt{2}}{n}\right) \text{ for all } n \in \mathbb{N}.$$

PROOF. In this proof we shall use the Stieklov function

(13)
$$f_h(x) := \frac{1}{h} \int_0^h f(x+t)dt, \quad x \in R_0, \ h > 0,$$

of function $f \in C_0$. From (13) we get

$$f_h(x) - f(x) = \frac{1}{h} \int_0^h \Delta_t f(x) dt,$$

$$f_h'(x) = \frac{1}{h} \Delta_h f(x), \quad x \in R_0, \ h > 0.$$

Consequently

(14)
$$||f_h - f|| \le \omega_1(f; h),$$

(15)
$$||f_h'|| \le h^{-1} \omega_1(f;h),$$

for h > 0 and we see that $f_h \in C_0^1$ if $f \in C_0$. Hence, for $x \in R_0$ and $n \in N$, we can write

(16)
$$A_n(f;r;x) - f(x) \le A_n(f - f_h;r;x) +$$

 $+ [A_n(f_h;x) - f_h(x)] + [f_h(x) - f(x)] := K_1(x) + K_2(x) + K_3(x),$

for $x \in R_0$, $n \in N$ and h > 0. Applying Lemma 2 and (14), we get

$$||K_1|| \le ||f - f_h|| \le \omega_1(f;h).$$

By Theorem 1 and (15) it follows that

$$||K_2|| \le \frac{\sqrt{2}}{n} ||f_h|| \le \frac{\sqrt{2}}{n} h^{-1} \omega_1(f;h),$$

for h > 0, $n \in \mathbb{N}$. Hence from (16) and (15) we derive the inequality

$$\|A_n(f;r;\cdot) - f(\cdot)\| \le \left(2 + \frac{\sqrt{2}}{n}h^{-1}\right)\omega_1(f;h),$$

for every $n \in N$ and h > 0. Choosing $h = \frac{\sqrt{2}}{n}$ for every fixed $n \in N$, we obtain

$$||A_n(f;r;\cdot) - f(\cdot)| \le 3\omega_1 \left(f; \frac{\sqrt{2}}{n}\right)$$

and we complete the proof of (12).

From Theorem 1 and Theorem 3 and by (6) we obtain

COROLLARY 1. For every fixed $r \in R_2$ and $f \in C_0$ we have

$$\lim_{n\to\infty} \|A_n(f;r;\cdot) - f(\cdot)\| = 0.$$

COROLLARY 2. If $f \in C_0^1$ and $r \in R_2$, then

$$\left\|A_n(f;r;\cdot)-f(\cdot)\right\|=O(1/n).$$

2.3. Finaly, we shall give the Voronovskaya type theorem for A_n .

THEOREM 3. Let $f \in C_0^1$ and let $r \in R_2$ be fixed number. Then,

(17)
$$\lim_{n \to \infty} n \{ A_n(f; r; x) - f(x) \} = f'(x)$$

for every $x \in R_0$.

PROOF. Let $x \in R_0$ be a fixed point. Then by the Taylor formula we have

$$f(t) = f(x) + f'(x)(t - x) + \varepsilon(t; x)(t - x)$$

for $t \in R_0$, where $\varepsilon(t) \equiv \varepsilon(t; x)$ is a function belonging to C_0 and $\varepsilon(x) = 0$. Hence by (7) and (8) we get

(18)
$$A_n(f;r;x) = f(x) + f'(x)A_n(t-x;r;x) + A_n(\varepsilon(t)(t-x);r;x), \quad n \in \mathbb{N},$$
 and by Hölder inequality

$$\left|A_n(\varepsilon(t)(t-x);r;x)\right| \leq \left\{A_n(\varepsilon^2(t);r;x)\right\}^{1/2} \left\{A_n((t-x)^2;r;x)\right\}^{1/2}.$$

By Corollary 1 and by (2) we deduce that

$$\lim_{n\to\infty} A_n(\varepsilon^2(t); r; x) = \varepsilon^2(x) = 0.$$

From this and by Lemma 1 we get

(19)
$$\lim_{n\to\infty} nA_n(\varepsilon(t)(t-x);r;x) = 0.$$

Using (19) and Lemma 1 to (18), we obtain the desired assertion (17).

REMARK 1. It is easily verified that analogous approximation properties in the space C_0 have the operators

$$\overline{A}_n(f;r;x) := e^{-(nx+1)^r} \sum_{k=0}^{\infty} \frac{(nx+1)^{rk}}{k!} n(nx+1)^{r-1} \int_{k/(n(nx+1)^{r-1})}^{(k+1)/(n(nx+1)^{r-1})} f(t) dt,$$

 $f \in C_0$, $n \in N$, $x \in R_0$ and $r \in R_2$.

REMARK 2. In [1] was proved that if $f \in C_0$, then for the Szasz–Mirakyan operators S_n (defined by (1)) is satisfed the following inequality

$$|S_n(f;x)-f(x)| \le M_1\omega_2\left(f;\sqrt{\frac{x}{n}}\right), \quad x \in R_0, \quad n \in N,$$

where $M_1 = const. > 0$ and $\omega_2(f; \cdot)$ is the modulus of smoothness defined by the formula

$$\omega_2(f;t) \equiv \omega_2(f;C_0;t) := \sup_{0 \le h \le t} \|\Delta_h^2 f(\cdot)\|, \quad t \in R_0,$$

$$\Delta_h^2 f(x) \coloneqq f(x) - 2f(x+h) + f(x+2h)$$
 . In particular, if $f \in C_0^1$, then

$$\left|S_n(f;x) - f(x)\right| \le M_2 \sqrt{\frac{x}{n}},$$

for $x \in R_0$ and $n \in N$ $(M_2 = const. > 0)$.

Theorem 2 and Theorem 3 and Corollary 2 in our paper show that operators A_n , $n \in \mathbb{N}$, give better degree of approximation of functions $f \in C_0$ and $f \in C_0^1$ than S_n .

REFERENCES

- [1] M. Becker, Global approximation theorems for Szasz Mirakjan and Baskakov operators in polynomial weight spaces, *Indiana Univ. Math. J.* 27(1)(1978), 127 142.
- [2] R.A. De Vore, G.G. Lorentz, *Constructive Approximation*, Springer Verlag, Berlin 1993.

(Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland)

Received on 23.01.2002 and, in revised form, on 31.01.2002.

